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ABSTRACT: In the road networks, the GPS data provide valuable traffic data for planning. In this process, more volume

of data is impactful that provide challenges while observing significant features. The GPS and the road network can be

integrated to arrive a viable solution and generating visual summaries. Now we outlined acoordinated fully-automated

pipeline for computing a schematic overview of mobility patterns from a collection of trajectories on a street network.

The proposed framework used the known building blocks from GIS, automated cartography, and trajectory analysis:

map matching, road selection, schematization, movement patterns, and metro-map style rendering. The propositions are

experimented by subjecting two cities where the real-world data is used to assess the pattern.
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1. Introduction

GPS tracks from moving vehicles are an important source of information for traffic analysis and urban planning. Their
general ubiquity allows decision makers to understand the usage of transportation networks and urban spaces. However, the
sheer volume of the data makes it challenging to render trajectory collections in a meaningful way as to show the general,
overarching patterns. Simply plotting all trajectories results in the infamous “spaghetti heaps”. Heat maps [15, 19] and other
aggregation techniques such as Voronoi aggregation [1] are helpful to “untangle” traffic locally, but they generally fail to
capture structural patterns, such as important longer routes.

Summarizing trajectory collections visually, such that salient patterns emerge, inherently requires a form of aggregation or
simplification of the data. That is, the level of detail and information shown should be scale-appropriate and avoid a cognitive
overload, while still being able to provide insight into the overall mobility. There are various techniques to cluster trajecto-
ries and compute a representative for visualization [6, 16], or to simplify trajectories [12]. However, these techniques typi-
cally focus on trajectories in a general 2D space, whereas our focus lies on trajectory data on transportation networks,
specifically vehicles on a road network. As such, the problem changes in nature, as selecting representative routes and
performing simplification needs to be “network-aware”. Stronger still, to reduce the visual complexity of the eventual visu-
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alization, not only the trajectories need to be simplified, but also the underlying street network. To arrive at meaningful
results which show traffic patterns in the correct context, the simplification and aggregation of the trajectory collection and
of the network have to go hand-in-hand: they need to be coordinated.

Contribution and organization. We propose a coordinated fully-automated pipeline for computing a schematic overview
of mobility patterns. Our pipeline consists of five steps, each utilizing well-known building blocks from GIS, automated
cartography and trajectory analysis: map matching, road selection, schematization, movement patterns, and metro-map style
rendering. We present our overall pipeline and its rationale in Section 2; the subsequent sections describe each step in more
detail. Each of these sections also describes how we implemented the corresponding step in our proof-of-concept. For
illustration we use a realworld dataset of vehicle trajectories around The Hague in the Netherlands. In Section 8 we discuss
the results of our pipeline using a second real-world data set around Beijing. We close with a general discussion of our
pipeline and future work in Section 9.

Related Work. We focus here on related work pertaining to the visualization of large volumes of trajectories and discuss
related work for each step of the pipeline in the respective section. Most research in this area aims to provide an overview of
space usage, without showing or using the temporal component of trajectories; see the two extensive surveys by Chen et al.
[10] and Andrienko et al. [3]. The notable exception are space-time cubes [13, 22], though they do not scale well to large
numbers of trajectories without some form of aggregation.

To identify larger patterns, one can focus on visualizing the origin-destination data only, that is, focus only on the endpoints
of the trajectories, possibly with some form of spatial aggregation. There are various techniques to visualize such informa-
tion, e.g., [24, 31, 34]. Visualizing OD-data shows patterns beyond local traffic, but typically does not show any information
on the actual routes. As such it does not support understanding mobility from the viewpoint of traveling through a network.
Indeed, these techniques are typically applied in situations where the exact trajectories or routes are not available or not of
interest.

2. The Pipeline

Our input is a set T of trajectories, and a network G. Our goal is a schematized representation of G together with the most
salient mobility patterns in T. Before we can describe our pipeline in more detail, we first give the necessary definitions.

Definitions. A trajectory is a sequence of measurements T = <(x
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∈ ∈ ∈ ∈ ∈ . We restrict our attention to the spatial domain and hence we ignore the temporal component beyond
providing an ordering of the measurements. Thus, for the purpose of this paper, a trajectory T is a (directed) polygonal line
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A (road) network is a directed graph G = (V, E) where each vertex has a location in . Edges have an associated geometry
connected to their endpoints; initially, this is typically the unique line segment, but during our pipeline, this geometry can
change. We further assume that each road has an associated road type, which is ordinal (e.g., “highway”).

We assume that the network is plane, that is, the edges do not cross except at common endpoints. This condition is not
generally satisfied by actual road networks, but we can introduce extra vertices on these intersections to planarize the net-
work. By marking these extra vertices, we can perform algorithms both on the planarized and original network. We further
use |G| to denote the complexity of the network, measured as its number of edges, though note that this assumption implies
that |G| = |E| = O(|V |).

We use route to refer to a (directed) path in the network. For example, map-matching a trajectory results in its route: the path
in the network that was traversed by the vehicle captured by the (noisy) trajectory. We refer to such a path as the route of the
trajectory.

A route does not have to correspond to a single or entire trajectory. Specifically, we say that a route is supported by a
trajectory T if it is a subpath of the route of T. We use bundle to indicate a route that is supported by multiple trajectories,
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using the support of a bundle to indicate the number of supporting trajectories. Bundles should aim to capture mobility
patterns; precise criteria to form meaningful bundles are discussed in Section 6.

The pipeline. Our goal is to compute a schematic representation of G with salient bundles that are “supported by” T. To
achieve this, our pipeline consists of five steps, briefly sketched below. See Figure 1 for an example of the results of these
steps. In the subsequent sections we discuss each in more detail. Important in our treatment of the network and the trajectory
information is to coordinate changes: specifically, changes in the network should be translated to changes in the trajectory
information.

Step 1: Map-match We aim to visualize mobility patterns via bundles, frequent routes in the data. However, trajectories are
not the same as routes, and thus cannot support a bundle. As such, we first map-match the trajectories to the network. The
minimal input to this step is a single trajectory and the network, such that each trajectory can be processed individually. Map-
matching computes the route associated with this trajectory. The result of this step is a set R of routes, rather than trajecto-
ries. In our implementation, the trajectories are not used further. This step enables our pipeline to coordinate changes in the
network and the routes.

Step 2: Select roads A typical road network is very detailed, much beyond the level of detail that we need to visualize the
general mobility patterns and well-supported bundles. The minimal input to this step is the road network and the set of routes
derived in Step 1. Note that we could, in principle, base selection purely on the network, and adapt the routes as necessary.
However, we also choose to include all parts of the network which are frequented heavily by the routes. The result is a subset
of the network and a mapping of the original routes to this selected network.

Step 3: Schematize To reinforce the summarizing nature of the eventual visualization, we reduce the visual complexity of
the selected network via schematization. The input is the selected network and the mapping of the routes. The output is a
strongly simplified version of this network. The mapping of the routes is maintained (coordinated) during this process.
Optionally, the edges of this schematic network may be annotated with information about the length of the edge for the
purpose of bundling.

Step 4: Bundle In our schematic representation, we find well-supported bundles. The input is thus the schematic network
and the mapping of routes to this schematic representation. The output is a set of bundles that are well supported.

Step 5: Render We now have all ingredients for our visualization: the schematic network as well as salient mobility patterns
(bundles). The result is the eventual visualization which shows these two pieces of information effectively.
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3. Step 1: Map-match Trajectories to the Network

Desiderata. To eventually visualize common routes in the network, we must ensure that our trajectory information is mapped
to the network, that is, that each trajectory is translated into a route. This problem is generally known as map matching.

Related Work. Map-matching is a broadly studied topic in GIS; see [8] for a recent survey. As discussed there, the different
approaches are categorized by their matching model. For our purpose, we consider a map-matching approach using the
similarity model, since this requires less parameters. But in principle, any approach will work in our pipeline.

Our implementation. We use the map-matching algorithm described by Alt et al. [2], which runs in O(|G||T| log |G||T| log |G|)
time on a network G and trajectory T. The algorithm ensures that the route found has minimal Fréchet distance to the trajec-
tory and thus that it is geometrically close. Our motivation for doing so is to remain as close as possible to the information
of the trajectory. That is, to the information “visible” if we were to simply draw all trajectories. This algorithm is able to
handle noise relatively well, but in case of very sparsely sampled trajectory data, it may struggle to find the most natural
route.

4. Step 2: Select roads

Desiderata. We aim to select the roads for two somewhat distinct purposes. First, we want to select the roads where there is
considerable traffic, to facilitate well-supported bundles. This purpose is thus inherently data-driven. But second, we want to
select major roads to provide a frame of reference for the viewer as to how the mobility patterns are situated in space. It
stands to reason that often, major roads also carry a large part of the traffic. However, this is not necessarily the case.

Related work. Selection is an important part of road network generalization algorithms. The goal is to select the most
important parts of the network, such that the remainder can be discarded in the simplification process. Different approaches
exist to determine what features of the road-network are “salient”. Examples of these approaches are using the mesh density
[9], using user defined weights [14] and using areas of faces combined with semantic labels [20]. Different from the previous
are approaches that focus on “strokes” through the network: lines  of good continuation, that is, lines with small local
curvature [21]. During generalization, these strokes are considered atomic units and are selected based on their relative
importance. This importance is often determined via network centrality measures [29, 33].

Figure 1. Our pipeline for coordinated schematization on the Hague dataset. The input trajectories are shown as a density
map. For the map-matched routes, we use a orange to red scale to convey low to high traffic volume per edge. We com-

pute the bundles in Step 4 with S
min

= 500, L
min

= 10000m, p = 0.5 and shrunk edge lengths, see Section 6 for more
details on these parameters
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More recently, approaches focus on using traffic data to inform the selection process [23, 35]. Yu et al. propose an approach
that is based on strokes, but during the selection process considers traffic flow from one stroke to the other, increasing the
likelihood that strokes that give good traffic flow continuation are selected together. Van de Kerkhof et al. [23] follow a
different approach, where the selection process is formulated as a covering problem, and the trajectories need to be covered
by the selection of the road-network.

Our implementation. We use the approach by van de Kerkhof et al. [23] which seeks to select a subgraph G2  of the network
with bounded length, such that the number of routes that are completely within this subgraph is maximized. Though the
authors prove that this problem is NP-hard, they also describe a heuristic that runs in O(|T |2 log |T | + |T ||G|) time; we use this
heuristic in our implementation (see Fig. 2 (middle)). After selecting G2 , we add any edges that were not selected yet and
have a large enough road type. If the resulting selected network is not connected, we optionally select the largest connected
component; none of the later steps require the network to be connected (see Fig. 2 (left) and (right)).

5. Step 3: Schematize the Network

Desiderata. Even after selection, the network tends to contain more detail than necessary to provide a meaningful overview
of mobility patterns: different lanes, cloverleaves, etc. Instead, we should get a high-level overview that communicates the
main connectivity in the network, and as such create space to visualize mobility patterns (bundles). That is, we should col-
lapse (aggregate) and simplify such local details. We do so beyond the need of target scale, instead focusing on functional

detail: that is, we schematize the network. The network should remain spatially informative: roughly similar to the overall
input geometry.

Related work. In automated cartography, the process of schematization is used to render aesthetically pleasing networks or
polygonal domains that are decluttered enough to convey important information on the schematic [17]. Compared to gener-
alization, schematization commonly reduces the input to such an extent that it is not necessarily realistic anymore, albeit
retaining important features to recognize the original. Note that in general, the input to these algorithms is a detailed map of
the road-network, whereas we input a selection of the map based on data, thus making it a data-driven schematization.

One approach is to limit the type of the geometry in the output, thus naturally reducing detail. Here it is common to fix the
allowed number of orientations of lines in the network [7, 30], particularly in the context of metro maps. Alternatively one
can fix the geometric primitives that can be used, for instance circular arcs [25] or Bézier curves [26].

To retain recognizability, schematization typically limits the spatial distortion between input and output by fixing vertex
locations [7] or minimizing the distance between input and output edges, for instance via the Fréchet distance [25]. In addi-
tion, it is common to maintain the topology of the input, which plays a key role in recognition of the output. We note that for
our approach, we want to retain the topology of the network at a certain scale, thus small topological features should be
removed prior to applying a topology-preserving schematization approach. An alternative would be to consider continuous
scale generalizations [27, 28] and applying schematization at the desired scale. An important aspect is then to be able to
retain a mapping from the edges in the selected network to the schematization.

Our implementation. We first drastically simplify and collapse the selected network G2 , after which we apply the arc-

Figure 2. Selection by road type (left) and by traffic (middle), combination of both (right)
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Figure 3. (left) Replacing shallow turns; (middle) network before; (right) network after

Collapse dead ends We first remove short paths in the network that do not increase the overall connectivity. Starting at a
degree-1 vertex, we move along degree-2 vertices only to trace a visual “dead end” until we find a vertex that does not have
degree 2. We compare its geometric length to a predefined parameter l

max
, and collapse the path to this last vertex if its

length falls below this threshold. We use l
max

= 100m initially, and l
max

= 1000m after the face-collapse operation. For
coordination, we reroute any route along the collapsed edges to the endpoint that remains.

Replace shallow turns A detailed input network frequently contains small bends. The final schematization would remove
such detail, but we perform this step early to simplify the merge and collapse operations to follow. For every degree-2
vertex, we consider the smallest angle between its incident edges. If this angle exceeds some predefined limit β, we replace
the vertex and its two incident edges with a single edge; see Figure 3. We use β = 150o before and β = 140o after the face-

collapse step. For coordination, we reroute any route on one or both of the replaced edges e
0
 and e

1
 to the new edge e′.

Merging vertices Junctions in the road-network are too detailed for our schematic; ideally we represent them by a single
vertex. To this end, we fix a radius r within which we merge vertices. For a vertex v, the merge operation for v merges all
vertices within distance r of v (including v itself) to a single new vertex, placed at the centroid of the merged vertices (see
Figure 4). We iteratively merge vertices, prioritized by the number of vertices within radius r. We use r = 0.01D with D the
length of the diagonal of the bounding box of the network. After merging faces, we use a larger radius of r = 0.03D.

For coordination, edges inside the merge radius are mapped to the new vertex (e.g., red edges to v
r

in figure). Edges between
different new vertices or between a new vertex and an unmerged vertex are consolidated to new edges (purple and blue in
figure).

Merging vertices with edges A vertex can be close to an edge, even though it is not close to its endpoints. In such cases, we
merge vertices into nearby edges that are not incident to the vertex itself. We use the distance r as specified earlier, and try
to collapse a vertex v to the closest non-incident edge e that is within distance r, where we demand that v lies in the slab
spanned by e (see Figure 5). For coordination, any route using the former edge e is now using the two (possibly new) edges
e′

0
 and e′

1
 from v to the endpoints of e.

Face collapse We now consider the faces of the network and collapse them onto a single geometry, if they are “small”.
Specifically, we collapse faces with an area of at most a

max
= 0.01A, where A is the area of the bounding box of the network.

schematization algorithm by van Dijk et al. [25] for its aesthetic and clean representation, resulting in a schematic road-
network .

Our implementation applies the sequence of operations described below. We use simple steps in an incremental fashion to
facilitate coordination and maintain a mapping between the edges of the selected network and the schematic network. Our
simple operations can result in fairly coarse approximations. However, since our target is a highly abstracted final map, the
coarseness of the earlier operations is not an issue.
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Figure 4. (left) Merging vertices; (middle) network before; (right) network after

Figure 5. (left) vertex-edge merging; (middle) network before; (right) network after

Figure 6. (left) Face collapse; (middle) network before; (right) network after

To collapse a small face F, we first collapse all interior degree-2 paths, independent of length. We then compute the minimal
oriented bounding box of F, select its major axis, and cut F along this axis. In case of a non-convex face, we select the longest
internal intersection between F and the axis (see Fig. 6). The cut introduces two cycles; we break both cycles by removing an
edge or a path of degree-2 vertices from each; we can do so while maintaining the distances to the cut along the cycle for all
higher-degree vertices. For coordination, we reroute any route that used the removed edges via the cut.

Cleanup After face merging, we repeat all earlier operations once more to clean up the geometry and prepare for computing
the final schematization.

Arc schematization For our final schematization, we chose the arc schematization algorithm by van Dijk et al. [25]. This
algorithm produces a low complexity schematization using (circular) arcs, while maintaining the topology of network. To
encourage the use of straight lines over very shallow arcs, we increase the relative importance of straight lines by reducing
the Fréchet distance for straight lines by a factor 0.3. Because this algorithm only removes vertices, coordination is straight-
forward, similar to replacing shallow turns.
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Time Complexity. The simplification operators run in roughly quadratic time with a straightforward implementation. The
arc schematization algorithm dominates the operations to simplify the network. Thus, the time complexity is O(n2h log n),
where h is the number of vertices with degree higher than three in the input simplification and n the number of vertices,
which is greatly reduced from the input at this point. Coordinating the changes between the road network and a trajectory T
takes roughly O(|G||T|).

6. Step 4: Detect Bundles

Desiderata. We aim to detect bundles that are well-supported by the routes to provide insight into the overall mobility
patterns. As such, we identify two desired properties of a bundle. First, it has to be supported by many routes. Specifically, we
do not want a bundle representing a single trajectory (potentially an outlier), but rather the common behavior. Second, a
bundle should be long in terms of (geometric) length. We aim to show mobility patterns that describe how vehicles move
through the space. A long bundle is more descriptive of behavior than a short one; in the extreme case, a short bundle (even or
especially if it is supported by many routes) may consist of one single edge (road segment), which does not help to commu-
nicate patterns beyond the existence of considerable local traffic. That is, we want to find long bundles that are supported by
many routes.

As we aim to visualize not one but multiple bundles simultaneously, we further use three criteria to assess a set of bundles.
First, we restrict our attention to maximal bundles only. That is, we consider only bundles to which we cannot add another
route for its support, but specifically also not increase its length without having to reduce its support. Second, we generally
want to see patterns of mobility that are spatially diverse: we prefer having bundles through different parts of the network,
if the trajectories allow them. That is, we would like to avoid overlap between bundles as overlap communicates the same
(local) behavior.

Third, a bundle fully contained within another may not provide much extra insight into mobility beyond showing a higher
support for the contained route. We call a set of bundles containment-free if no bundle is a subroute of another. Note that
containment-free bundles are not necessarily overlap-free and thus this is different from spatial diversity. Overlap-free
bundles are containment-free, but we do not interpret spatial diversity as strict overlap-free.

In a containment-free set of maximal bundles each route may still support multiple bundles. If these are disjoint bundles,
then we accept this as a bundle. However, as we are to eventually visualize the bundles, it may be misleading if well-supported
bundles that share an edge are only well-supported because they share many trajectories. Thus, we choose to count the
support for bundles in a disjoint manner: that is, routes through the overlap of bundles can be counted to support only one of
these. We refer to this as the disjoint support.

Finally, note that we consider the network bidirectional, in the sense that each edge is present twice, once for each direction
of travel. The considerations above should consider the direction of travel. That is, a bundle is directed and can, for example,
only be supported by routes in the same direction. Two bundles that use the same set of edges, but travel in opposite direc-
tion, would hence be considered overlap-free.

Related Work. Our bundling is closely related to finding groups of trajectories and finding representatives of trajectories,
so-called centers. In the context of spatio-temporal data, grouping structures are used to find common patterns of mobility
[5]. The groups that are constructed essentially are trajectories that move close together for a sufficient amount of time and
with enough members in the group. Since we work with map-matched trajectories, we consider routes close when they share
edges in the network, and we require bundles to have at least some minimum length.

Note that finding a group does not directly result in finding a representation for the behavior of the group. To represent the
behavior of groups, a common approach is to cluster trajectories according to some metric, resulting in centers describing
common behaviour for the trajectories that are close to these centers under the used metric. This has been applied to the
spatial component under different metrics and algorithmic approaches [6, 16, 18]; see [36] for a more comprehensive over-
view.

Since we work with map-matched routes, finding the bundles is similar to finding common substrings over a finite alphabet,
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where the alphabet is the set of edges and the routes form strings over this alphabet. Finding k-common substrings [4] is
particularly related, since it demands a minimum number of matches k, similar to our high support requirement.

Our implementation. We search for a spatially diverse set of up to k bundles, where each bundle is a maximal bundle with
a minimum length L

min
 and minimum disjoint support S

min
. We construct this set by incrementally adding the “most infor

mative” bundle.

To quantify this, we define the importance of a bundle in a way that allows a trade-off between length, disjoint support and
spatial diversity. Specifically, the importance I(B) of a bundle B is defined as I(B) = Lp|S|1-p for p ∈ [0, 1], where L is the length
of the bundle and S is the (disjoint) set of supporting routes. The rationale behind this is that, in the case of p = 0 or p = 1 we
simply prioritize by total support or bundle length, respectively. However, if we set p = 0.5, then we prioritize the bundles by
the total length of the route-set in its support. This allows a trade-off between length and disjoint support.

We define the length of a bundle B as  for some function l. With l (e) = |e| (the Euclidean length) we promote long
bundles directly. As we use disjoint support, there is already some preference for spatially diverse bundles, but we observe
that this still leads to very similar bundles. To promote spatial diversity further, we may alter l. Specifically, we also allow for
using l(e) = |e|/(1 + b(e)) where b(e) is the number of selected bundles already using edge e. That is, conceptually, we
“shrink” edges that have been used by other bundles. We thus refer to this setting as shrunk edge lengths.

We compute the most important bundle B by using a simple backtracking procedure. We then add B to our bundle set and
remove its support from the complete set of routes. We repeat this process until k bundles have been found. If no bundle of
sufficient length and support is found but we do not have k bundles yet, we have S

min
 and repeat. We have S

min
 at most twice,

creating three classes of bundles (“thick”, “medium” and “thin” bundles).

Intuitively, focusing on bundle length (higher values of p) is suitable for finding longer bundles that may have less support;
useful to investigate longer mobility patterns. Reducing p focuses more on support and thus on patterns that are very fre-
quent. In Figure 7 (rendered according to our final step) we vary p and observe that reducing p (i.e., increasing importance of
support) leads to less spatially diverse routes, but increases the bundle classes.

Figure 7. Ten bundles for different importance schemes: p = 1 (left), p = 0.5 (middle) and p = 0 (right). We used S
min

=

500 and L
min

= 6000m, with shrunk edge lengths

Figure 8. Ten bundles for different approaches to spatial diversity: Euclidean edge lengths (left), shrunk edge lengths
(right). We used S

min
 = 500 and L

min
 = 6000m and p = 0.5
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Changing the edge lengths may encourage diversity, but may result in bundles of lower classes, as routes through existing
bundles are “shorter” and thus less important. In Fig. 8 we compare the result using both our settings. Euclidean edge lengths
show mostly similar routes, but we observe that shrunk edge lengths increase the spatial diversity. It does not avoid overlap,
but it does reduce containment slightly (from 5 to 2 contained pairs).

Computing one bundle takes O(|T || |) time, where  is the schematized network. This time includes the necessary changes
to the information for computing the next bundle, so computing k bundles takes O(k|T || |) time.

7. Step 5: Render schematic network with bundles

Desiderata. We now aim to jointly render the bundles and the schematic network, such that the bundles are clearly con-
veyed. For this, the bundles should be easily identified. Common practice is to use colors to identify the separate bundles,
and in addition separate them visually. However, the bundles need to be rendered such that it is also easy to determine from
what parts of the network they originate. Thus, rendering them in close spatial proximity to the associated edges would also
be beneficial to the readability of the schematic. In addition, it should be possible to identify the (approximate) support for
a bundle.

Related work. Rendering bundles in a network is similar to rendering the lines of a metro network, which is a well studied
topic [32]. Common problems involve ordering lines on a common connection to avoid crossings and ensure good continu-
ation at stations.

The offset rendering used in our implementation may want to avoid offsetting edges of a bundle with different distances, thus
encouraging good continuation. If we allow gaps between bundles at an edge but disallow differences in offset within a single
bundle, the problem is essentially to assign a layer to each bundle, minimizing the number of layers, such that two overlap-
ping bundles use different layers. Even if the network would be a single cycle, this problem is NP-hard [11]; minimizing
change is hence NP-hard as well.

Figure 9. (a) A local self-intersection caused by offsetting and its resolution. (b) Local deviation from the direction of
travel of the bundle and its resolution

Our implementation. Our main approach is to render each bundle as a a curve that is slightly offset from the network, such
that they do not coincide with the network, nor each other. We visualize the direction of a bundle by offsetting its curves to
a particular side of the network edges. As our example datasets are both in areas where cars drive on the right side of the road,
we hence locally offset to the right. This scheme allows for identifying the direction of a bundle, without relying on other
visual cues such as arrow heads.

We lay out the bundles one at the time along the network. Each edge in the bundle gives an arc that is offset from the edge by
a distance d(b + 1) for some constant d > 0, where b is the number bundles already placed at that edge. The bundle is now a
sequence of arcs that do not quite connect correctly yet. We initially reconnect the arcs using straight segments. If this
causes the curve to locally self-intersect (Figure 9(a)) or cause small corners (Figure 9(b)), directed opposite to the actual
bundle direction, we simplify these artifacts as to achieve a simple curve that is always (roughly) directed in the direction of
travel of the bundle. This operation takes O(l log l) time, where l is the total complexity of the rendered bundles. Finally, we
slightly smooth the connecting segments by reducing the arcs by a small distance and using the old endpoints as control
points for a Bézier curve instead. We render the resulting curves using colors of the “10-class Paired” qualitative scheme
from ColorBrewer (https://colorbrewer2.org/), and use a line thickness based on bundle class. By using classes instead of
support, it is primarily aimed at separating main from secondary patterns.
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8. Results

We implemented our proposed pipeline in C++, using MoveTK (https://movetk.win.tue. nl/) for trajectory processing and
CGAL (https://cgal.org/) for geometric operations.

The HR dataset has been used to illustrate and discuss our pipeline throughout the paper. It covers the area of The Hague, the
Netherlands. The network is obtained from OpenStreetMap (https://www.openstreetmap.org/) and has 60 277 vertices and
66 895 edges. In step 2, we use “primary” as the minimum road level for selection (https://wiki.openstreetmap.org/wiki/
Key:highway). The GPS trajectories were provided by HERE Technologies (https://www.here.com/). As we are looking for
patterns in mobility, we used only trajectories with a length of at least 10000m that fall within the bounding box of the
network. Trajectories partially within the bounding box were split and each part was treated as a separate trajectory. This left
us with 3 795 trajectories as input.

The BJ dataset covers the metropolitan area of Beijing, China. The network is also obtained from OpenStreetMap and has 77
691 vertices and 132 167 edges. In step 2, we again use “primary” as the minimum road level for selection. The GPS
trajectories originate from the open Geolife trajectory dataset by Microsoft [37], constrained to this region. We apply the
same filtering step as for HR; this left us with 7 520 trajectories as input. The result of our pipeline is shown in Fig. 10. The
Geolife dataset mainly contains trajectories obtained from taxi-drivers. We can clearly see in the heat-map of the dataset
that there is a high concentration in the top-left, and in our schematic we see that relatively small, loop-like routes, capture
a lot of the traffic in that region. Moreover, we see that most bundles occur in pairs, that is, two roughly identical bundles but
in opposite directions. Our schematic map generally captures the outer ringroad, but struggles somewhat to capture the grid-
like structure of the inner city. This is because the arc-based nature of our schematization algorithm is somewhat opposite to
such structures. Future work may investigate hybrid approaches to schematizing such mixed networks of ring roads and non-
grid-like structures with arcs, but grid-like structures with parallel segments.
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Figure 10. Our pipeline on the BJ data. The input trajectories are shown as a density map. For the map-matched routes, we
use a orange to red scale to convey low to high traffic volume per edge We compute the bundles in Step 4 with S

min
= 150,

L
min

= 8000m, p = 0 and shrunk edge lengths

9. Discussion and Future work

We propose a coordinated pipeline to create abstract visual summaries of mobility patterns in trajectory data. Our proof-of-
concept implementation shows that the pipeline is feasible and can fully automatically compute such schematic maps. The
advantage of a pipelined approach is that we may improve upon steps individually to improve the eventual result.

Below, we reflect on our choices in the pipeline design, and discuss future work.

Step order. We could in principle also map-match (step 1) after selection (step 2). However, this would not allow for a data-
driven approach for selection. Moreover, this forces all traffic to the selected roads, which may hide information on traffic
that does not follow the selected (major) roads. For HR, the data-driven selection seems to not have made a large impact on
the selected network; for BJ more extensive parts of the network were added because of the data-driven selection. We leave
to future work to investigate whether inversion of these steps is able to provide meaningful visualizations.

Similarly, we may wonder whether we would want to detect bundles (step 4) before schematization (step 3). As schematization
reduces the network complexity, it is more efficient to do afterwards. It may distort distances, but we can keep track of the
original distances if desired – note that aggregation in step 3 does not make each route in the schematic network map to
precisely one route in the original network. Another reason supporting our choice for the given order is that schematization
may further aggregate dense areas of the network. By bundling afterwards, the support for such bundles grows since they are
effectively representing more traffic that generally traverses the dense area in roughly the same way. We believe that our
choice helps in promoting spatial diversity, as dense areas with low traffic per road may reduce to a single road with higher
traffic. In light of our very spatially uneven datasets, this seems desirable. However, we leave the full exploration of the
impact of this choice as future work.

Augmenting the schematic map. We split the map-matched trajectories according to whether or not the route is on the
selected network. This leaves us with parts of the trajectories that go through unselected parts of the network and are thus
dropped from the schematic map. We intend to explore ways of visualizing these dropped subroutes to provide information
on the traffic not part of the selected network. On a computational level, an approach we see for this is to track these
subroutes relative to the faces of an embedding of the network. This, however, demands that we meticulously keep track of
what happens to these faces during the simplification stages. But it also requires visual design: what do we want to show of
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these dropped routes, and how does that combine with the shown bundles? While our mapping between simplifications is
discrete in nature, an interesting direction of research would be to extend this to continuous mappings, where routes are also
allowed to start in the middle of edges. An appropriate map-matcher should also be selected, since the Fréchet map-matching
approach maps only to full edges, though we expect the overall impact of allowing continuous routes here to be minor, as it
is performed on the original, detailed network. The primary question is how we can alter the schematization step to allow
for high-quality continuous mapping through aggregation and simplification of the network.

Using the Schematic Map. In our proposed pipeline, we do not incorporate the time component of the input trajectories
explicitly. Given that the schematic shows strongly aggregated data in a concise way, we can easily use our approach to show
small-multiples for different time frames in the data set. This leaves open the question what the best selection method of the
road-network is in this case, which we defer to future work.

Our method hides any of the effects of sampling and noise in the data, as well as the deformation and aggregation that occurs
in our pipeline, which may be unintuitive to end users. Though the schematic appearance aims to implicitly convey such
information, it may be communicated more explicitly with additional uncertainty visualization, albeit at the cost of added
visual complexity.

The final schematization is strongly influenced by the selected parameters in steps of our pipeline. We scale parameters by
a typical size (e.g. bounding box diagonal or area) to be able to assign parameters independent of scale. Nevertheless, visual-
izing the impact of the parameters on the end result could help users pick appropriate values for their use cases.
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