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ABSTRACT: Learning and studying engineering and technology require to understand the concepts and design prop-

erly to move ahead. In this work we fix some trajectories that can help to build a road map. The trajectories we propose

have a special setup and use a different pattern. There are some examples for trajectories like a person is using a path

and moving in markets. The movements using trajectories can use some meaningful actions. We in this work use

OpenStreetMap data to not only extract the network but also areas that allow for free movement. We will explain how we

use the data to the map matching model and explain the use of this method for testing and assessment of user movement.
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1. Introduction

Map matching is the process of pinpointing a trajectory (given e.g. as a sequence of GPS measurements) to a path in an

underlying network. The goal is to find the path that explains the observed measurements best. Map matching is often the first

step of trajectory data processing as there are several benefits when dealing with paths in a known network instead of raw

location measurement data:

• Both location measurements and geometric representations of roads are usually imprecise. Hence, constraining the trajec-

tory to a path in a network is necessary to integrate the information given with a trajectory (e.g. recorded speed, vehicle type)

ith information given with the road data (e.g. speed limit, road type). This is important to enable applications as movement

analysis or real-time navigation [17, 28].
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• Storing raw data is memory-intensive (especially with high sampling densities). Paths in a given network on the other hand

can be stored very compactly and many indexing methods have been developed that allow huge path sets to be queried

efficiently [10, 15, 25].

• Matching a trajectory to the road network enables data mining techniques that link attributes of the road network to at-

tributes of the trajectories. This is used to deduce routing preferences from given trajectories [27, 19, 9, 4]. To analyze and

compare multiple trajectories, the trajectories need to be matched to a common network beforehand.

However, if the assumption that a given trajectory was derived from restricted movement in a certain network is incorrect,

map matching might heavily distort the trajectory and possibly erase important semantic characteristics. For example, there

could be two trajectories of pedestrians who met in the middle of a market square, arriving from different directions. After

map matching, not only the aspect that the two trajectories got very close at one point would be lost but the visit of the market

square would be removed completely (if there are no paths across it in the given network). Not applying map matching at all

might result in misleading results as well, though, as the parts of the movement that actually happened in a restricted fashion

might not be discovered and – as outlined above – having to store and query huge sets of raw trajectories is undesirable.

Hence, the goal of this paper is to design an approach that allows for sensible map matching of trajectories that possibly

contain on- and off-road sections, which we call semirestricted trajectories. We will show that our approach computes paths

that are significantly more compact than the raw trajectory data but at the same time still faithfully represent the original

movement.

1.1. Related work

Due to its practical relevance, there is a huge body of work on map matching. As we cannot cover all the respective papers

here in detail, we will focus on related work most relevant to our envisioned application scenario.

Map matching for restricted trajectories. According to a recent survey on map matching [6], existing algorithms can be

classified into four categories based on the underlying matching principle: similarity models, state-transition models, can-

didate-evolving models and scoring models. We will now mainly discuss state-transition models as our approach will fit in

this category. Early approaches for map matching relied on purely geometric similarities between the road network and the

recorded trajectories [31]. One problem of these approaches is their sensitivity to measurement noise and low sampling

rates. In order to overcome this problem, more sophisticated approaches try to model sensible transitions between consecu-

tive states. In this context, e.g. Hidden Markov Models (HMM) [11, 14, 18] and reinforcement learning techniques [20, 33]

were applied successfully. Furthermore, the incorporation of guiding assumptions, e.g. that movements most likely follow

shortest paths, can help to compute more meaningful matches and also to decrease the running time [7, 13].

Off-road and free space map matching. Map matching might also lead to artifacts in case the movement did indeed happen

in an underlying network but the network data is incomplete. Hence, several approaches have been developed that still pro

duce high-quality matches in this scenario by allowing the path to contain off-road sections [1, 11, 23]. However, these

approaches rely on the assumption that the unrestricted movement sequences are rather short which does not have to be the

case when dealing with semi-restricted trajectories. Map matching for outdoor pedestrian trajectories with a high degree of

Figure 1. Example of a map with an embedded road network as well as free spaces and obstacles. The blue measurement-

based trajectory is best explained by movement along the orange dashed path, which follows roads and free spaces where

possible but contains no obstacle intersections
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freedom often requires additional data to yield good results as e.g. derived from a smartphone accelerometer or compass

[22, 24]. In other lines of work, the goal is to model the possible movement network as precise as possible (including e.g.

cross walks) to be able to adapt conventional map matching techniques for restricted movement [2]. Most map matching

approaches for pedestrians focus on indoor movement, though [26, 32, 34]. But these approaches do not consider the possi-

bility to switch between restricted and unrestricted movement and also do not scale well enough to deal with large networks

and rich map context.

Representation methods for unrestricted trajectories. Existing methods for storing and indexing raw trajectories are

often based on a partitioning of the ambient space e.g. into equisized grid cells or by constructing spatial data structures as

CSE-Trees [29], ST-R-trees or TB-trees [21]. But these approaches do not feature any kind of compression and are slow in

case large trajectory sets are to be reported in a query. In contrast, map-matched trajectories can be managed much more

efficiently in terms of memory and retrieval time using methods as SPNET [15], PRESS [25] or PATHFINDER [10]. To gain

these advantages also when dealing with unrestricted trajectories, methods for computing an underlying graph for a given set

of trajectories were investigated [5]. This task is closely related to map generation from trajectory sets [12, 16]. However,

these methods either discard outlier trajectories completely or produce rather large graphs, which is both undesirable in our

application. Furthermore, the computed graphs have to be updated whenever new trajectories arrive. We will discuss meth-

ods to produce graphs that cover free space areas in such a way that all trajectories that may traverse said free space are

represented sufficiently well. This problem has also been investigated in the context of indoor navigation. One approach is to

represent the traversable space of floor plans by their skeleton, incorporating points of interest such as entrances and exits

[8].

1.2. Contribution

We present a pipeline that can accurately map match semi-restricted trajectories, thereby overcoming several limitations of

previous work. We consider the following points to be our main contribution:

• We propose an extended network model capable of handling semi-restricted trajectories. In addition to the general graph

representation of linear streets, we add tessellated free-space polygons that represent areas of unrestricted movement (such

as marketplaces or parking lots). We discuss how a sensible tessellation can be obtained and provide an open source imple-

mentation at https://github.com/tcvdijk/tessa.

• We significantly extend the map matching approach presented in [11], which was originally developed to enable map match-

ing on incomplete road network data. First, we make the approach more efficient by incorporating ideas from [7]. More

importantly, though, we make the algorithm work on our extended network model. Among other things, this requires a

carefully designed penalization scheme for off-road sections.

• Furthermore, we describe how to incorporate obstacles in the tessellation as well as the map matching process. Obstacles

are polygons that the map matched path is not allowed to intersect (as e.g. buildings for cycle trajectories). Taking obstacles

into account requires additional processing steps but allows us to produce more meaningful results.

• We evaluate our approach in an extensive experimental study on real trajectories. We investigate the accuracy of the

computed paths, in particular with respect to the recognition of unrestricted movement sections. Figure 1 shows an example

outcome of our map matching pipeline.

2. Methodology

In this section we develop our map-matching algorithm for semi-restricted trajectories, starting with a baseline method for

trajectories restricted to a network (Section 2.1) and extending it to deal with outliers, missing segments in the road data, and

matches on designated free spaces (Section 2.2).

2.1. A baseline algorithm for trajectories restricted to a network

Our algorithm is based on a state-transition model where each point of a given trajectory is represented by a set of matching

candidates – the possible system states, i.e., positions of a moving subject. This is similar to HMM-based map-matching

algorithms, which aim to find a sequence of positions maximizing a product of probabilities, each of which corresponds to



   92          Journal of Information & Systems Management   Volume   11   Number   4   December   2021

a system state or a state transition. In contrast, we aim to minimize a sum of energy terms. By introducing weights for the

energy terms that can be controlled with interactive sliders, the user of the algorithm has an intuitive tool for finding a good

parameter setting.

Input requirements. The algorithm works on a trajectory T = 〈p
1
, . . . , p

k
〉 of k points in 2, which we will call the GPS-

points. Additionally, we have a directed, edge-weighted graph G = (V, E) that models the transport network. Every directed

edge uv∈E corresponds to a directed straight-line segment representing a road segment with an allowed direction of travel.

For a road segment that can be traversed in both directions, E contains the directed edges uv and vu. For an edge e, let w(e)

be its weight. In the basic setting, we will use the Euclidean length as the weight, but note that other values are possible.

System states. For every GPS-point p
i
, we compute a set of matching candidates by considering a disk D

i
of prescribed

radius r around p
i
: we select all road segments intersected by D

i
and pick the point nearest to p

i
on each. If such a point is not

a node of G, we inject it as a new node v. (This means that we split each directed edge uw containing v into two directed edges

uv and vw; we distribute the weight of uw to the edges uv and vw proportionally to their lengths.) As a consequence, the set

of matching candidates for p
i
is a set of nodes V

i
⊆ V . If V

i
is empty, we discard the GPS-point p

i
and do not consider it for the

matching.

State Transitions. Possible transitions between candidates for two consecutive GPS-points are not modelled explicitly.

Instead, they are implicitly modeled with the graph G by assuming that the transition between any two matching candidates u

∈V
i
and v∈V

i+1
 occurs via a minimum-weight u-v-path in G. Accordingly, the matched output path P is defined by selecting,

for i = 1, . . . , k, one candidate v
i
from the set V

i
and connecting every pair of consecutive nodes in the sequence <v

1
, . . . , v

k
>

via a minimum-weight path.

Energy Model. To ensure that the output path P matches well to the trajectory, we set up and minimize an energy function

that aggregates a state-based and a transition-based energy:

The state-based energy is , meaning that the energy increases quadratically with the Euclidean distance

between a GPS-point p
i
and the matching candidate v

i
selected for it.

The transition-based energy is , where P
a,b

is a minimum-weight v
a
-v

b
- path in G and w(P) is the total

weight of a path P (i.e., the sum of the weights of the edges of P). For now, we use the geometric length of an edge as its

weight.

The two energies are aggregated using a weighted sum, parametrized with a parameter α
c
.

This yields our overall objective function quantifying the fit between a trajectory 〈p
1
, . . . , p

k
〉 and an output path defined with

the selected sequence 〈v
1
, ..., v

k
〉 of nodes:

Minimize (1)

Algorithm. An optimal solution is computed using k runs of Dijkstra’s algorithm on a graph that results from augmenting G

with a few auxiliary nodes and arcs. More precisely, we use an incremental algorithm that proceeds in k iterations. In the i-th

iteration, it computes for the sub-trajectory 〈p
1
, . . . , p

k
〉 of T and each matching candidate v ∈ V

i
the objective value of a

solution 〈v
1
, . . . , v

i
〉 that minimizes ε (〈p

1
, . . . , p

i
〉, 〈v

1
, . . . , v

i
〉) under the restriction that v

i
= v. This computation is done as

follows.

For i = 1 and any node v∈V
1
,  is simply the state-based energy for v, i.e.,  = .

For i > 1, we introduce a dummy node s
i
and a directed edge s

i
u for each u ∈V

i-1
whose weight we set as ; see Figure 2.
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With this, for any node corresponds to the weight of a minimum-weight s
i
-v-path in the augmented graph, plus the

state-based energy for v. We are thus interested in finding for s
i
and every node in V

i
a minimum weight path. All these paths

can be found with one single-source shortest path query with source si and, thus, with a single execution of Dijkstra’s

algorithm.

We observe that our objective function  for the whole trajectory has the minimum value

 and is among the values we have computed. It is not difficult to maintain information during the run of the

algorithm to enable the reconstruction of a solution attaining that value.

Figure 2. The incremental step of our algorithm. From the dummy node s
i
, shortest paths to all nodes in V

i
are computed

with one single-source shortest path query (see the dashed lines). The weight of each such path plus the state-based energy

of the corresponding terminal is used as the weight of a dummy edge in the next iteration.

(a) (b)

Figure 3. (a) Forcing the input trajectory (blue points) to the road network can cause a long detour in the output path

(dashed). (b) Additional unmatched candidates and connecting segments prevent the detour

2.2. Extensions for Semi-restricted Trajectories

The algorithm outlined in the previous section forces the output path to the road network, which can lead to unfavorable

solutions. Consider the example in Figure 3, where road segments are missing in the road data. By forcing the output path to

the road network, a long and unrealistic detour is generated. More generally, we deal with the following issues:

• The trajectory contains outliers.

• The road data is incomplete, i.e., road segments are not modeled in the data.

• The trajectory traverses open spaces that are modeled as areas.
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To deal with the first two issues, we allow GPS-points to be left unmatched and accordingly introduce unmatched candi-

dates. The third issue is handled by augmenting the road network with additional edges, which we call off-road segments.

Accordingly, a matching candidate on an off-road segment is called off-road candidate. We present these concepts in the

following in detail and then describe how we extend the energy model.

Unmatched Candidates. For each GPS-point p
i

we extend the set of candidates with a candidate at the observed location.

nalogously to the baseline algorithm, we add this candidate into the graph by inserting it as a node u
i
. For every node v

i−1
in the

candidate set of GPS-point p
i−1

 and every node v
i+1

in the candidate set of GPS-point p
i+1

 we add directed edges v
i−1

u
i

and

u
i
v

i
+1, respectively. Figure 4 shows the extended graph for two consecutive GPS-points with the additional edges shown in

green. This approach guarantees that there is always a fallback solution, which can be chosen if no path in the road network is

similar to the trajectory. We will associate the additional edges with high energy (see below) to ensure that they will be

chosen only if necessary. In the following we refer to the baseline method with the extension to unmatched candidates as

Baseline+.

Off-road Candidates. Open spaces such as public squares, parks or parking lots are represented as polygonal areas in most

data sources. The algorithm as described so far does not deal with this (see Figure 5a). We extend the road network by

triangulating all open spaces and adding tessellation edges as arcs into the graph (Figure 5b). In order to accurately represent

polygons of varying degrees of detail and to provide an appropriate number of off-road candidates, we use CGAL’s meshing

algorithm [3] with an upperbound on the length of the resulting edges and a lowerbound on the angles inside triangles. As seen

in the figure, this algorithm can introduce additional nodes to achieve these constraints. Note that original road segments can

cross open spaces: this should be respected by the tessellation since we will give preference to on-road candidates over off-

road candidates.

Extensions of energy model. With the addition of the extensions to the baseline algorithm we now have three different sets

of edges in the graph: the original edges of the road network E
r
, the edges incident to unmatched candidate nodes E

u
 and the

off-road edges on open spaces E
t
. We prefer on-road matches over off-road matches while unmatched candidates are used as

a fallback solution and thus should only be selected if no suitable path over on- and off-road edges can be found. To model

this we adapt the energy function by changing the edge weighting w of the graph. We introduce two weighting terms α
t
 and α

u

that scale the weight w(e) of each edge e in E
t
 or E

u
, respectively. The edge weighting function thus is defined as:

Figure 4. Extended graph to support unmatched segments. In addition to the candidates in the road network, every GPS-

point is treated as a candidate itself. Additional arcs (green) are introduced connecting unmatched candidates (blue) to all

candidates of the previous and next GPS-point
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To favor matches in the original road network and keep unmatched candidates as a fallback solution, 1 < α
t
< α

u
 should hold.

Together with the weighting factor α
c
 for the state-based energy our final energy function thus comprises three different

weighting factors.

3. Experiments

In this section, we evaluate the presented algorithm on real-world data. For this we conduct a user study in the area of

Constance, Germany. In Section 3.1, we describe the used data sources and our experimental setup. In Section 3.2, we

present a detailed analysis of the quality of the produced map matching results.

3.1. Experimental setup

In our experiments we used data extracted from OpenStreetMap1 (OSM) to model the road network. As input trajectories we

use trajectories of pedestrians and cyclists recorded within the scope of a user study. In the following we will explain this

setup in detail.

Modelling the Road Network. Our experimental region is composed of the area around Lake Constance, Germany. For

this region we extract data from OSM to build the model of the road network we use for matching. Elements tagged as

highway are used to generate the road network as described in Section 2.1. To make the road network feasible for cyclists and

pedestrians we removed all roads that are not traversable for these modes of transport. Altogether we extracted a road graph

with 931,698 nodes and 2,013,590 directed edges.

The open spaces used for tessellation are identified by extracting polygons with special tags. We handpicked a list of tags

representing spaces with unrestricted movement and tags representing obstacles for movement. As the polygons we ex-

tracted this way overlapped in some areas we had to sanitize the input: in the case that an obstacle overlapped an open space

we cropped the open space to not be covered by the obstacle. In the case that two open spaces overlapped we split the open

spaces such that no overlap exists in the final data. This way we extracted 6827 polygons representing open spaces.

1 © OpenStreetMap contributors

(2)

 Figure 5. (a) Roads in the network data. Movement on the open space (green) cannot be matched appropriately (dashed).

(b) Extended road network. Open spaces are tessellated in order to add appropriate off-road candidates. Note that the

green polygon has a hole, which remains untessellated since it is not actually open space. Also note that additional

vertices are added to prevent skinny triangles
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Figure 6. Left: Classification results for off-road section identification for different parameter configurations. Right:

Effect of the parameter choice illustrated for an example instance. In the upper image (α
t
 = 1.5, α

c
 = 0.01), the GPS

points (blue crosses) are matched to the cheap road network edges whenever possible. In the middle image (α
t
 = 1.5, α

c
 =

0.10), the increased candidate cost leads to a matching which deviates from the measurements as little as possible. In the

lower image (α
t
 = 1.1, α

c
 = 0.01), the decreased tessellation edge cost leads to more deviation from the road network as

in the upper image. Despite those differences, we observe that the middle part is matched to the same edges for all three

configurations

For the tessellation of the open spaces we decided on an upper bound of 25 meters for the length of the resulting edges and

kept the lower bound for the inside angles of the triangles at the CGAL default value of about 20.6o. We decided on these

parameters by visual inspection of tessellation results. Together with the additional edges of the tessellation our final graph

consists of 1,148,213 nodes and 3,345,426 directed edges.

User Study. To evaluate the performance of the algorithm we conducted a user study with five participants. The participants

were asked to record their trips while cycling or walking with their mobile phones or similar GPS-devices. After each trip,

the participant annotated all sections of the trip where he or she left roads. This information serves as ground-truth for our

evaluation to determine wether these segments got identified correctly. In total, we gathered 58 trajectories during the study.

The length of these trajectories varies from 300 meters to 41.3 kilometers, and they contain 66 annotated off-road seg-

ments.

3.2. Map Matching Results

We evaluate our proposed map matching algorithm for semi-restricted trajectories in two steps: In the first step, we investi-

gate the sensitivity of our algorithm to parameter choices in the energy model discussed in Section 2.1 and 2.2, and deduce

a sensible parameter setting thereupon. In the second step, we analyze our matching results more thoroughly and compare

them to the Baseline+ algorithm without tessellation.

Parameter Tuning: There are three crucial parameters in our extended energy model that govern the map matching process.

First, we have the edge cost coefficients α
t
 and α

u
, which for values larger than one penalize the usage of tessellation edges

or edges incident to unmatched points, respectively, in comparison to the usage of edges in the road network. Furthermore,
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the parameter α
c
 allows us to fine-tune the impact of the Euclidean distance from a trajectory point to its matched point on

the map in the objective function.

As we consider the inclusion of edges incident to unmatched points as a last resort, we set α
u
 to 10 in all our experiments.

This value is sufficiently large to avoid unmatched points whenever there are road network or tessellation edges in the

proximity but it is also small enough to not induce unreasonably long detours if the trajectory indeed crosses an area that has

no roads and is also not a free space according to our data set. For α
t
 and α

c
 the best setting is less obvious, though. For too

large α
t
 and too small α

c
, the algorithm would match trajectories only to paths in the road network. But a too large value α

c

would render the algorithm too inflexible to find reasonable paths, especially in the presence of outliers.

We hence conducted the following experiment to see how sensitive our algorithm is to the choice of α
t
 and α

c
, and to figure

out which configuration to use in subsequent studies: We varied α
t
 from 1.0 to 3.0 in increments of 0.1 and α

c
 from 0.01 to

0.1 in increments of 0.01. For the resulting 310 combinations, we assessed how well the algorithm identifies restricted and

unrestricted movement in our labeled trajectory benchmark set. More precisely, we compared the true positive rate of

correctly recognized off-road segments (the higher the better) and the false positive rate of actual road parts treated as off-

road segments (the lower the better). The results are summarized in Figure 6, left. The effect of certain parameter combina-

tions for the matching of an off-road part is illustrated in Figure 6, right.

A significant range of value combinations is clearly dominated by others, in particular the ones with α
t
> 2 or α

c
< 0.05. For

α
t
 close to 1.0, unsurprisingly, we have the highest true positive rate; but also the highest false positive rate for α

t
 in [1.0,

2.0]. For α
c

< 0.5 the true positive rate is rather small. For α
c
 chosen larger than that, we see that the precise choice is not

that important as α
t
 then seems to have a stronger influence on the achieved trade-offs. Furthermore, we computed precision

and recall for the identification of on-road sections for all parameter combinations with the results that both, precision and

recall, tend to be close to 1.0 for all tested α
t
  and α

c
. We hence conclude that the algorithm is not overly sensitive to the

precise parameter choice. For subsequent experiments we chose α
t
 = 1.1 and α

c
 = 0.07.

Quality Analysis. In the parameter tuning experiment, we just considered whether off- and on-road sections were identified

as such but now we want to further analyze the overall matching quality, and compare our extended approach for semi-

restricted map matching to Baseline+ that does not use tessellated free spaces. We will focus on the following two aspects

Figure 7. Fréchet and normed DTW distance between input trajectories and the matched paths produced with our approach

(blue) and Baseline+ (red). In both cases the trajectories (distributed over the x-axis) are sorted by the fréchet distance

(resp. normed DTW) of our approach
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Figure 8. Original GPS measurements (blue crosses) and matched paths produced by the tessellation based approach

(upper image) and Baseline+ (lower image). In the tessellation based matching the shape of the original trajectory is

faithfully preserved and the unrestricted movement is correctly identified and matched to tessellation points and edges.

Using Baseline+, the first part of the unrestricted movement is wrongfully matched to the path network and subsequently

the shape is locally distorted when the switch from restricted to unrestricted movement occurs

in our comparative evaluation: (i) shape preservation of the input trajectories, (ii) compression and indexing of trajectory

sets.

To measure how well the shape of the original trajectory is preserved by our map matching approach, we compute the Fréchet

distance and the Dynamic Time Warping (DTW) distance between the input and the output curve.

Definition 1 (Fréchet Distance). Given two polylines L, L′ with length k and k′, respectively, the Fréchet distance is

defined as d
F

(L, L′) := inf
σ, θ

 max
t ∈[0,1] 

||L(σ (t)) −−−−− L′(θ (t))||
2

where σ : [0, 1] → [1, k] and θ : [0, 1] → [1, k′] are continuous

and monotonic and σ (0) = θ (0) = 1, σ
 
(1) = k and θ (1) = k′.

Definition 2 (DTW Distance). Given two polylines L, L′ with length k and k′, respectively, the DTW distance is the cost of

a cheapest warping path between L and L′. A warping path is a sequence p = (p
1
, . . . , pW) with p

w
= (l

w
, l′

w
) ∈ [1 : k] × [1 : k′]

for w∈[1 : W] such that p
1
 = (1, 1) and pw = (k, k′), and p

w+1
− p

w
∈ {(1, 0), (0, 1), (1, 1)} for w ∈ [1 : W − 1]. Thereby, the

cost of path p is defined as . The normed DTW distance is the cost of the path divided by 2 · max{k, k′}.
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The Fréchet distance is a bottleneck measure that sometimes is even used as the main objective for map matching [30]. DTW

is frequently used in similarity analysis of time series and other sequenced data, and has the advantage that its value is

determined by the whole shapes and not just by a local dissimilarity maximum. We always use the normed DTW distance

here, as it allows for better comparability between input trajectories of different length. Figure 7 show the Fréchet and DTW

distances for all off-road sections identified in the user study; map matched by our algorithm as well as Baseline+. Although

Baseline+ is more likely to keep original trajectory points in the map matched path whenever free spaces are traversed – and

hence the shape therein should be perfectly preserved – we observe that our tessellation based approach achieves compa-

rable or even better shape similarity on most inputs. On average, paths computed with our approach had a Fréchet/DTW

distance to the original trajectory of 31.81/16.25 while for Baseline+ the respective values are 32.52/18.47. A possible

reason for the better shape preservation with our approach is that transitions between restricted and unrestricted movement

tend to be smoother, see Figure 8 for an example.

Next, we want to further evaluate whether the tessellation based addition of roughly 1.3 million edges to the road network is

worthwhile not only for shape preservation and unrestricted movement identification but also for compression purposes. To

this end, we count holes in the matched paths. Here, a hole is a continuous subpath that is not represented by edges in the

created graph but uses edges incident to unmatched points. The usage of Baseline+ led to 43% more holes than the tessella-

tion based approach. Furthermore, the holes resulting from Baseline+ are typically significantly longer. Holes require addi-

tional storage and indexing effort as the contained edges are unlikely to be used by any other trajectories. In contrast,

tessellation edges may be traversed by many trajectory matches, see Figure 9 (left) for an example. This not only allows for

better compression of trajectory sets but also helps to efficiently retrieve and analyze similar trajectories, and to extract

Figure 9. Upper left: Set of trajectories (dashed blue lines) traversing the same free space. The yellow edges indicate their

matched paths. Lower left: Trajectory (blue crosses) following the shore line of the lake. The Baseline+ approach matches

this trajectory to rather far apart paths as well as several groynes, while the tessellation based approach produces a more

sensible match. Right: In the absence of sufficient tessellation edges, a trajectory traversing a large free space might end

up being matched to a path with a rather large detour
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common movement patterns within a trajectory set. Figure 9 further shows an example where Baseline+ computes a nonsen-

sical match for a trajectory that follows the shore line but is then forced to follow existing paths, but also an example where

our tessellation based approach fails due to a trajectory traversing an open space which was not chosen for tessellation based

on the existing OSM tags. However, for most of the tested instance sensible matches that make use of tessellation edges

were identified.

4. Conclusion and Future Work

We introduced the notion of semi-restricted trajectories in this paper and proposed a pipeline for map matching such trajec-

tories to a carefully constructed graph consisting of a road network and tessellated free spaces. We showed that the resulting

combined graph is only about 50% larger than the road network but enables a faithful representation of restricted and unre-

stricted movement at the same time. As evidenced in our experimental analysis, unrestricted movement is in most cases

correctly identified as such by our map matching approach. Nevertheless, there are many interesting directions for future

work that could help to improve or extend our approach. For example, different tessellation variants could be tested and

compared. At the moment we use an upper bound for the edge length allowed in the free space triangulations and a lower

bound for the angular resolution. The two bounds could be varied to achieve different precision and compression trade-offs

for the matched trajectories. Other tessellation approaches, e.g. based on polygon skeletons, could further help to model

natural movement in free spaces. Furthermore, one could also consider trajectories that enter and exit buildings similarly

and try to reliably infer the respective transitions from outdoor to indoor or vice versa. At the moment, we treat all buildings

as obstacles, but it is also possible to apply our model to the interior of buildings to allow for indoor matching. Finally, while

our approach is sufficiently fast with query times below 0.5 seconds per trajectory, more efficient match computation might

be possible by improved candidate node selection, especially within the tessellated free spaces.
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