
 Journal of Electronic Systems Volume 10 Number 3 September 2020 83

Creating a Window-based Diverse Entity Summarisation for Smart Applications

ABSTRACT: In the last few years, there is an increase of IoT applications in several areas including smart homes, smart
cites and so on which ensure entity-based data streams and work on real-life. While the utilization of the resources is
assured, these applications need more notification services to users. Some of these needs can be given by the Publish or
Subscribe systems; however, the alternative smart systems can reinforce such systems. They can able to increase the
reliability or usability and overcome redundancy awareness. In this research we intend to create a boundary for entity-
centric Publish or Subscribe systems and work for data fusion and top-k diverse ranking. We experimented our system
and found that the top-k fused diverse summary yielded better results than separate notifications and without top-k
filtering. The top-k fused diverse summarisation scores well in the testing and an acceptable F-score is arrived. The
inferences came at the expense of higher latency and there is some equation lies between latency, the number of for-
warded messages, and expressiveness

Keywords: Publish/Subscribe Systems, Data Fusion, Diversity, Entity Summarisation, RDF Graphs

Received: 13 April 2020, Revised 19 June 2020, Accepted 20 July 2020

DOI: 10.6025/jes/2020/10/3/83-94

Copyright: with Authors

1. Introduction

The emergence of Smart Homes, Smart Cities and Internet of Things has resulted in multiple sensors (producers) that create
a wide range of entity-based data streams and multiple users or applications (consumers) that are interested in the analysis of
these data streams for various needs. These needs could vary from safety (e.g. the tracking of the spread of wildfire in forests
or seismic measurements [1]) to the environment (e.g. environmental and climatological monitoring where phenomena such
as temperature pressure and humidity are measured periodically [14]).

Niki Pavlopoulou, Edward Curry
Insight Centre for Data Analytics
National University of Ireland Galway
Galway, Ireland
{niki.pavlopoulou@insight-centre.org}
{edward.curry@insight-centre.org}}

Journal of Electronic Systems Volume 10 Number 3 September 2020 84

These entity-based data streams present a high level of data heterogeneity [19], either schematic or semantic, as well as
duplication. For example, semantics could involve the use of different words describing conceptually similar things. Dupli-
cates and conceptually similar things result in redundant information. On the other hand, data consumers may have different
levels of expressibility. Expressibility [8] refers to users’ level of prior understanding of their needs to create queries with
specific filters or their level of technical ability to use complex query languages. Sometimes a user might find it difficult to
create an appropriate query or one might need to create separate complex queries or join queries to bring together the
information needed from multiple sources.

The challenges above when combined with dynamism (deletion or addition of data producers or consumers), continuity
(unbounded data streams) and the high volume of producers and consumers, characteristics that exist in smart environments,
may result in inefficient and ineffective processing of streaming data. Specifically, high data volume and redundancy may
lead to significant propagation, as well as storage overheads of unnecessary data within a network and slower processing
time [2]. At the same time, low user expressibility may lead to abstract user queries that result in redundant answers and high
volumes that might present the user with unnecessary information [25].

Publish/Subscribe systems provide a suitable interaction scheme for dynamic large-scale applications, where subscribers
(users) express their interest in an event or pattern of events, and they are notified when a suitable event was generated by a
publisher [7]. These systems are characterised by space decoupling (publishers and subscribers do not need to know each
other), time decoupling (publishers and subscribers do not need to be active at the same time) and synchronisation decoupling
(publishers are not blocked during event production, and subscribers can be notified while performing another activity).

Nevertheless, Publish/Subscribe systems cannot cope with the challenges of redundancy-awareness and the need for high
usability as defined above. For example, if a subscriber is interested in an entity, then existing Publish/Subscribe systems
assume that: 1) Subscribers are experts in query languages to perform specific filtering queries, 2) Subscribers are aware of
the publication semantics and format so performing semantic-specific and schematicspecific queries would necessarily
lead to matches, 3) Publications are mostly seen as separate pieces of information for ranking, without considering that by
fusing and ranking these pieces may lead to better notifications without redundancy.

Therefore, the key question of the paper is: Can we define an entity-centric Publish/Subscribe system that provides expres-
sive (nonredundant) user notifications along with high usability (no assumption of high user expressibility) while using
limited resources?

To address the key question above, we propose in this paper a window-based diverse entity summarisation engine in Publish/
Subscribe systems, as approximate solutions [14] are acceptable as quick answers [1] within a small error range with high
probability while using limited resources. These summaries, when derived from the fusion of multiple publishers that con-
tain complex entity-based semantic data and when combined with diversity (and not only relatedness) will result in expres-
sive subscription notifications. Nevertheless, there is a trade-off between latency, number of forwarded messages, and ex-
pressiveness, which we also examine.

2. Problem Analysis

The problem introduced is analysed more below.

2.1. Motivational Scenario
Sensors create a high amount of data streams with frequent sampling rates. Therefore, they might produce many unchanged
or identical values for a period of time [15]. When users create abstract, non-sophisticated queries to gain knowledge on
these data streams, they might be presented with undesired duplication.

For example, imagine Houston is a smart city, and a user is interested in information concerning Rice University. The user
has no other information apart from the name of the university, and one needs to gain more knowledge without exactly
knowing what one is looking for. A wide range of sensor readings contain information about the university, ranging from the
temperature of the university to the city it is located in, which some might be redundant. The user would like to quickly gain
knowledge about the university, but not to be overwhelmed, especially with duplicate data. This scenario is illustrated in Fig.
1.

 Journal of Electronic Systems Volume 10 Number 3 September 2020 85

2.2. Problem Challenges
The aforementioned motivational scenario faces a number of challenges:

• Redundancy Awareness: Multiple publishers create heterogeneous data about the entity. Some of this data, like tempera-
ture and city results in redundant information due to duplication.

• Low User Expressibility: The user has limited information about the entity and has no prior knowledge of what they are
looking for. The user is unable to create a complex filtering query and is not an expert in query languages. For example, a
SPARQL-like query that notifies the user when the energy usage exceeds 4kWh would be the following:

SELECT ?energy_value

FROM STREAM

WHERE {

Rice_University energy_usage ?energy_value;

FILTER (?energy_value > 4kWh).

}

This query assumes a priori knowledge from the user of the publication semantics and schematics concerning “energy_usage”
instead of synonyms like “energy_consumption”, “kWh” instead of “Wh” or which stream or streams produce energy usage
readings. On the other hand, if the user creates an abstract query like the keyword-based one “Rice University”, it may lead to
redundant or undesired information.

3. Background

Some concepts and definitions concerning knowledge graphs, entity summarisation, and Publish/Subscribe systems are de-
scribed below.

3.1. Knowledge Graphs and Entity Summarisation
Knowledge graphs contain information regarding entities, which are real-world or abstract things [20]. Within knowledge
graphs the nodes represent the entities, and the directed labelled arcs constitute relations among them. In Fig. 2 a part of the
knowledge graph is represented that supports the motivational scenario, where Rice University, 15°C, 5kWh, United States,
Houston, Texas and Division I (NCAA) are entities or literals and temperature, energyUsage, country, city, state and athletics
are relations among the connected entities or literals by the directed arc. The Resource Description Framework (RDF) is a
data modelling language that represents these representations as triples <subject, property, object>, where subject are enti-
ties, object are entities or literals and property is their relation. RDF triples with the same subject form an RDF star-like
graph.

In knowledge graphs, though, there might be some redundant information. This could be addressed by summarising the triples
of an entity. A summarisation of an entity e that is represented by a node v in a knowledge graph G is a subgraph of G that
surrounds v [20].

By adopting and adapting definitions that were introduced in Cheng et al. [5], we provide some definitions for completeness.

Let E be the set of all entities, L the set of all literals and P the set of all properties.

Definition 1 (Data Graph): A data graph is a digraph G = <V, A, LblV , LblA>, where V is a finite set of nodes, A is a finite set
of directed edges where each a∈ A has a source node Src(a)∈ V and a target node Tgt(a)∈ V, and LblV: V →E ∪ ∪ ∪ ∪ ∪ L and LblA: A
→P are labeling functions that map nodes and edges to entities or literals, and properties, respectively.

Journal of Electronic Systems Volume 10 Number 3 September 2020 86

Definition 2: (Triple). A triple tr is a sequence of <subject, property, object> defined as tr = <sub(tr), p(tr), obj(tr)>, where
∈ sub(tr) ∈ E, p(tr) ∈ P and obj(tr) ∈ E ∪ L.

Definition 3: (Triple Set). Given a data graph G, the triple set of an entity e, denoted by Tr(e), is the set of all unique triples
of e that can be found in G.

Definition 4: (Diverse Entity Summarisation). Given Tr(e) and a positive integer k < |Tr(e)|, the problem of diverse entity
summarisation is to select DivSumm(e) ⊂⊂⊂⊂⊂ Tr(e) such that |DivSumm(e)| = k. DivSumm(e) is called a diverse summary of e and
it contains a set of unique triples.

Figure 1. A subscriber is interested in information about Rice University and publishers publish timestamped information
records about it. In this example, the temperature and city information is duplicate between timestamps t2 and t1

Figure 2. Part of a knowledge graph of Rice University

3.2. Publish/Subscribe Systems
In a typical Publish/Subscribe system [7], subscribers could be from users to applications that they subscribe their interest in
an event or pattern of events. These subscriptions are sent to the Event Engine where they are stored. Publishers could be
sensors, users or applications generating events or publications and sending them to the Event Engine. A matcher is contained
in the engine that matches specific events to subscriptions based on their conditions. When this is happening, the subscribers
are getting these events as notifications. Its decoupling capabilities in space, time and synchronisation, make it a suitable
interaction scheme for dynamic large-scale applications.

Publish/Subscribe systems typically are topic-based or contentbased [7]. In the topic-based, publishers publish events on
specific topics expressed as keywords (e.g. Sports), and subscribers that have subscribed to these topics get notified whenever
there is a match. The content-based improves on the expressiveness of the first one by adding event content filtering on the
subscription side. This filtering typically involves comparison operators (=, <, ≤, >, ≥) on attribute-value pairs derived from
the events. Complex subscription patterns can also be created by logical combinations (and, or etc.) of individual constraints.

 Journal of Electronic Systems Volume 10 Number 3 September 2020 87

1https://spark.apache.org/
2https://flink.apache.org/
3https://kafka.apache.org/

For example, an event could be (gender = female, age = 20) and a subscription that matches it could be (gender = female, age
< 30).

Lately, there has been some attention drawn in graph-based Publish/ Subscribe systems [3] that represent publications as
graphs. Within these graphs, points of interest are nodes and relations between them are edges. Subscriptions can be SPARQL-
like by asking for specific nodes and their relation among them. The notifications are those graphs that match the subscrip-
tions.

4. Relatedwork

Related work is analysed below, and it is mainly split into two categories; Streaming and Non-Streaming.

4.1. Streaming
4.1.1. Stream Processing Frameworks
There is a plethora of existing stream processing frameworks, like Apache Spark1, Apache Flink2 and Apache Kafka3 that
could be extended to support entity summarisation techniques, but some of them do not support Publish/ Subscribe. Publish/
Subscribe systems, like Apache Kafka, are topic-based; therefore, they are not capable of supporting entities that contain
complex semantic data. Furthermore, the constraints of these frameworks in supporting specific data formats or SQL-like
APIs could lead to low usability if the user has low expressibility.

4.1.2. Graphs in Publish/Subscribe Systems
As discussed above, topic-based and content-based Publish/Subscribe systems are not capable of supporting entities. Cañas
et al. [3] introduce GraPS, a graph-based Publish/Subscribe system that can model publications as graphs, where points of
interest are nodes and relations between them form edges. Subscriptions can be either simple ones, like a collection of
nodes or complex ones, like specific relations among nodes. Nevertheless, they assume that the subscribers have limited
knowledge of the graph published to filter it; therefore, they are aware of the semantics and schematics of the graph. This
could lead to low usability if the subscribers have low expressibility. Also, they do not support summarisation of the seman-
tic information.

4.1.3. Diversity in Publish/Subscribe Systems
Diversity of events has not been considerably explored in Publish/Subscribe systems. Chen et al. [4] focus on top-k diverse
publications in the form of tweets by calculating their cosine similarity, whereas Drosou et al. [6] emphasise on top-k
diverse publications in the form of attributevalue pairs by calculating the commonalities among the events. However, both
works do not support heterogeneity neither they consider entities as publications, which is a more complex problem.

4.1.4. Summarisation in Publish/Subscribe Systems
Summarisation has been examined in Publish/Subscribe systems by several works. Triantafillou et al. [21] focus on sub-
scription summarisation in the sense of subscription subsumption, that is an attribute-value constraint of a subscription is
subsumed by that of another subscription if the values are the same or if they are contained in the values of the latter
subscription. Specifically, each subscription is split into its attribute-value pairs, which are then merged into summary struc-
tures. Wang et al. [22] emphasise on subscription summaries by partitioning via random, R-tree and K-means clustering
techniques and summary-based routing via R-trees among a set of servers to address high system throughput. These works
focus on subscription subsumption or covering without considering publication summarisation. They also support simple
attribute-value pairs, so they cannot be used for complex semantic data.

4.1.5. Fusion in Publish/Subscribe Systems
Fusion has been used in Publish/Subscribe systems before. Kolozali et al. [13] fuse sensor data from heterogeneous sources
and translate attribute-value pairs as time series and then approximate them with dimensionality reduction. Nevertheless, the

Journal of Electronic Systems Volume 10 Number 3 September 2020 88

approximation is done outside the Publish/ Subscribe system, and it is not related to entity summarisation. Wun et al. [23] fuse
attribute-value pairs that result in semantic interpretations with the use of ontologies. Nevertheless, they tackle a different
problem than entity summarisation.

4.1.6. Approximate Semantic Matching in Publish/Subscribe Systems
Approximate semantic matching in Publish/Subscribe systems has been examined by a number of works. These works intro-
duce an additional layer of decoupling, that of semantic decoupling, in Publish/Subscribe systems. Hasan et al. [11] create an
approximate semantic single-event processing model for attribute-value pairs coming from heterogeneous sources. Top-1
and top-k matchers are created based on Wikipedia ESA and probabilistic models. Their earlier work [12] focuses on RDF
graphs as publications. STOPSS [17] uses synonyms, taxonomies and mapping functions specified by domain experts for
creating an approximate matcher. Although approximate semantic matching could be related to our work, nevertheless, it is a
different problem to entity summarisation.

4.2. Non-Streaming
4.2.1. Diverse Entity Summarisation
Top-k diversity in entities in the form of sophisticated summaries that detect duplication and conceptual similarity has been
tackled by a number of works. These works consider high usability as they use keyword-based queries. DIVERSUM [20]
focuses on a per-property basis summarisation based on novelty, importance, popularity and diversity by adapting the docu-
ment-based Information Retrieval to the knowledge graphs. FACES [10] emphasises on summaries based on diversity, unique-
ness, and popularity via hierarchical conceptual clustering and the use of WordNet for related terms. FACES-E [9] improves
on FACES by considering types in datatype properties instead of only object properties for entity summarisation. Pouriyeh et
al. [18] emphasise on summaries based on topic modelling by considering predicates as topics and use of Word2Vec for
related terms. All of these works contain static methodologies; therefore, they need to be extended to support a complex
dynamic environment.

In conclusion, no existing approach covers the requirements of our problem. Comparison among the works covered in the
different subsections is shown in Table 1.

5. Approach

The approach is analysed below that defines the event model, the subscription model and the architecture of the summarisation
engine.

5.1. Event Model
To support complex semantic data, the event payload contains RDF triples of the form <subject, property, object>. Each event
is an instance of an entity (subject) with one predicate (property) and one value for this predicate (object). Below there is an
example of a publication payload:

{< Rice_University >< city >< Houston >}

Therefore, the definition of the event model is as follows: Let EV be the set of events, PID the set of publisher IDs, PubID the
set of publication IDs, T the set of timestamps and Tr(e) the triple set of an entity e, respectively, then:

5.2. Subscription Model
To support high usability, we do not assume that subscribers are aware of the semantics and structure of the events or that they
are experts in complex query languages, like SPARQL. Therefore, a subscription should ideally be in the form of a keyword
query [20].

Subscriptions, therefore, are a set of attribute-value pairs. Only conjunction has been considered in this work. This means that
each event needs to fulfil all constraints of a subscription so that it can be considered a match. Each pair consists of an
attribute, an equal operator and a value. Below there is an example of a subscription payload:

(1)

 Journal of Electronic Systems Volume 10 Number 3 September 2020 89

{entity = “< Rice_University >”, k = 5, windowSize = 10, ranking = “Diversity”}

In the example above, the subscriber is interested in an event summary of the entity <Rice_University> with top-5 diverse
information facts derived from the analysis of data taken from count windows of size 10, that is 10 events.

Table 1. Overall comparison of different works

Therefore, the definition of the subscription model is as follows: Let S be the set of subscriptions, SID the set of subscriber
IDs, SubID the set of subscription IDs, T the set of timestamps, ATT the set of attributes, OP the set of operators and VAL the
set of values, respectively, then:

5.3. Architecture
Our architecture is illustrated in Figure 3. In the architecture, a Publisher creates a number of entity-based publications and a
Subscriber a number of entity-related subscriptions. All publications and subscriptions enter the Summarisation Engine, which
is the processing engine of the system.

The engine contains a boolean Matcher that extracts the matched entities based on the stored subscriptions and publications.
All publications enter the Window Partitioning that is responsible for creating tumbling Count Windows for each matched
entity. The corresponding window is then populated with events from all publishers concerning this entity. All events are fused
within the window incrementally, and through the Summarisation they are checked for duplicates. Then a score is given in each
triple. Triples that are non-duplicates and they are the most recent ones have higher scores. Top-k filtering then involves the
diverse top-k most recent triples. Once the corresponding window reaches its capacity that is based on the windowSize de-
fined by the subscriber, the subscriber is notified by the Notification, and then the process starts again.

For example, if a subscriber is interested in an event summary of the entity <Rice_University> with top-5 diverse notifica-
tions deriving from the analysis of the last 10 events of Figure 1 in a window, then, a possible notification payload would be:

{< Rice_University >< temperature >< 15°C>}

{< Rice_University >< ener4yUsa4e >< 5kWh >}

{< Rice_University >< city >< Houston >}

{< Rice_University >< state >< Texas >}

{< Rice_University >< country >< UnitedStates >}

as the duplicate information of temperature and city was discarded and the rest of the triples were the most recent ones based
on their timestamps.

(2)

Journal of Electronic Systems Volume 10 Number 3 September 2020 90

6. Evaluation

To the best of our knowledge, no one has tackled entity summarisation in Publish/Subscribe systems. Therefore, we compare
our approach with the non-top-k non-fused approach, where all events are sent separately to the subscriber without being fused
or checked for duplicates and with the non-top-k fused approach, where the events are fused in the window, but they are not
checked for duplicates.

6.1. Dataset
The DBpedia dataset4 has been selected for our evaluation, as it is highly popular in the field of entity summarisation. Follow-
ing the entity selection of FACES, 50 entities were chosen that belong to different domains (e.g. politician, actor, country,
etc.) and they have per entity an average of 44 distinct direct features. As in FACES, we filtered out any schema information
and dataset dependent details, such as dcterms:subject, rdf:type, owl:sameAs, wordnet type and Wikipedia related links. We
did not consider literals, only resourcebased objects, as they provided richer information.

To simulate the graph evolution, we extracted information from different versions of DBpedia, and we started by adding triples
from the oldest version to the newest. All entities and their triples follow a uniform distribution in the selection process by the
publishers. 50 publishers are used, and each one is responsible for generating events of one entity. The subscriber is one and
generates 50 subscriptions, one for each entity.

All experiments were ran for 5 times, and the average was taken. All runs took place in a laptop with Intel(R) Core(TM) i7-
6600U CPU@2.60GHz 2.80GHz and 16GB of RAM.

6.2. Metrics
6.2.1. Redundancy-aware F-score
We are using the metrics of redundancy precision and redundancy recall defined in [24], and through these, we calculate the

4 https://wiki.dbpedia.org/

Figure 3. Entity summarisation architecture

the redundancy-aware F-score. For our work, we define as “redundant” the duplicate triples. The score is defined as:

 Journal of Electronic Systems Volume 10 Number 3 September 2020 91

where R- is the set of non-delivered redundant triples, N- is the set of non-delivered non-redundant ones and R+ is the set of
delivered redundant ones.

6.2.2. End-to-End Latency
For the non-fused events, the endtoend latency is the time it takes between the publication of an event until its delivery. For
the fused events, it is the time it takes between the earliest triple in the fusion until the time of the fusion’s delivery.

6.2.3. Number of Messages
This metric is split between the number of forwarded messages, that is the number of triples that are sent upstream and the
number of redundant messages, that is the number of duplicates within the event set.

6.3. Results
The results are illustrated in Figure 4. We selected the k value to range from 5 to 30 and the window size to be either of 50
or 100 events.

In Figure 4(a) we observe that in terms of end-to-end latency, all approaches have higher latencies for larger windows. This
is expected as although the fusion and top-k diversity are incremental within the window, the notification is sent after the
window is populated; therefore, the population time is also considered. No fusion non-top-k approach behaves slightly better
in terms of latency, as once the window is populated all events are sent separately and their latencies are not dependent on the
earliest event in the window as in the fused case. The fusion non-top-k and fusion top-k approach have similar behaviour in
terms of latency, although the top-k filtering might fluctuate it according to the k, as we observe a slight rise with k.

Figure 4(b) shows that the number of forwarded messages is reduced within the ranges of 50% to 80% depending on the k for
the topk approach compared to the baselines (both of them had similar results, so only one is shown). For higher values of k,
more messages are forwarded upstream. Therefore, the power of top-k filtering is more evident for lower k, assuming not
much loss of valuable information occurs. From these messages, the baselines show that 22% and 42% were duplicates for
windowSize = 50 and windowSize = 100 respectively (Figure 4(c)). The top-k approach can discard this duplicate informa-
tion, therefore, reducing the overall forwarded messages. There is an increase of forwarded messages in the top-k approach
for smaller windows. This happens because even though the number of forwarded messages is dependent on k for all window
sizes, for the same duration there are more notifications produced for smaller windows compared to bigger ones; therefore,
more messages are sent in total. This is dependent on the number of events produced by the publishers.

On the other hand, by using top-k filtering results not only in the elimination of duplicate redundant information but in
possibly valuable information. This is depicted in Figure 4(d) by the redundancyaware F-score that ranges from 0.35 to 0.73.
Lower F-score occurs for lower k as stricter content filtering is taking place, whereas higher F-score is observed with the
increase in window sizes, as the bigger the window, the more probable redundant information exists.

Therefore, we observe a trade-off between latency, forwarded messages, and expressiveness. Specifically, although top-k
filtering reduces the number of duplicates and overall messages sent to the subscriber compared to the baselines with
comparable end-to-end latencies, some non-redundant information will be lost.

(3)

(4)

(5)

Journal of Electronic Systems Volume 10 Number 3 September 2020 92

Figure 4. Evaluation results for 50 publishers and 1 subscriber with 50 subscriptions

7. Conclusion and Futurework

In this paper, we introduce the first window-based diverse entity summarisation in Publish/Subscribe systems that provides
high usability and expressive notifications of data deriving from heterogeneous sources in environments like the Internet of
Things.

We examine the trade-off between latency, number of forwarded messages, and expressiveness. Future work will focus on
diversity not only based on duplicates but also on conceptual similarity [16]expressiveness. This work will be further evalu-
ated by adapting static entity summarisation techniques in streaming environments. More personalised subscriptions will
also be explored that give opportunities for the subscribers to define which information might be more interesting to them.
Finally, more types of windows apart from count ones will be implemented to determine their performance.

Acknowledgments

This work was supported by the European Union’s Horizon 2020 research programme Big Data Value ecosystem (BDVe)
grant No 732630 and in part by Science Foundation Ireland (SFI) under Grant Number SFI/12/RC/2289_P2, co-funded by
the European Regional Development Fund.

References

[1] Aggarwal, Charu C. (2007). Data streams: models and algorithms. Vol. 31. Springer Science & Business Media.

 Journal of Electronic Systems Volume 10 Number 3 September 2020 93

[2] Ahmed, Ejaz., Rehmani, Mubashir Husain. (2017). Mobile edge computing: opportunities, solutions, and challenges.

[3] Cañas, César., Pacheco, Eduardo., Kemme, Bettina., Kienzle, Jörg., Jacobsen, Hans-Arno. (2015). Graps: A graph pub-
lish/subscribe middleware. In: Proceedings of the 16th Annual Middleware Conference. ACM, 1–12.

[4] Chen, Lisi., Cong, Gao. (2015). Diversity-aware top-k publish/subscribe for text stream. In: Proceedings of the 2015
ACM SIGMOD International Conference on Management of Data. ACM, 347–362.

[5] Cheng, Gong., Tran, Thanh., Qu, Yuzhong. (2011). Relin: relatedness and informativeness-based centrality for entity
summarization. In: International Semantic Web Conference. Springer, 114–129.

[6] Drosou, Marina., Stefanidis, Kostas., Pitoura, Evaggelia. (2009). Preference aware publish/subscribe delivery with diver-
sity. In: Proceedings of the Third ACM International Conference on Distributed Event-Based Systems. ACM, 6.

[7] Eugster, Patrick Th., Felber, Pascal A., Guerraoui, Rachid., Kermarrec, Anne-Marie. (2003). The many faces of publish/
subscribe. ACM computing surveys (CSUR), 35, 2 (2003), 114–131.

[8] Furnas, George W., Landauer, Thomas K., Gomez, Louis M., Dumais, Susan T. (1987). The vocabulary problem in human-
system communication. Commun. ACM, 30, 11 (1987), 964–971.

[9] Gunaratna, Kalpa., Thirunarayan, Krishnaprasad., Sheth, Amit., Cheng, Gong. (2016). Gleaning types for literals in rdf
triples with application to entity summarization. In: European Semantic Web Conference. Springer, 85–100.

[10] Gunaratna, Kalpa., Thirunarayan, Krishnaprasad., Sheth, Amit P. (2015). FACES: Diversity-Aware Entity Summarization
Using Incremental Hierarchical Conceptual Clustering. In AAAI. 116–122.

[11] Hasan, Souleiman., Curry, Edward. (2014). Approximate semantic matching of events for the internet of things. ACM
Transactions on Internet Technology (TOIT) 14, 1 (2014), 2.

[12] Hasan, Souleiman., Riain, Sean O’., Edward Curry. (2012). Approximate semantic matching of heterogeneous events. In
Proceedings of the 6th ACM International Conference on Distributed Event-Based Systems. ACM, 252–263.

[13] Kolozali, Sefki., Bermudez-Edo, Maria., Puschmann, Daniel., Frieder Ganz., Barnaghi, Payam. (2014). A knowledge-
based approach for real-time iot data stream annotation and processing. In 2014 IEEE International Conference on Internet
of Things (iThings), and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social
Computing (CPSCom). IEEE, 215–222.

[14] Prasanna Lakshmi, K., CRK Reddy. (2010). A survey on different trends in data streams. In Networking and Informa-
tion Technology (ICNIT), 2010 International Conference on. IEEE, 451–455.

[15] Pacha, Shobharani., Ramalingam Murugan, Suresh., Sethukarasi, R. (2017). Semantic annotation of summarized sensor
data stream for effective query processing. The Journal of Supercomputing (2017), 1–23.

[16] Pavlopoulou, Niki., Curry, Edward. (2019). Using Embeddings for Dynamic Diverse Summarisation in Heterogeneous
Graph Streams. In: 2019 First International Conference on Graph Computing (GC). IEEE.

[17] Petrovic, Milenko., Burcea, Ioana., Jacobsen, Hans-Arno. (2003). S-topss: Semantic toronto publish/subscribe system.
In: Proceedings 2003 VLDB Conference. Elsevier, 1101–1104.
[18] Pouriyeh, Seyedamin., Allahyari, Mehdi., Kochut, Krys., Cheng, Gong., Arabnia, Hamid Reza. (2018). Combining word
embedding and knowledge-based topic modeling for entity summarization. In: 2018 IEEE 12th International Conference on
Semantic Computing (ICSC). IEEE, 252–255.

[19] Qin, Yongrui., Sheng, Quan Z., Falkner, Nickolas JG., Dustdar, Schahram., Wang, Hua., Vasilakos, Athanasios V. (2016).
When things matter: A survey on data-centric internet of things. Journal of Network and Computer Applications, 64 (2016),
137–153.

[20] Sydow, Marcin., PikuBa, Mariusz., Schenkel, Ralf. (2010). DIVERSUM: Towards diversified summarisation of entities
in knowledge graphs. In Data Engineering Workshops (ICDEW), 2010 IEEE 26th International Conference on. IEEE, 221–
226.

[21] Triantafillou, Peter., Economides, Andreas. (2004). Subscription summarization: A new paradigm for efficient publish/
subscribe systems. In 24th International Conference on Distributed Computing Systems, 2004. Proceedings. IEEE, 562–
571.

Journal of Electronic Systems Volume 10 Number 3 September 2020 94

[22] Wang, Yi-min., Qiu, Lili., Verbowski, Chad E., Achlioptas, Demetrios., Das, Gautam., Larson, Per-Ake. (2007). Sum-
mary- based routing for content-based event distribution networks. (April 3 2007). US Patent 7,200,675.

[23] Wun, Alex., Petrovi, Milenko., Jacobsen, Hans-Arno. (2007). A system for semantic data fusion in sensor networks. In:
Proceedings of the 2007 inaugural international conference on Distributed event-based systems. ACM, 75–79.

[24] Zhang, Yi., Callan, Jamie., Minka, Thomas. (2002). Novelty and redundancy detection in adaptive filtering. In: Proceed-
ings of the 25th annual international ACM SIGIR conference on Research and development in information retrieval. ACM,
81–88.

[25] Ziegler, Cai-Nicolas., McNee, Sean M., Konstan, Joseph A., Lausen, Georg. (2005). Improving recommendation lists
through topic diversification. In: Proceedings of the 14th international conference on World Wide Web. ACM, 22–32.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

