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ABSTRACT: In the last couple of years, the Internet of Things (IoT) is found to have increasing applications. The IoT
components include smart-devices which communicate and exchange the information without the physical intervention of
humans. The growth of newer models of IoT and their systems lead the devices more vulnerable and prone to a severe kind of
threats. This current study has introduced a new system capturing and verification procedures in Blockchain supported
smartIoT systems that can show the trust-level confidence to outside networks. This work has a Behavior Monitor and get
implemented on a selected node that can extract the activity of each device and analyzes the behavior using deep machine
learning strategy. In addition, we use Trusted Execution Technology (TEE) which can provide a secure execution environ-
ment (enclave) for sensitive application code and data on blockchain. To prove the proposed model, we analyze various IoT
devices data that is infected by attacks. Experimental findings prove the ability of our proposed method in terms of accuracy
and time required for detection.

Keywords: Security, Privacy, IOT, Blockchain, Trust, Behavior, Neural Network

Received: 24 January 2020, Revised 2 June 2020, Accepted 16 June 2020

DOI: 10.6025/jisr/2020/11/3/75-85

Copyright: with Authors

1. Introduction

Currently, in the modern world Internet of Things (IoT) is rapidly increasing and involved in every part of our daily life.
According to the industry-leading experts’ argument that more than 50 billion devices will be deployed by 2020 [1]. Things
in IoT are composed of web-enabled devices that use embedded processors, sensors, micro-controllers and communication
hardware (send & receive data from different environments). Such rich communication in IoT devices produces a large
volume of data which in turn to use for various dependent services.

Apart from this, IoT allows the advancement in several areas such as home to smart-home, cities to smart-cities, school to
smart-school, health-care to smart- health-care, and many more. The main idea behind the IoT ecosystem is the diversity of
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things that outputs in a massive number of devices. Each device (physical or virtual) connected to the system, should be
traceable and the generated information from the device can be retrievable by other users irrespective of their locations [17].
Nevertheless, it is necessary that only authorized users can be able to enter and make use of the system and its resources.
Otherwise, it may face several security concerns such as data modification, identity theft and information leakage. More-
over, security and privacy problems remain a demanding challenge in such a massive scale adoption of IoT systems because
of the following reasons: (1) Mostly the communications between these IoT devices are wireless which make the system
more susceptible to different attacks, i.e. message tampering, eavesdropping and denial-of-service attacks like mirai attack
[2] etc. (2) Devices from different company-makers have resource constraints limitation such as processing power, battery
and memory capacity that do not allow to deploy advanced security solutions.

Numerous solutions concerning security and privacy in IoT have been proposed that provide the mainstream security re-
quirements i.e. Confidentiality, Integrity, Authentication or simply CIA [23]. However, due to heterogeneous nature and
resource-constrained devices, existing solutions cannot fulfill the desired security requirements in the upcoming large-
scale IoT system. Even though some security based solutions are efficient and secure but are commonly based on centralized
mechanisms. For instance, PKI (Public Key Infrastructure) faces with scalability issues in case of million nodes.

When it comes to decentralization, Block-chain (BC) technology has acquired an enormous attention in regard to tackling
security, anonymity, traceability, and centralization. Ethereum [33] a public blockchain was introduced in 2014 that run
smart-contracts for BC users in order to write and execute application code in a distributed way. Basically, Blockchain is a
distributed ledger technology where each operation such as create, read, update and delete, is recorded in the form of a
transaction. Any unauthorized user accessing data or any operations on the previously processed data can, therefore, be
detected. Furthermore, smart contracts are used to apply some access control mechanisms on the stored data. A number of
researches have shown the integration of BC technology in different IoT use-cases. [15, 32, 10, 8, 31, 19, 12, 7, 14].

Problem Statement and Contribution:
As from various studies, it has been found that blockchain has become a promising technology to meet future IoT security
requirements [13]. Several Authors [16, 15, 30, 18, 17] put efforts in decentralized security mechanisms for upcoming large-scale
IoT systems. But the limitation to all the approaches is that: there is no device-level trust that can prove any particular zone to
external entities in case of supposing the communication to occur between dierent IoT networks.

The contribution of this paper is as follows:

1. Implement our own custom Behavior Monitor in IoT-Blockchain setup that can store & monitor IoT devices data and
classify its behavior (normal or malicious) to prevent attacks.

2. Applying a filter on sensor-level that can stabilize output from single/multiple sensors to avoid faulty or malicious sensors in
the network.

3. To implement Trusted Execution Environment (TEE)) on a local blockchain of each IoT-Zone that ensure the integrity and
confidentiality of sensitive application code and data.

2. Background

2.1 Internet of Things (IoT)
The Internet of Things is the interconnection of smart-devices, mechanical and digital machines, objects and people that are
capable of transferring data over the network without any human intervention. On the broader scale, IoT applications areas
are smart-homes, smart-cities, smart-healthcare, etc. The major components [6] in IoT ecosystem includes:

• Smart-devices & Sensors: The first layer is the device connectivity layer of IoT network, which constitutes different
sensors like temperature sensor and thermostat, humidity sensor and many more.

• Connectivity: Devices in IoT are connected to low power wireless networks like LoRAWAN, ZigBee and Wietc.

• Gateway: It acts as a middle layer between devices and manages the bi-directional transmission between networks and
protocol. One of the key functions of a gateway is to translate different protocols and make them interoperable.
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• Cloud: This component integrates billion of sensors, smart-devices gateways, data storage and provides different predic-
tive analytics.

• Analytics: This is the process of converting the raw data (analog) of billion of devices into useful insights which can be
further used for detailed analysis.

2.2 Blockchain - A Decentralized Technology
Blockchain technology was initially introduced and brought in 2008 and used by a remarkable known cryptocurrency, Bitcoin
[26]. It is a decentralized ledger technology that builds on a peer-to-peer network. Each node in the BC network holds an
updated ledger copy that can hinder from a single point of failure. In the past few years, the blockchain mostly based on
crypto currencies such as [26] [9] in order to avoid the double-spending problem. However, recently numerous application
areas have been explored where the blockchain can be set up to create and maintain digital transaction records in a secure and
distributed fashion.

The ledger in BC is composed of blocks, and each block contains two parts. The first part represents the transaction (that need
to be stored in a database), which can be of any kind, such as patient record, network traffic log, goods transaction, etc. The
second part includes the header information such as hash of a current transaction, hash of previous hash and timestamp. Thus,
storage in this way makes a sequenced block of linked chain as shown in Figure 1. Furthermore, if a new transaction

Figure 1. Inter-Linked Blocks in Blockchain

comes, it will first add to certain block. Secondly, miners verify the block contain the transaction according to already defined
rules. After the verification process, all miners perform a consensus strategy to validate the transactions. Finally, upon success-
ful validation the verified transaction is ready to append in the BC ledger.

2.3 Blockchain and IoT Systems
IoT devices generate a massive volume of data, that must be appropriately stored and analyzed for useful purposes. For each
IoT operation (create, update, delete, read), the data can be registered in the form of transactions in the BC-blocks. Device
identity information can be registered in a block such as manufacturer information and live status where the device is in use.
Smart-contracts are used to enforce access control policies for IoT devices which means that any unauthorized access to a
device can be therefore identified. There is no need for a central authority for storage, such as cloud, for IoT protection.
Blockchain provides data authenticity, data integrity, traceability and prevents from unauthorized access. BC can also enable
a secure channel of messaging between IoT devices. Exchange of messages from one device to another device can be handled
like financial transactions flow in crypto-currencies, e.g. Bitcoin [26].

2.4 Blockchain Security Solutions for IoT
The decentralized and distributed nature of blockchain makes it a promising security solution for IoT use-cases. IoT and
blockchain integration enables a higher and sound security level, which otherwise could not be accomplished by any other
technology or nearly impossible. Some of recent proposals in regards to IoT security with blockchain are as follows:

In [21], authors proposed a blockchain-based solution for managing IoT devices and configurations using Ethereum. A unique
key-pair (Public & Private) is assigned to each device in the network. The private key is kept inside the device, while the
public key is registered as a transaction in the blockchain. An IoT device can then be reached and access through ethernet by
its public key. Thus, it is concluded that the management and control of IoT devices through blockchain is possible.
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A solution proposed in [24], which make use of blockchain for secure firmware updates in IoT devices where traffic directly
to the network server is replaced by local peers of the blockchain nodes. The manufacturer is supposed to store the hashes of
updated firmware on the blockchain that can be easily accessible to all the IoT nodes.

IoT devices using in medical and healthcare zone are also subjected to the same security and privacy issues. For medical IoT
system, it must be attack resistant and reliable enough. User safety and privacy is very critical and must be protected from
any malfunction caused by a security incident or imprecise/faulty device. The risk of device malfunction can overcome in
blockchain by immutable ledger technology. Nichol et al. [28] proposed the feasibility of BC in order to provide reliability
in medical IoT devices. Upon a device is manufactured and installed, a hash of UID (unique identifier) along with the other
relevant information such as manufacturer information are stored in BC. Later, this data will be updated with doctor-name,
patient-history, and hospital information. The doctors and patients can be automatically informed about the device status like
battery expiry, patient health irregularities.

2.5 Blockchain & Trusted Execution Environment (TEEs)
Trusted Execution Environments (TEEs) [4, 3] have been used to enhance security and efficiency in the blockchain protocol.
TEEs provide confidentiality and integrity to the sensitive part of application code in a system, until and unless the CPU is
not compromised physically by an attacker. TEEs also support remote attestation [22], that allows remote parties to verify
the health of software with genuine TEE.

Intel provided TEEs functionality in Software Guard Extension (SGX) [4]. SGX is a set of CPU instructions inside Intel’s
x86 processor design which can allow creating an isolated environment for the execution of selected pieces of code in
protected areas called enclaves. These enclaves are designed to run software in a trustworthy environment, even on a system
(host) where the operating system and memory are untrusted. There are three main functions of enclaves which are isolation,
sealing and attestation. A short description is as follows:

• Isolation: Data and code inside the enclave memory are protected and cannot be read or altered by any external process.

• Sealing: Data supposed to send to host environment should be encrypted and authenticated with a seal key.

• Attestation: Remote parties are allowed to verify an application enclave identity, credentials, and other data.

3. Related Work

Currently, several types of research have been proposed in the integration of blockchain and IoT. Very few of them have
shown interest to help IoT security requirements. This section outlines some of the past researcher efforts that intend to
realize such integration, mainly for security needs.

Raja et al.[15] demonstrate blockchain-based architecture for smart-home setting. The architecture consists of three differ-
ent blockchain networks: a local-BC (private), a share BC (private) and overlay BC (public). Although this research solves
the issue of identification, still it has some shortcomings such as (1) For each operation, it happened to make at least eight
communication links that can ood the network quickly in case of high activity of IoT devices. (2) Local BC’s are centralized
and not distributed which is opposite to the main principle of BC - a decentralized technology.

In [29], authors study existing proposed models of access control systems and argue that these systems are not effective in
the upcoming large-scale IoT. In order to avoid centralized mechanisms, this proposed research implements capability and
access control as a component in a blockchain environment. The other components are data management protocol, messag-
ing service and data storage system. The messaging service deals with the exchange of access control message between two
parties with defined roles. The messaging service, then sends a request to the data storage system, where it is stored in the
form block. Finally, the receiving party fetches the message from the BC block using the messaging service. Moreover, they
defined four roles, i.e. data owner, data source, requester and endorser.

A mechanism named as chainanchor proposed in [18] based on the authorization of IoT devices in the cloud network. It helps
device-owner being rewarded upon selling their device data to a service provider and ensure a privacy-preserving communi-
cation between owner and service-provider. But this approach is not suitable in most IoT use-cases, because the main scope
of this research is full anonymity and IoT devices sometimes need device identification.
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Patrick et al. [16] propose a decentralized authentication scheme for IoT devices. In this approach they declare virtual zones
like healthcare zone, smart-school zone, smart-school zone for robust identification of smart-devices. Each zone has a
group master who is responsible to create a groupID and communicate with blockchain. Each device or follower in a zone
gets a ticket signed by their respective zone master. When a device or follower wants to initiate a transaction, an association
request signed by private-key is sent to their respective zone  master. Upon receiving the request, BC verifies its integrity
with the public key of follower. Afterwards, the follower ticket is verified using the master public key. If the ticket found
valid, BC stores the association of follower ID with their groupID for further correspondence, otherwise discarded. How-
ever, the limitation of this approach is that no mechanism can provide trust-level confidence in each zone to prove it to the
outside community.

To summarize, the majority of all these current proposals follow the same security schemes provided by existing BC tech-
nologies, i.e. Bitcoin [26], Ethereum [33] etc. However, there is no awareness towards device level trust that means to know
the status of running IoT device, whether it is normal or malicious.

Figure 2. IoT secure behavior capturing and storage environment using TEE

4. Proposed Framework

The main goal of the proposed framework (cf. Figure 4) is to add and implement a security module for behavior monitoring
of various IoT-zones in a blockchain setup. As discussed in [16], authors declare zones for different use-cases of IoT. How-
ever, they do not consider the devices itself in case of compromised behavior. Furthermore, there is no mechanism that can
show the trust-Level confidence of each zone when an external entity needs to know before establishing a connection. In this
research, we enhance the said scheme and add a behavior monitor on each zone. A separate local-BC is configured on each
zone that is used to store the activity of each zone and provides the trust-level confidence to outside entities.

All kinds of communications between devices are considered as transactions and must be passed through the blockchain for
validation. For example, if node A needs to send a message to node B, then A must first send the message to blockchain. If BC
validates and authenticates the message from A, then B is finally allowed to read the message.

4.1 Initialization & System Functioning
In the first phase of deployment, one device from each zone is designated as a Main or Master node, which can be considered
as a certification authority (CA). Any node can be declared as a master, but in this case, we assigned to the node that is more
resource capable and powerful. All the other nodes in each zone are known as follower. Every Master node creates a groupID
and send a signed ticket to each follower for identification. For the first transaction of any follower, it must require authen-
tication. After that, an association of the follower and master are stored in the BC for future correspondence.

Hardware Model of IoT The hardware architecture we use in our proposed framework for prototyping consists of multiple



               Journal of Information Security Research   Volume  11  Number  3  September  2020 80

Figure 3. Hardware Model for IoT Zone

raspberry pi’s. The main/master node is configured on raspberry pi-3 for the sake of more resources. Followers or clients
node work on raspberry pi-0 with a direct connection to sensors and other digital devices. Wifi is used for communication
between master nodes, and follower communicates to their sensors using serial or I2C communication protocol as shown in
Figure 3.

Every device is assigned by a key pair that consists of a public and private key. The private key is stored in follower (pi-0),
while the corresponding public key is stored in their respective master node (pi-3). The connection between the follower
and master node is established through WebSocket. Upon a connection request from follower to master, the follower must
be required to send a digital signature. Afterwards, master node should validate the digital signature in the blockchain before
a secure WebSocket authorization.

Improving Sensor Level Data Accuracy In order to improve sensor level security, the data acquisition procedure will use
Kalman lter to make a data model based on single/multiple sensor readings and covariance. For example, the position of a

Figure 4. Proposed IoT Blockchain Framework
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drone can be estimated in 3-axis based on GPS, but GPS alone cannot guarantee accurate altitude. Similarly, a Barometer data
can drift based on different weather conditions at the same altitude. Radar or Lidar will output the altitude value from the
ground, but if an obstacle supposed to happen between the ground and radar the readings might become inaccurate. To avoid
such discrepancies, Kalman lter uses data from all the 3 sensors GPS, barometer and radar/lidar, to predict the correct value
(3D location) based on the covariance. This way, if a faulty or malicious sensor found, the Kalman lter will automatically lter
out the data from that sensor.

4.2 Conguring Local Blockchain
A local private blockchain is deployed on a master node (Raspberry pi-3) of each zone and populated with the hashes of
transactions generated from smart- devices. Hyperledger Fabric [9] a permissioned-BC is implemented as a local BC, we
discussed the workflow of fabric with IoT in our previous research [8]. For prototype implementation, we use the dataset [5]
of IoT trac that has been collected from various sensor communication. For each communication between nodes or smart-
devices, a transaction is created and stored in the local BC. Note that in the majority of the current BC technologies, actual
data of IoT devices are not stored in the BC due to overheads (i.e. processing & network).

In each zone, a single device having more computational power than others, acts as a master or main node. Likewise in our
model, we use raspberry pi - 3 which is computationally and energy-efficient act as a master/main node. Once the number of
transactions reaches a pre-define blocksize, the master node creates a new block and append it to local BC. Afterwards, we
realize Intel SGX [4] as a root-of-trust on top of BC to ensure that the execution of sensitive code and applications are in
trusted mode. As shown in Figure 2, the TEE-enabled application is composed of a trusted and untrusted part. For sensitive
operations like encryption and hashing, a trusted-function is called. The function returns, and the data inside the trusted part
(enclave) remains in trusted memory and is not accessible to external entities. Moreover, implementing SGX technology on
blockchain allows the proposed scheme to:

• Protect the applications running on BC and data protection that cannot be accessed by the execution host.

• Make sure that the application/data on BC is expected and correct.

• Protect end-to-end privacy of application result, which cannot allow others to inspect but the user.

• Provide a BC-based validation by verifying the applications inside enclave is neither tampered nor interrupted by any node
in BC.

• Make sure the application and execution results are valid, and not tampered or fabricated by any malicious node.

4.3 Behavior Monitor
The main goal of this research is to integrate our custom behavior monitor that can classify the behavior of every device and
compute a level-of-trust on each zone. As mentioned earlier, all the nodes (followers) in a specific zone do their operations
(read, write) via the master/main node. The scheme in Fig. 4 depicts our proposed approach with all the entities in detail. Data
or transactions from nodes is considered as a behavior of that particular node. The master node is a device that centrally
processes all the incoming and outgoing transactions to and from a zone.

Whenever a data is received by the master node from the follower node, the master node stores the data in the behavior
monitor and appends the corresponding hash to the ledger in blockchain. A sequence-ID (SEQ-ID) is assigned to each trans-
action while storing in behavior monitor, and a Hash-ID (H-ID) is attached to the corresponding hash in BC, for reference.
Finally, a machine learning strategy is used to actively monitor the incoming data and classify them as normal or malicious.

For analysis and detection of behavior, we rely on deep Auto-encoders (AE) [20, 27] for IoT devices, which is trained from
statistical correlation features extracted from benign data. The process of behavior detection and monitoring consists of the
following stages. (1) Data collection (2) Feature extraction (3) Training model (4) Continuous Behavior Monitoring.

Data Collection At this point, we refer to the dataset [5] that has been collected from various sensors in the IoT network. In
real-time, to ensure that the training data is clean and not malicious, normal traffic from IoT devices are collected immediately
after its joining to the IoT network.

Feature Extraction Whenever data from IoT devices arrives, a behavioral snapshot of the protocols and host related to data
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are stored in our behavior monitor. The snapshot contains different parameters, i.e. source IP, destination IP, MAC-address
and port number, etc. We use the same set of features mentioned in the dataset for real-time detection of malicious activities
in IoT devices. For example, when a compromised node in a zone spoof an IP, then the features aggregated from the source-
IP, destination-IP and MAC-Address will immediately mark as malicious because of unseen activity from the respective
spoofs IP.

Training Model As our baseline model for behavior detection, we use deep auto-encoders that can build and maintain a
learning model on each zone of IoT use-cases. An auto-encoder is a type of artificial neural network (ANN), which is trained
to re-structure the data after some compression. The compression ensures that the model would be able to learn meaningful
concepts and the correlation between different sets of features. For training purposes, we use two sets of data which consists
of only benign (normal) data. The first dataset is a training dataset (TDS) which is used to train the auto-encoder by declaring
input parameters such as learning rate (lrn, size of gradient descent step), and epochs (number of iterations through TDS). The
second dataset OptDS (Optimization Dataset) is used to optimize the above hyper-parameters (lrn & epochs) iteratively
until the mean square error (MSE) function between the input and output stop decreasing. This stopping prevents overfitting
in TDS and help out better detection results with future data. Later on, (OptDS) is used to identify normal and malicious
activities and false positive rate (FPR).

After the model training and optimization is completed, the threshold value (thv) is set by which an instance of data is
considered malicious. Empirically, it is calculated by the sum of the sample mean along with the standard deviation of MSE
on OptDS (see Equation 1).

thv = MSEO ptDS + s (MSEO ptDS) (1)

Figure 5. Detection Accuracy comparison with other Algorithms

Continuous Behavior Monitoring Finally, the model is applied to continuously observe the data and to label each instance
as normal or malicious. Consequently, an alert against abnormal behavior can be issued to indicate the IoT device is mali-
cious. Afterwards, for each IoT zone, the behavior monitor calculates a trust-level measurement and a threshold must be
defined for every use-case. Whenever a user or node from outside needs to accessed data from any specific zone, our model
is capable of disclosing the health of zone before establishing a connection. This way a trusted environment can be built and
informed the user about the state of any particular zone before actual communication.

5. Experimental Analysis

In our experiments, we use a real-time large dataset available in [5], for realizing the framework. The dataset contains both
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Figure 6. Detection time comparison with other Algorithms

benign and malicious (attacked) data. The data we choose from the dataset belongs to three different devices which are
Ecobee-thermostat, Webcam, and Security-camera. For training and optimization, we use tensorflow and keras libraries in
python language. An auto-encoder makes an input layer whose dimension is the same as the number of features in the dataset,
i.e. 115.

After training, we apply a famous DDOS attack known as (mirai) to calculate the detection time and accuracy of our model in
comparison with other algorithms commonly used for anomaly detection. The same benign dataset is used to train three
other algorithms: SVM (support vector machine), Isolation forest and LOF (Local Outlier Factor). Our method shows 99%
results in terms of TPR (True Positive Rate) and fewer FPR (False Positive Rate). Furthermore, as evident in Fig. 5 SVM and
LOF have almost similar TPR values and found much better than the isolation forest.

Next, we evaluate the average detection time for each algorithm as depicted in Fig. 6. The detection time of all the three
devices in our case is lower than the others. The deep auto-encoders outer-perform on all the selected devices in terms of
False-positive, True-positive and detection time. This is because of the ability in auto-encoders to learn approximate com-
plex functions and non-linear structure mapping [25]. Moreover, as shown in Fig. 6, our technique required much less time
than the other algorithms which is approximately 175230ms (milliseconds) to detect the attacks. This means that the launch
attack could be detected or alerted in less than a second and thus considers as a substantial reduction in a typical time
required for DDOS attacks [11].

6. Conclusions and Future Work

In this research, we analyze device level trust in IoT-Blockchain Infrastructure. A smart-home setting is used as a use-case for
realizing the proposed idea. For prototype implementation a Local Blockchain on each zone is deployed on a master (rasp-
berry pi-3) node that can store every traffic coming from their follower (Raspberry pi-0)) in the form of transactions.
Behavior Monitor is defined and configured on the Main/Master node of each zone, which is capable of capturing and
analyzing the runtime activity of IoT devices. We apply a deep learning strategy (auto-encoders) for realization on the behav-
ior monitor to classify the device and make a level-of-trust. Furthermore, we incorporate Trusted Execution technology
(TEE) as a root-of-trust over the blockchain to provide security for sensitive code and applications. Finally, the proposed
framework could meet the current security problems in IoT-Blockchain environment. And the evaluation of our study shows
its ability to mitigate the mainstream security requirements and resilience to attacks.

This research work is our first step towards classification of devices in IoT- Blockchain framework by means of deep learning.
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Our future plan is to investigate a comparative study of other machine learning approaches for better results in terms of
performances and accuracy. Another goal would be to realize the framework in other use-cases of IoT domain and analyze the
outcomes. Finally, in the near future we will provide a full implementation on various IoT devices datasets along with full
verification mechanism of zones in a trusted way and make the source online to the research community.
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