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The Study of the Impact of the Search Algorithms in Board Games

ABSTRACT: Algorithms play a major role in games. The algorithms pass a node in the board games, the heuristic function get
involved. Thus we tried to understand the evaluation process where the domain is treated. We in this current work, provided an
approach to find the best movement by deploying a game tree, with an implementation for the board game called Othello. To
study the desired factors and the best movement is obtained through an in-depth search, according to the designed heuristic.
We experimented with two algorithms. The former is Mini-Max and its evolution to Alpha-Beta. The latter is Scout, which
presents better performance regarding time. In addition, we present the results, rules, and implementation features.

Keywords: Board Games, Search Algorithms, Scout Algorithm, Artificial Intelligence, Game Tree, Alpha-Beta Pruning

DOI:10.6025/ed/2020/9/1/1-12

Received: 10 September 2019, Revised 23 December 2019, Accepted 4 January 2020

Copyright: With Authors

1. Introduction

The states of a two-players game can usually be represented in a game tree. This represents the possible paths that an agent can
take when trying to find the best solution. In games specification of complexity degree, the deployment of the nodes for each
branch can become too extensive. Thus, it is important to find the most appropriate solution in less time. When the target
endgame gets too large to fit into the main memory, fast memory-efficient algorithms are devised [21]. We could see this problem
from the hardware point of view, where the finite tree is physically deployed in a database through retrospective analysis. Thus,
we could consult the best movement or perform the search deeply as presented for AlphaGo1. AlphaGo has asynchronous
processes for its calculations searching the tree using the Monte Carlo algorithm. When searching game trees, especially in a
competitive setting, significant benefits can be achieved by pruning branches which under no circumstances can affect the
decision being made at the root [15].

Heuristic search has been applied both to two-player games and single-agent problems [5,10]. The search algorithms use an
evaluation function F(n) where n is the node to evaluate. The heuristic influences the exploration because based on it, a value is
assigned to each space. In games, this value can be assigned to the board to obtain the best value enabling the algorithm to make
the best decision when performing a movement. In order to find a sequence of actions from an initial state to a goal state
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efficiently, this heuristic function has to guide the search towards the goal. However, it is important to have in mind that a static
heuristic can present two problems: 1) each node in the exploration is different, since the movement must be evaluated and 2) the
strategy in each game is different. Therefore, it is necessary to find the most relevant factors in the design of the heuristic for a
desired domain.

In this work, we compare two algorithms at runtime. The former is the Alpha- Beta algorithm, which prunes the branches that do
not meet the value −∞ or ∞ depending on the player (max or min). The latter is the Scout algorithm, which aims to solve the problem
of branching the Alpha-Beta algorithm. The nodes explored in the two algorithms had the same evaluation criteria in the heuristic.

Then, we propose a heuristic that depends on certain factors for the two- player game called Othello. We assign static values to
each board position to calculate some factors. We assign static values to each board position to calculate some factors. To be able
to demonstrate the approach, Othello is good enough case study since it is two-players strategy game played on an 8 x 8 board.
There are 64 identical pieces which are white on one side and black on the other [9].

The paper is structured as follows. Section 2 presents the definition of the Othello game. Section 3 presents the main concepts of
search game tree. Section 4 presents the related work. In section 5, we illustrate the proposed approach. Section 6 presents the
results. Finally, section 7 concludes the paper.

2. Othello Game

Othello is classified as a territorial and abstract game. The generalizations are natural in the sense that the board is extended by
planar n × n locations. In Othello, an arbitrary position of each game is given, and no further rules are modified [6]. Othello is a
popular game in the world, which handles two-colored pieces, usually black and white. The goal is to reverse the opponent’s
pieces in order to finish the game with more pieces than the opponent. Figure 1 shows an example board with the description of
the movements. In this state, the turn is for the black player and the legal movements are indicated in gray. Thus, six different legal
movements are identified indicated by numbers 1 to 6. These movements are: two diagonal, two vertical and two horizontal.

3. Search in Game Tree

Search in two-players games has been an important topic in Artificial Intelligence (AI). The range of search strategies investigated
stretch from application independent methods to knowledge-intensive methods. The former has the promise of general applica-
bility, the latter of high performance [14]. Each movement generates a state (node) in the set of spaces. Multiple algorithms have
been created to search the best node. Minimax algorithm was the pioneer and one of the most used in games with AI; neverthe-
less, this algorithm examines more board states than necessary [4]. Thus, it is more convenient to use Alpha-Beta algorithm.
Another algorithm is Scout, which is able to find the best result with a better performance.

Figure 1. Example game state
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3.1. Two-players Games
We consider a class of two-players perfect information games in which two players, called max and min, take alternate turns in
selecting one out of legal moves [13]. They are games that use strategy models defined by movements. The two players games we
are dealing with can be characterized by a set of positions, and by a set of rules for moving from one position to another, where
the players make their movements alternately [7]. An important feature is the fact that the board can be represented as a set of
values, where each piece represents a value. Many AI systems use evaluation functions for guiding search tasks. In the context
of strategy games, they usually map game positions into the real numbers for estimating the winning chance for the player to
move [2]. Figure 2 shows the main components of this type of game. The two players alternately have a turn to select a piece of
the board, the configuration or state of this board has a value for each player, and each movement generates a new set of legal
movements until reaching the end of the game or a terminal state.

Figure 2. Components in two-players games

3.2. Alpha-Beta Algorithm
The pruning Alpha-Beta algorithm is an improved technique of the Minimax algorithm in which it is possible to calculate an
objective state without the need to traverse all the nodes of the game tree. This type of algorithm is usually used for any type
of deep search tree and whole subtrees. The effectiveness of Alpha-Beta is maximized if the best move is considered first at all
interior nodes of the search tree [18]. The problem that exists using the Minimax algorithm is that the number of nodes to explore
is exponential to the number of movements. Pruning does not influence the decision of the movement; however, it significantly
reduces exploration, improving performance.

3.3. Scout Algorithm
Scout was proposed by Judea Pearl in the 80s. The idea is to reduce the computational effort by first checking the inequality V
(S) > v, where S is the current node, v is some reference value and V (S) is the heuristic function. The power of the algorithm is
due to its pruning capacity, where branches that do not lead to a better solution should not be explored. Scout needs a method
to check inequalities called Test. Test is a predicate that is part of the Scout process. It returns true if a value is a bound on the
Minimax value of a game tree [12] and it will be responsible for resolving inequalities. The Test input parameters are: the node to
apply the test, the fixed value of the comparison, and the inequality to be applied (greater). Its output is a boolean value to
indicate whether or not the inequality is met. Algorithm 1 shows an experimental approach of this function. The main input is the
node. If it is not a terminal state, the sub-nodes are explored to obtain the best score. The score is evaluated with the function
evaluateNode, which is the heuristic of the approach. evaluateNode receives the status of the board and returns the value of the
node. Depending on the condition (player), Test validates whether the current branch should be explored.

In addition, Scout algorithm uses the Eval function to calculate the Minimax value of a node, using Test to check whether or not
it is necessary to explore a particular branch. Its main input is the node to evaluate. Algorithm 2 generates the legal movements
according to the node or board it receives. The first node is evaluated and from there, according to Test, the branches with the
best values are explored. Finally, the best move to make according to the heuristic configuration in the function evaluateNode
is returned.
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Input : board, score, player (condition)
Output: True or false
moves ← getLegalMoves(board);
if moves == 0 or endGame(board) then

if evaluateNode(board) > Score then return true ;
else return false ;

end
else

if player is max then
foreach move in moves do

newBoard← fixedPosition(move);
if test(newBoard,score, player) then

return true
end

end
end
else

foreach move in moves do
newBoard←fixedPosition(move);

if ! test(newBoard, score, player) then
return false

end
end

end
end
// no node meets the condition
if player is max then return true;
else return false;

Algorithm 1. Test Function in Scout
4. Related work

Defining the heuristic with general factors for games represents the possibility of extending the design and implementation for
various games. The following works try to solve the problem of defining a heuristic in a general context.

Buro [3] proposes two phases to build an evaluation function. Selecting features and combining them. In addition, he creates a
generalized linear evaluation model (GLEM), where it is described as combining conjunctions of Boolean characteristics linearly.
Combined with an efficient minimum square weight adjustment, GLEM greatly facilitates the programmer task of finding signifi-
cant characteristics and assigning the most suitable weights.

Sephton et al. [20] perform a heuristic to determine the best move for the game Lords of War creating a set of functions when
examining a state. They experimented in two ways: using heuristics that extracted statistics from the cards in the game and using
heuristics that used heat maps to prioritize specific positions. As they concluded, the first category proved to be the most
effective, which was the simplest heuristic since it simply counted the number of cards. Heat map heuristics were generally
ineffective; however, they showed the greatest relative improvement in state extrapolation.
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Input: board or node, depth, player
Output: optimal move and best score
if moves ← getLegalMoves(board);
score ← 0;
if moves == 0 or endGame(board) or Depth == 0 then

score ← evaluateNode(board);
end
else

newBoard  ← fixedPosition(moves → item(0));
score ← eval(depth − 1, player, newBoard) → bestScore;
moves → removeItem(0) ;
if player is max then

foreach move in moves do
newBoard  ← fixedPosition(move);
if test (newBoard, score, playerMax) then

score  ← eval(depth − 1, playerMax, newBoard) →
bestScore;
bestMove  ←  move;

end
end

end
else

foreach move in moves do
newBoard ← fixedPosition(move);
if test(newBoard,score,playerMin) then

score ← eval(depth − 1, playerMin, newBoard) →
bestScore;
bestMove  ← move;

end
end

end
end
return score, bestMove;

Algorithm 2. Eval Function in Scout

Sanchez et al. [16] present a proposal to create an agent in the game Quoridor based on some improvements to the graphics of the
board. The strategy is done by displaying the tree of the game. The nodes are stored in a NOSQL graphs database. The work
focuses on the representation of the nodes. In this way, they present the tools and techniques to reduce the great impact of
processing in the exploration of the nodes.

Kuhlmann et al. [8] describe how to create an agent for multiple prolog- style games. They built a heuristic from the characteristics
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identified in the description of the game. The heuristics of the candidate node are evaluated in parallel during the selection of
actions to find the best movement. The agent identifies five elements of the game: relations of successors, counters, boards,
markers, pieces, and quantities.

Schiffel et al. [19] present an approach to a general game combining reasoning about actions with heuristic search. The approach
was based on automated analysis to build a heuristic search. They describe the following generalities: 1) Determining legal
moves and their effects from a formal game description requires reasoning about actions. 2) Using non-uniform depth first. 3)
Using Fuzzy Logic to determine the degree to which a position satisfies the logical description of a winning position. Strategic,
goal-oriented play requires to automatically derive game-specific knowledge from the game rules. Then, terminal states are
avoided as long as the objective is not met i.e., the terminal value has a negative impact on the status assessment if the objective
has a low value and positive impact.

The works of Noe [12] and Pearl [13] present a comparison between Alpha-Beta and Scout for the kalah game. Both conclude
that Scout has better performance.

5. Proposed Approach

Learning without any prior knowledge in environments that contain large or continuous state spaces is a tough task [1]. When
implementing a game tree, we  seek to explore all possible states; however, these implementations have become a bit obsolete
because search algorithms usually take too much memory at runtime. In this section, we present the approach we proposed to
design the heuristic and the search process to obtain the best movement for the Othello game.

5.1. Heuristic for Two-players Games
The proposed heuristic is intended to state global factors and discuss their use in different contexts. Each factor is set using a
weight W. If the factor should not be implemented due to the domain, its weight will be 0 removing the heuristic fac- tor.
Developing heuristics for games or other search problems typically involves a great deal of testing by playing the game
repeatedly under realistic time constraints against several different opponents [11]. The implemented heuristic has a set of
factors that are taken into account when calculating the value of a node V. Factors details are as follows:

– Parity of Pieces: This factor calculates the piece difference between the player and the machine. The important thing is to
correctly calculate the difference of pieces between one player and the other. Some games need, as a strategy to keep fewer
pieces during the start of the game. It is more efficient than having a large amount that could be in favor of the other player in a
move.

– Legal Movements: Mobility is one of the fundamental factors. Based on its calculation, it is possible to determine the outcome
of the game. For the calculation of mobility, two types of movements are taken into account: the actual movement and the
potential movement. On the one hand, the actual movement is the number of movements that the player can perform in his turn.
On the other hand, the potential movement is the one that is developed when the game progresses depending on the movements
made by the player and his opponent. Note that movements that are currently not legal, but might become legal in the near future
are accounted for in the calculation of potential mobility. Hence, potential mobility captures the mobility of the player in the long
term, while actual mobility captures the immediate mobility of the player[17].

– Positions in the Game: Capturing some positions is an important factor. We see it in Othello, where it is of great importance
to capture the corners since it is very likely that the player who puts a piece in these positions [(0, 0), (0, 7), (7, 0), (7, 7)] can
control the game. The corners are the most stable points of the board which means that the piece that occupies that position
cannot be flanked. By occupying the corner positions, the player can build a stable game, which increases the chance of winning
the game.  The following source code represents the value we gave to each position in the board for the Othello game. The
heuristic value for this factor for the player is calculated by adding the weights of the squares in which his pieces are present.
The static board implicitly captures the importance of each frame on the board and encourages the game to tend to capture some
positions. Dynamically changing these weights would mean that we would have to use  heuristics to calculate the weight of a
position based on its stability.

integer positions [][] = {{99, -18, 8, 6,6, 8, -18, 99},
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{-18, -24, -14, -12, -12, -14, -24, -18},
{8, -14, 15, 15, 15, 15, -14, 8},
{6, -12, 15, 10, 10, 15, -12, 6},
{6, -12, 15, 10, 10, 15, -12, 6},
{8, -14, 15, 15, 15, 15, -14, 8},
{-18, -24, -14, -12, -12, -14, -24, -18},
{99, -18, 8, 6, 6, 8, -18, 99}};

It is based on the possibility that a piece might be flanked. The stability has three states:

• Stable: A piece is stable when it is not possible to be flanked during the development of the game until its end. In Othello, the
corners are the most stable positions of the game. In addition, as the game is established in the corners, the pieces become more
stable.

• Semi-stable: A piece is semi-stable when it can be flanked at some point in the game, but not precisely on the next movement.

• Unstable: A piece is unstable when it is potentially flanked on the next movement. For Othello stability is an important factor.

– Node is a Terminal: If the node is a terminal state, it is validated if the player in function of the heuristic is the winner of the game
to assign positive points. Otherwise, this factor will be negative. This factor, depending on the domain is one of the most
important factors since it can indicate the most promising path to the search algorithm.

– Most representative Movements: This factor consists in reviewing the legal movements of the board for the two players as a
method of strategy for the next movement. The difference between the amount of legal movements for each player is calculated.
In addition, the position of the movement is calculated by looking for its position. An additional list of positions is created, which
are the most representative in the next movement. For Othello, the list consisted of the corners, along with the edges. If the legal
movements have these positions, positive points are given for the player or if the opponent is the one who has a corner position,
in that case, the factor will have negative points.

– Intermediate Tabs: The amount of pieces between the enemy and the heuristic player is calculated against each enemy piece.

– Parity: The parity value for a factor is calculated by adding the weights of the other factors in which the player’s pieces are
present. In this way, the quadratic average of the other weights is calculated. This calculation is made by the equation 1, where w
is the weight of each factor and N the amount of weights.

Finally, the node score is calculated adding all factors already mentioned using the equation 2, where K represents the amount of
factors, weightfi is the weight of factor, and fi is the value of factor.

5.2. Driving the Game Board
In the proposed approach, for a one-board node S ∈ {n1, ... nk}, where k is the number of nodes in the set of states, we define that
the best position P in the legal movements of S should be evaluated by the proposed heuristic. This means that the best
movement is generated within the legal movements for a reference board. We use the Scout algorithm to search S within P. Figure
3 presents the main components of the approach. The logic component is responsible for managing the interaction of the players
with the board and the search. The details of the proposed architecture is as follows:

– Logic Component: It is responsible for managing the board according to the type of player. The management of the board is

(1)

(2)
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Figure 3. Components Approach

done with a n × n = matrix, where n = 8 for Othello. When saving the board, it is compressed into a character set with the following
notation: player- 0- 0, player-0 -1, ..., player-i-j where i represents the columns, j the rows, and player the value of the cell that can
go from 0 to 1, where 0 is for white pieces and 1 for black ones. Board allows decompressing the format to an array and is listening
for a human player movement using push notifications. Players Pc player and Human player have assigned white or black pieces.
The management  f the board (fixed pos, generate legal movements and compress-decompress) is done by Handle Board. Pc
player is the implementation of the search algorithm. In the case that Pc player is playing with white, the best move will be
searched with black, the board will always be managed with black pieces, so the Transplate Board component is responsible for
transposing the values. To obtain the movement, the tree of the game is deployed with the Scout algorithm; after that, the best
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movement is fixed. In Human player we analyze the legal movements the player can make with the Get move component. Handle
next movement for Pc chooses a movement randomly within the legal movements of Human player as a candidate. Thus, we can
anticipate and make the management of the Pc player (look for movement in the tree) to save time while the Human player chooses
his movement. If we do not succeed in the movement of the Human player, Pc player calculates the best movement.

– Heuristic and Search Optimal Movement: These two components inter- act to get the best movement. In search optimal
movement, the algorithm is displayed, the legal movements for the search are obtained using Handle Board. The algorithm sets
each legal movement and from there generates the branches of the tree. When evaluating a node, the Heuristic element is used.
Heuristic gets all the data of each factor with Factor data according to those values such as weight, tab value, or board value. The
calculation is made and the heuristic value is generated.

6. Experimental Results

The great popularity of mobile devices makes an important influence on people. Thus, creating mobile apps might produce
advantages because based on their use, people can develop skills that can boost active learning. With this in mind, we developed
a mobile app in order to apply the proposed approach to the Othello game. This app can be used without an internet connection.
When the mobile phone is connected to internet, the app has a connection to a non-relational database Firebase2, which will be
used to analyze the data of each game that is done with the algorithm. Based on this, it is possible to analyze the movements made
in every game for both the machine and the player. The app has the game modes vs computer, which allows the user to play
against the machine. The Scout algorithm has been implemented, as well as the Alpha-Beta algorithm to compare the two
algorithms and obtain their performance.

2https://firebase.google.com

Figure 4. Main Game Activity
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Figure 4 shows two parts of the app. In the left side, the user can select the mode and the algorithm. In the right side, the Othello
game is deployed. The board has the white pieces, the black pieces, and some gray guides that are the valid movements that the
player could make in his turn.

6.1. Comparison Alpha-Beta and Scout
To start comparing the Scout and Alpha-Beta algorithms, we run exploration experiments with the same test field for both
algorithms. In this way, we performed an in-depth comparison for both algorithms to see the number of nodes explored. The tests
were carried out in mobile programming. In our context, Alpha-Beta allowed us to reach a maximum depth of 8 without ceasing to
respond the mobile device due to a lack of memory. The tests were based on measuring the number of nodes exploring the time and
depth given. Besides the memory capacity, the Alpha-Beta algorithm requires, its implementation takes a long time to make a
decision to place the movement because it explores too much nodes based on the deployment of the decision tree branches. On
the contrary, the Scout algorithm just takes a couple of seconds to obtain the right movement exploring much less nodes and
making a better decision. Figure 5 and Figure 6 represent the experimental results of the tests. The Scout algorithm is detailed in
red and Alpha-Beta blue ( α−β ).

Figure 5 presents the number of nodes explored by the Scout algorithm and the time it took to explore them. The shortest time was
73 milliseconds and the longest time 1014 milliseconds for 15 movements. The number of nodes ranges from 76 nodes explored to
1041. The performance is compared with Figure 6, which presents the number of nodes scanned by the Alpha-Beta algorithm that
is much greater than the Scout. Thus, Alpha-Beta starts deploying 26264 nodes, while Scout just 76, which represents a huge
difference in their performance. for both algorithms, the test was performed with a depth of 8.

6.2. Test Results
We carried out tests with 3 players. We classified players into three categories: expert, medium, and amateur. On the one hand,
each player played 10 games against the Scout algorithm, where the expert player won 3, drew 5 and lost 2 games. In the same way,
the medium player did not win any game, drew 2 and lost 8. Finally, the amateur player did not win or draw any game. As a result,

Figure 5. Exploration for Depth 8 using Scout

Figure 6. Exploration for Depth 8 using Alpha-Beta
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the algorithm won 20 games, drew 7 games, and lost 3 games. On the other hand, the Alpha-Beta algorithm just won 6 games,
drew 10 games and lost 14 games.

Consequently, we can asses that the Scout algorithm can beat players even with an expert level.

7. Conclusions and Future work

Based on the results obtained in the implementation of the two algorithms, Scout and Alpha-Beta, the Scout algorithm may have
a better performance than Alpha-Beta for board games. Scout algorithm obtained better results in less time exploring fewer
nodes, which improved the response time against the human player. The factors were fundamental to obtain these results. It is
pertinent  to note that the implementation of each algorithm was carried out under the same parameters. With this in mind, we can
conclude that under the same conditions the Scout algorithm is more efficient than Alpha-Beta. The performance of each
algorithm was tested with 30 games played against human players.

As future work, it is intended to implement a neural network, which will be responsible for assigning the weights to the factors
of the heuristic. In this way, the heuristic will be trained through unsupervised learning. The items stored in the database will
serve as analysis to reinforce the weights. In the factors, the weights are the basis of the approach and must be readjusted for
each game. Then, the algorithm would obtain the necessary information to make the best movements against human players.
Thus, it will be easier to build the heuristic regardless of the domain. The main input will be the state of the game, from there, we
can obtain the factors that we propose in the paper.
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