
 Journal of Information Organization Volume 10 Number 1 March 2020 13

ABSTRACT: The definition of a formal specification is a fundamental step in the design of safety-critical systems. The specifi-
cation defines the behaviors and constraints that the system under development is required to satisfy. Depending on the system
dimension, the specification can be used to verify its correctness or the correctness of its abstract model. In some cases, the
system can also be directly synthesized from the specification. However, when the system is too complex for a full verification or
for synthesis, developers usually rely on testing to demonstrate the correct operation of the system. In this paper we present our
ongoing work on automatic test cases generation, relying on Linear Temporal Logic (LTL) as a specification formalism. The
presented algorithm is implemented in SPECPRO, our library for supporting analysis and development of formal requirements
in cyber-physical systems.

Keywords: Formal Specifications, Lineare Temporal Logic

Received: 10 September 2019, Revised 2 December 2019, Accepted 13 December 2019

DOI: 10.6025/jio/2020/10/1/13-21

© 2020 DLINE. All Rights Reserved

1. Introduction

In the context of reactive systems, i.e., systems that maintain an ongoing interaction with the environment and react to external
stimuli, it is important to check the correctness of their behavior over time. Formal verification techniques provides a viable
solution to automatically check the system against a given specification, greatly increasing the confidence of their correctness.
However, these techniques suffer of known scalability issues and the complete verification of the specification becomes imprac-
tical or even impossible for complex systems. For this reason, testing is the preferred technique for hardware and software
verification in industry, although it provides less guarantees; testing can only detect the presence of errors, not their absence.
Nonetheless, a formal specification can still be of great practical use to automatically generate test suites to show conformance
of the model and the actual implementation, or, just to derive “interesting” test cases to check the developed system [2].

In this paper, we present a new algorithm to automatically extract a test suite from the requirement specification, giving the user
a tool to systematically analyze the behaviors described in the specification and to put them to work in the subsequent phases.
In order to extract test cases from requirements, different requirement-based coverage metrics have been proposed in the
literature, although they usually rely on a complete model of the system for test generation (see [6] for a survey of available
methods). In particular, the proposed approach takes inspiration from [13], a linear temporal logic (LTL) [11] specification-based
test-case generation methodology, and extend our previous work in [12].

Formal Specifications using Linear Temporal Logic

Simone Vuotto
1Universit‘a degli Studi di Genova
{simone.vuotto@edu.unige.it}
2Universit‘a degli Studi di Sassari
{svuotto@uniss.it}

Journal of Information Organization Volume 10 Number 1 March 202014

Compared to [13], where a different automaton is built and checked against the model for each behavior, we build a single
automaton representing all behaviors of the specification and we traverse it in order to extract valid test cases. This approach
frees us from the need of a model, but we require a complete specification to be known in advance. In this regard, we are more
closely related to the synthesis problem, but we limit our scope to the generation of a limited set of behaviors that the final system
should implement, and we do not aim at synthesizing the whole system. With respect to [12], we propose a different exploration
strategy of the automaton and we introduce the concept of input and output sequences, that are used to generate the test cases.
Finally, the proposed algorithm is implemented in the SPECPRO open-source library, along with other features, such as the
consistency checking of requirements and the identification of inconsistent minimal sets thereof [9, 10].

The rest of the paper is organized as follows. In Section 2 we present some basic notions and definitions that are used in Section
3 to describe the proposed algorithm. Section 4 presents the experiments we made to illustrate how the algorithm works and to
evaluate the generated test suite. Finally, Section 5 concludes the paper with some final remarks.

2. Background

LTL formulae consist of atomic propositions AP, Boolean operators, and temporal operators. The syntax of a LTL formula φ is
given as follows:

where a ∈ AP φ, φ1, φ2are LTL formulae, is the “next” operator and is the “until” operator. We also consider other Boolean
connectives like “∧” and “→” with the usual meaning and the temporal operators φ (“eventually”) to denote and φ
(“always”) to denote . In the following, unless specified otherwise using parentheses, unary operators have higher
precedence than binary operators. Briefly, the semantics of an LTL formula φ yields a ω− language Words (φ) of infinite words
satisfying φ, i.e., infinite sequences over the 2AP alphabet (see [1] for a full description).

Definition 1: (Non Deterministic B chi Automaton). A non deterministic B chi Automaton (NBA) is a tuple A = (Q, Σ, δ, q0,
F) where Q is a finite set of states, Σ is an alphabet, is a transition function, is the initial state, and
is a set of accept states, called acceptance set. denotes the set of all infinite words over the alphabet Σ. We denote

 one such word and σ [i] = Ai for the i-th element of σ. For sake of simplicity, the transition relation
 where and , can be rewritten as : .

In Figure 1 is presented an example of B chi Automaton, where Q = {0, 1, 2, 3}, Σ = 2{a, b, c}, Q0 = {0}, F={1}, and transition of the

form is a short notation for the three transitions

Figure 1. Buchi Automata example

 Journal of Information Organization Volume 10 Number 1 March 2020 15

Definition 2 (Run). A run for a is a an infinite sequence : of states in such that q0
is the initial state and qi + 1 ∈ δ (qi, Ai) for some Given a run , we define Words () the set of words that can be produced
following the transitions in .

Definition 3 (Induced Run). Given a word σσσσσ, run : is said to be induced by , denoted for all i ≥≥≥≥≥ 0.

Definition 4 (Accepting run). A run is accepting if there exist qi ∈∈∈∈∈ F such that qi occurs infinitely many times in . We denote
acc() the set of accepting runs for .

Definition 5 (Lasso-Shaped run). run over a NBA A = (Q, , F) is lasso-shaped if it has the form , where α
and β are finite sequences over the states Q. A lasso-shaped run is also accepting if .

The length of is defined as , where |α| (resp. |β|) is the length of the finite sequence of states α (resp. β).

Definition 6 (-language recognized by). A -language (A) of a NBA A = is the set of all infinite words
that are accepted by . A word is accepted by iff there exists an accepting lasso-shaped run of induced by σ.
Formally, .

Transition System A transition system is a tuple where T is a finite set of states, t0 is the initial state and
 is the transition function. The sets I and O are a partition of the atomic propositions AP that are control-

lable by the environment and by the system respectively. The transition function maps a state t and a valuation of the inputs
i∈∈∈∈∈2I to a valuation of the outputs, also called labeling, and a next state . If the labeling produced by (t, i) is independent of i,
we call a state-labeled (or Moore) transition system and transition-labeled (or Mealy) otherwise. Most of the state of the art
tools for reactive LTL synthesis, such as ACACIA+ [5], STRIX [8] or BOSY [4] use Mealy Machines to describe the reactive
systems synthesized.

Given an infinite word over the inputs, can be traversed applying for every j ≥ 0. The

application of for every input ij, starting from t0, produces an infinite trace . The

projection of a trace to the atomic propositions is a path . We denote the set of all paths generated by a transition
system as Paths(T). A transition system realizes an LTL formula if .

3. Automatic Test Case Generation

In this section, we describe a new methodology to automatically generate a set of test cases from a given LTL specification. We
first give a general overview of the algorithm along with an example, and then in subsections 3.1 and 3.2 we describe the way we
select input and output sequences respectively.

The algorithm, shown in Algorithm 1, takes in input a Buchi Automaton of and the sets I and O of input and output atomic
propositions, respectively, such that and . In the general case of multiple LTL requirements

 is build as a conjunctive formula while for a specification in TLSF [7] format, the formula is
built with the SyFCo tool. The Buchi Automaton of the formula is built with Spot [3] v2.7.5 tool. The algorithm is divided into two
steps: (i) we extract a set Is of suitable input sequences; (ii) for each input sequence we compute one or more output sequences
that have to be checked for input .

Algorithm 1 Test Case Generation

1: function GENERATE (, I, O)

2: Ts ← ;

Journal of Information Organization Volume 10 Number 1 March 202016

3: Is ← FIND INPUT SEQUENCES (, I)

4: for do

5: Os ← SELECT OUTPUTS ()

6: Ts ← Ts [{ }

7: end for

8: return Ts

9: end function

Figure 2. Buchi Automaton corresponding to the formula “ ”

The distinction between input and output sequences is needed because of the intrinsic non-determinism normally allowed by a
LTL specification. In fact, a specification usually describes a (possibly infinite) range of allowed sequences. The situation is even
worst if the system is under-specified, i.e., the behavior of the atomic propositions is loosely restricted.

For example, consider the formula , meaning that every query q must be followed by a response r. In this
case q is an input variable and r is an output variable. The corresponding NBA is depicted in figure 2. Now, let’s consider a three
steps input sequence σ = [{q}, {q}, {q}], where q is true only in the second step. If we check all possible prefixes of length 3 that
are in Words (φ), given the assignment of q fixed by σ, we see that multiple solutions are possible. [{qr}, {qr}, {qr}] is such a
solution, and so are [{qr}, {qr}, {qr}] and [{qr}, {qr}, {qr}]. Also the sequence [{qr}, {qr}, {qr}] is accepted by the language,
where r is always true no matter what’s the behavior of q. Finally, also the sequence in which r is always false is a valid prefix,
because if extended can lead to words in which φ is eventually satisfied. However, the transition system realizing such require-
ment, will eventually implement only one of such behaviors. Therefore, we need to keep track of the relation between these words.
In this context, we consider a test case to be successful if applying the input sequence to the system under test, the generated
output is contained in the set of allowed output sequences.

3.1. Find Input Sequences
Algorithm 2 shows the steps implemented to find the set of input sequences. After the initialization of the Is and visited sets, the
function generate Filtered BA (line 4) returns , a filtered version of the given automaton. The new automaton has the same
set of states Q, initial state q0 and acceptance set F of , but the alphabet and the transition function

 are built from the input atomic propositions I only. The resulting language is therefore more abstract then
 and contains only words with input variables. The new automaton is therefore explored with the following strategy:

– For each state q in , we check every outgoing transition not yet explored (i.e., not traversed by an already generated
sequence) that lead to a new state q′;

– For every such transition (q, q′) a run ρ is built in the following way: the shortest path (computed with the function sp at line
9 of Algorithm 2) from q0 to q is concatenated to the shortest path to go from q′ to the nearest acceptance state q* (computed
at line 8, with a classical breadth-first search strategy, within function findNearestAcceptanceState);

 Journal of Information Organization Volume 10 Number 1 March 2020 17

– We extract a word σ from ρ (line 10), we add it to the set of input sequences (line 11) and we mark each transition in ρ as visited
(lines 12-14).

At the end of the process, we have a set is of input sequences, computed from the exploration of each state and transition of the
automaton. The procedure is built with three goals in mind: (i) exercise every behavior contained in the automaton at least once;
(ii) maintain the number of sequences small; and (iii) keep the sequences as short as possible. Finally, before returning the set
of sequences, we call the reduce function that remove the sequences that are pre-fixes of other ones. For instance, if both σ1 =
[{r}, {r}] and σ2 = [{r}, {r}, {r}] are generated, σ1 can be removed because it is a prefix of σ2.

3.2 Select Outputs
As mentioned before, for each input sequence σi, there could be one or more associated output sequences that the system can
implement in order to fulfill the specification. In this section we analyze more in details how to select these sequences. First,
remember that the sequences we are seeking to extract are words accepted by the automaton over the alphabet Σ = 2AP,
namely the power set of all the atomic propositions in Φ. A simple strategy could be to use the input sequence σi as a word of
the automaton to find all induced runs, according to Definition 7 given in Section 2, and then use these runs to extract all
accepted words. However, the problem with this definition is that it is intended for words that share the same alphabet of the
automaton, while in this case σi is defined over the alphabet ΣI ⊆ Σ. Therefore, we modify the notion of induced run over input
sequences as follow:

Definition 7 (Input Induced Run). Given a NBA A = (Q, Σ, δ, q0, F), with Σ = 2I∪O, and an input word σ defined over the alphabet
ΣI = 2I, a run is said to be input induced by σ, denoted , iff for all i ≥ 0.

With this new definition, we can now implement Algorithm 3. For each induced run, computed relying on the definition above,
we check if they are lasso shaped and accepting (line 5). If they are, we extract the corresponding words and we filter them out
(lines 6-9) so that they only contain output variables. The generated words are inserted in Os (line 10) and finally returned (line
14) when all runs have been evaluated.

As a final remark, Algorithm 3 computes for each input sequence σi all the corresponding lasso-shaped accepting output
sequences of length |σi|. On the one hand, it could be possible to produce more output sequences, extracting longer runs or
weakening the lasso-shaped accepting condition. On the other hand, one could also think to further reduce this set, filtering it
out with some heuristics. For example, we could take into account only the runs that visit acceptance states more often, or the

Journal of Information Organization Volume 10 Number 1 March 202018

ones that reach an acceptance state first.

4. Experiments

Let us start our experimental evaluation by introducing the following specification as our running example, with I = {request_0,
request_1} and O = {grant_0, grant_1} being the set of input and output variables, respectively:

 ((grant_0 ∧ ¬ request_0) → (¬ grant_0)) (1)

 ((grant_0 ∧ χ (¬ request_0 ∧ ¬ grant_0)) → (2)

χ (¬ grant_0 W (request_0 ∧ ¬ grant_0))

 ((grant_1 ∧ ¬ request_1) → (¬ grant_1)) (3)

 ((grant_1 ∧ χ (¬ request_1 ∧ ¬ grant_1)) → (4)

χ (¬ grant_1 W (request_1 ∧ ¬ grant_1))

 (¬ grant_0 ∨ ¬ grant_1) (5)

¬ grant_0 W (request_0 ∧ ¬ grant_0) (6)

¬ grant_1 W (request_1 ∧ ¬ grant_1) (7)

 (request_0 → grant_0) (8)

 (request_1 → grant_1) (9)

The specification describes the full arbiter of two clients; it eventually issues a grant for each client if they send a request (see
formulae (8) and (9)). The specification also states that the grant should not be issued to the two clients at the same time (see
formula (5)), that if no further requests arrive it should stop issuing the grant (formulae (1) and (3)) and that no grant should be
issued until new requests arrives (formulae (2), (4), (6) and (7)).

Given the above specification, the algorithm described in Section 3 generates the 30 tests cases presented in Table 1. The first
column shows the generated input sequences (for the sake of space, request_0 and request_1 are replaced with r0 and r1
respectively) and the second column reports, for each input sequence, the corresponding number of generated output

 Journal of Information Organization Volume 10 Number 1 March 2020 19

sequences. Notice that the output sequences are lasso-shaped; therefore, we could extend each test sequence indefinitely.
However, each test must be finite, so we repeat the recurrent part of the lasso-shaped sequence only once.

In order to evaluate the effectiveness of the generated test suite, we used Strix [8] to synthesize a Mealy Machine from the same
specification and we run the generated tests on it. A representation of the synthesized transition system is depicted in Figure 3.
Out of the 30 test cases, 23 of them were successful, i.e., the output sequence produced by the transition system was in the set
of output sequences generated by the algorithm, while 7 tests failed. Analyzing the failed tests, we observe two phenomena.
First, let’s consider the case with input sequence σ1

i = [{r0, r1}, {r0, r1}, {r0, r1}, {r0, r1}]. The only generated output is σ1
o = [{g0,

g1}, {g0, g1}, {g0, g1}, {g0, g1}] (where g0 and g1 stand for grant_0 and grant_1, respectively). On the other and, if we run σ1
i on

the transition system in Figure 3, we see that it visits states S0, S1, S5, S7 and S4, and produces the output sequence σ1
0 = [{g0,

g1}, {g0, g1}, {g0, g1}, {g0, g1}]. σ1
0 is a perfectly valid output sequence, recognized by the language, and the system behaves

as we expect. In this case, the algorithm produced a too narrow set of output sequences and failed to find the implemented one.
This is due to the lasso-shaped condition and the limit on the sequence length, as explained at the end of Section 3. A less
restrictive condition or a longer input sequence would have allowed the algorithm to find the expected output. Now, let’s
consider the input sequence σ2

i = [{r0, r1}, {r0, r1}, {r0, r1}, {r0, r1}]. The expected output is σ2
o = [{g0, g1}, {g0, g1}, {g0, g1}, {g0,

g1}]. Running σ2
i on the synthesized system, the system visits states S0, S2, S7, S1 and S4, and it outputs σ2

o = [{g0, g1}, {g0, g1},
{g0, g1}, {g0, g1}]. In this case we see that the system has a strange behavior, because it keeps g0 active for two steps even if it
is not needed. Although the specification does not forbid this behavior, and σ2

o is a perfectly valid sequence, one may prefer to
observe output σ2

o instead. In situations like this, having small sets of output sequences can be beneficial in identifying these
subtle behaviors.

Table 1. Generated Input Sequences

∧

∧

∧

∧

Journal of Information Organization Volume 10 Number 1 March 202020

Finally, we report that the successful test cases were enough to cover all the states of the synthesized transition systems and
87% of its transitions.

Figure 3. The transition system generated from the full arbiter specification. S0 is the initial state and the label on every edge
represents the value of the input and output variables. In particular, before the “/” are the values of the request_0 and

request_1 input variables, respectively; after the “/” are the values of corresponding output variables grant_0 and grant_1,
respectively. The “-” symbol means “don’t-care”, namely it can assume both values

5. Conclusion and Future Work

In this paper we presented an extension of our previous work [12] on automata based test generation. In particular, we propose
a new framework that splits the test case generation problem in two parts: first all input sequences are computed, i.e., sequences
containing only input atomic propositions, and then the corresponding set of output sequences is selected from the automaton.
We presented an algorithm to carry on both these tasks, and we shown its effectiveness using the full arbiter specification in out
experimental evaluation. The results reported in Section 4 gave interesting insights into both the challenges as well as the
potentials of such approach. In particular, further work is necessary in order to explore and evaluate different generation
strategies and outputs selection conditions. Concerning current and future work, our next steps will focus on (1) performing an
extensive evaluation of the algorithm with different benchmarks, (2) extending the current idea with new heuristics and selection
conditions, and (3) evaluate the possibility to replace the set of output sequences with a more general oracle for the output
validation. Finally, SPECPRO is still under active development and we aim at adding new functionalities and exploring more
expressive logics.

References

[1] Baier, C., Katoen, J. P. (2008). Principles of model checking. MIT press.

[2] Broy, M., Jonsson, B., Katoen, J. P., Leucker, M., Pretschner, A. (2005). Model-based testing of reactive systems. In: Volume
3472 of Springer LNCS. Springer.

[3] Duret-Lutz, A., Lewkowicz, A., Fauchille, A., Michaud, T., Renault, E., Xu, L. (2016). Spot 2.0 - framework for LTL and ω
automata manipulation. In: Proceedings of the 14th International Symposium on Automated Technology for Verification and
Analysis (ATVA’16). Lecture Notes in Computer Science, 9938, 122-129. Springer (October).

[4] Faymonville, P., Finkbeiner, B., Tentrup, L. (2017). Bosy: An experimentation framework for bounded synthesis. In: Proceed-
ings of CAV. LNCS, vol. 10427, 325-332. Springer.

[5] Filiot, E., Jin, N., Raskin, J. F. (2013). Exploiting structure in ltl synthesis. International Journal on Software Tools for
Technology Transfer 15 (5-6) 541-561.

 Journal of Information Organization Volume 10 Number 1 March 2020 21

[6] Fraser, G., Wotawa, F., Ammann, P. E. (2009). Testing with model checkers: a survey. Software Testing, Verification and
Reliability 19 (3) 215-261.

[7] Jacobs, S., Klein, F., Schirmer, S. (2016). A high-level ltl synthesis format: Tlsf v1. 1. arXiv preprint arXiv:1604.02284.

[8] Meyer, P. J., Sickert, S., Luttenberger, M. (2018). Strix: Explicit reactive synthesis strikes back! In: Computer Aided Verification
- 30th International Conference, CAV 2018, Held as Part of the Federated Logic Conference, FloC 2018, Oxford, UK, July 14-17,
2018, Proceedings, Part I. p. 578-586.

[9] Narizzano, M., Pulina, L., Tacchella, A., Vuotto, S. (2018). Consistency of property specification patterns with boolean and
constrained numerical signals. In: NASA Formal Methods: 10th International Symposium, NFM 2018, Newport News, VA, USA,
April 17-19, 2018, Proceedings. 10811, 383-398. Springer.

[10] Narizzano, M., Pulina, L., Tacchella, A., Vuotto, S. (2019). Property specification patterns at work: verification and inconsis-
tency explanation. Innovations in Systems and Software Engineering, p. 1-17.

[11] Pnueli, A., Manna, Z. (1992). The temporal logic of reactive and concurrent systems. Springer 16, 12.

[12] Vuotto, S., Narizzano, M., Pulina, L., Tacchella, A. (2019). Automata based test generation with specpro. In: Proceedings of
the 6th International Workshop on Requirements Engineering and Testing. 13-16. IEEE Press.

[13] Zeng, B., Tan, L. (2016). Test reactive systems with bnuchi-automaton-based temporal requirements. In: Theoretical Infor-
mation Reuse and Integration, 31-57. Springer.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

