
 Information Security Education Journal Volume 8 Number 2 December 2021 65

Mind, Unity and Software Security - Analysis of Functional Unity in Cases of Data-
only Attack

Ziyuan Meng
Drew University
36 Madison Ave, Madison, NJ
zmeng@drew.edu

 ABSTRACT: The computer security research community today still lacks a theoretical understanding of the essence of security
vulnerabilities. The article argues that the prevailing reductionism in computer science theory leads to insecure coding
practice, and Immanuel Kant’s philosophy of mind sheds light on what makes software secure. In particular, Kant’s constructivist
conceptualization of the mind and his theory on the unity of the mental faculties inspire us to develop a new, non-reductionist
approach to software vulnerability problems. We argue that a computer program can possess some structural similarities to the
human mind. Similar to the unity of human mind, there is also a functional unity or ‘integration ’ in any given program . In
light of this similarity, a cyber-attack can be viewed as operations to compromise a computer program’s original function by
violating its internal integration. To illustrate the point, we provide a detailed analysis of two examples of data-only attacks, a
new emerging threat to software security . In each case study , we examine the internal , functional integration of the case
program and how data-only attacks affect the integration. The result shows a direct correlation between functional integra-
tion and the security of software . In the end, we propose a new technical normativity of cultivating to supplement that of
coding.

Keywords: Philosophy of Mind, Philosophy of Technology, Software Security, Kant, Integration, Reductionism

Received: 3 July 2021, Revised 4 October 2021, Accepted 31 October 2021

DOI: 10.6025/isej/2021/8/2/65-74

Copyright: with Authors

1. Introduction

As information technologies are increasingly integrated into everyday life, cybersecurity has evolved into one of the most urgent
challenges that society faces. What has become clear is that the software and hardware of the digital infrastructure have not been designed with sufficient security considerations . As a result, many computer systems contain zero-day vulnerabilities :
unknown design or implementation flaws that can be exploited by cybercriminals . The new and evolving cyber threats of the
past decade have shown the far-reaching impacts of security vulnerabilities in both physical and social realms . These
vulnerabilities allow hackers to compromise a computer system and cause unintended behavior . In some circumstances ,
hackers can even control physical infrastructures. For example, a computer malware named Stuxnet found in 2010 is the first
known malware that targets physical systems [1]. Stuxnet exploits multiple zero-day vulnerabilities in the industrial control

 Information Security Education Journal Volume 8 Number 2 December 2021 66

 system of an uranium enrichment plant in Iran. The malware alters the control system ’s program , resulting in the centrifuges
being spun too quickly, eventually damaging them. The current computer security approach, which we believe is inadequate , is
primarily based on user feedback. For example, a vulnerability in software is first reported, and the software vendor then fixes it

 and releases the patch to the users. It is the authors' belief that the digital civilization of the future demands an investigation of

the
 conditions for the possibility of meaningful computations . In the context of computer security , we would like to ask what

 constitutes the intended form of computing and what constitutes a mis-computing because of vulnerabilities.

We believe that an investigation of potential similarities between machines and minds is required . Instead of asking how “
accurately” computer systems simulate or conform to objective reality, we turn the investigation in a different direction and ask

 how the internal structure of computer systems conform to our mode of thinking , to our mind. It is our belief that looking at

the
 connection between computer systems and the human mind can help us understand what constitutes meaningful computation

and

 how to detect miscomputations due to vulnerabilities . In their work [2], Jon and Ziyuan have proposed that software

developers
 and computer scientists can borrow concepts from the 18th century German Philosopher Immanuel Kant's

theory

of

mind

to

have

 a holistic, anti-reductionist understanding of the conditions of secure computation. They

propose

the

following

thesis

on

the

two
 necessary conditions of secure computation:

1. Similar to how the human mind uses a priori concepts to synthesize and unify its various sense perceptions, a computer
program employs pre-defined concepts and logical rules (algorithms) to integrate information taken from inputs and produce
meaningful results. “Therefore, for a system to be secure, an input can generate computational outcomes only after being
processed within the system’s pre-existing internal structure.”

2. Furthermore, similar to the Kantian understanding of the mind as a unity of its mental faculties, different components in a
secure program do not exist in isolation. Instead, they are functionally integrated during the runtime execution.

In this article, we provide an overview of their thesis and apply it to critique the prevailing reductionist assumptions in computer
science theory and education (section 2). We then engage with recently emerged data-only attacks as the case studies to evaluate
the above thesis (section 3). We include a detailed analysis of two examples: an attack against an authentication algorithm and an
attack against a web server. Both attacks exploit the buffer-overflow vulnerability. Our analysis of these attacks illustrates how a
secure program always integrates data inputs while maintaining its internal functional unity and how cyberattacks cause the
violation of the unity. In the end, we propose a non-instrumental technical normativity that views software development pro-
cesses as the cultivation of quasi bio-cognitive beings.

2. Computer and Mind

Computer and information science has gone through over six decades of rapid development . As with any other discipline, it
did not emerge from a cultural, intellectual vacuum. In its theoretical development and practical application, reductionist ways
of thinking have dominated the field. This reductionist tendency manifests at two levels. First of all, the historical development
of formal logic makes modern computer science possible. These include ancient foundations of Aristotelian logic and modern
advancement of formal logic in the 20th century. One character of formal logic is that the form of the logic gains its autonomy
by abstracting away from the content of thought [3]. To see this, we could think of any example of traditional Aristotelian
syllogistic logic, e.g., ‘All A are B; All C are A; therefore, C are B.’ Here, we can apply this logical form to the world where A
is ‘mammal’, B is ‘animal’, and C is ‘elephant’. This separation between logical form and content in formal logic gives rise to
dualistic and reductionist ways of thinking in computer science . In the imperative , procedural programming paradigm ,
algorithmic logic and data are two separate components in a given program . In his celebrated work Algorithms + Data
Structures = Programs , the famous computer scientist , Turing Award winner , Niklaus Emil Wirth , considers data and
algorithms as two related yet distinct aspects of computing [4]. Second, there has been a long tradition of atomism in thinking
about an algorithm as a sequence of computing operations . Each operation is considered to have a precisely defined , fixed
meaning in itself regardless of the context of computation . The renowned computer scientist Brian W. Kernighan once
famously said:

 ”An algorithm is a sequence of precise, unambiguous steps that perform some task and then stop;
 it describes a computation independent of implementation details. The steps are based on well-defined
 elementary or primitive operations.” [5]

 Information Security Education Journal Volume 8 Number 2 December 2021 67

 Code 1. A program to add up integers from 1 to n

.

The reductionism permeating computer science neglects one necessary condition of meaningful computations: unity. In a
meaningful algorithm, data input must be unioned with the algorithmic logic to produce correct results. Moreover, its computa-
tional steps are not isolated “logic atoms” within an algorithm. Instead, they are functionally integrated. To illustrate the point,
consider the following simple program written in pseudo code:

 Figure 1. The program dependence graph of the program in code 1

1In a formal representation, a PDG has an entry and makes the distinction between control dependence and data dependence. In
this article, we omit the entry and difference between control and data dependencies. Based on the PDG of a program, there is a well-known code analysis technique called program slicing to reason about the set of
statements in a program that affects a given variable’s state at any given location in a program [6]. If we focus on the variable sum, the PDG in Figure 1 clearly shows that all the statements in the above program contribute to its final state. Together with
the user input, these statements form an integrated group to determine the final state of sum.

A program can generally have multiple groups of integrated statements, each determining a different computational result.
Consider the following extended program written in pseudo code:

 1. read (n); 2. i := 1; 3. sum := 0; 4. while i <= n do 5. { sum := sum + i; 6. i := i + 1; } 7. write (sum);The program takes an input from the user, stores it in a variable named n. It then uses a while loop to calculate the sum of integers from 1 to n. The program uses a variable named sum to accumulate the calculation result. If we focus on the final state of sum, it is clear that a few elements influence its final state . First of all, there is influence from the user input n. However , this influence is indirect . The code in the program processes the input to produce the summation . Moreover , statements in the program are interdependent . We usually think of an algorithm as a sequence of instructions , each with a fixed meaning. In reality, the meaning of each instruction is alwayssituatedin the particular context of a program. In a given program, multiple statements are involved in determining a particular outcome . One statement 's meaning is inseparable from the meaning of others . For example , the execution of the statement sum := sum + i depends on the condition of the while loop: i <= n. The variable i must be appropriately updated in the statement i := i + 1 before adding to sum in the next iteration. The way the program initializes i and sum in lines 2 and 3 also influence all the subsequent operations in the loop. We can use aprogram dependence graph (PDG) to represent the dependency relationships among the statements [7]. A PDG of a program is a directed graph in which the nodes represent statements, and the edges represent dependencies. Figure 1 shows the PDG of the program from code 1.

 Information Security Education Journal Volume 8 Number 2 December 2021 68

 1. read (n);
 Code 2. A program to produce sums and products from 1 to n.

In addition to calculating sum, the above program also uses a variable named product to calculate the products of integers from 1
 to n. From the final state of sum ’ s perspective , the code in lines 4 and 7 is irrelevant . Although these two lines of code are

integrated with the computing process of determining the final state of product , they are not integrated with regards to the final
state of sum.

How a computer program processes input from the external world and integrates the operations within its algorithm shares
similarities with 18th century German philosopher Immanuel Kant’s theory on how the mind functions. Kant famously criticizes
the empiricist theory of mind in his time, which was proposed by thinkers such as David Hume and John Locke. According to the
empiricist theory of mind, all human knowledge is derived only from sensory experience [8]. The mind functions like melting wax,
passively and directly taking sensory impressions from the external world. In contrast to the empiricist approach to mind, Kant’s
theory of mind is constructivist. He argues that human knowledge arises only after the mind employs pre-existing concepts to
synthesize/integrate the manifolds of received sense data into a single cognition. That is to say, knowledge is the result of the
mind’s active constructions using sense data as “raw material”. If the mind had only sensory impressions without a stable
conceptual order and structure to organize them, the impressions would be blind noise, and we could not perceive any meaningful
patterns[8].

Furthermore, the mind’s ability to synthesize the stream of sense data into meaningful experience implies that the mind itself is a
unified system [8]. A unifier must be unified in itself. Kant’s view of mind is anti-reductionism. The mind, which he refers to as “the
original unity”, is irreducible to the sum of its faculties [9]. Different faculties of the mind, such as the faculty of remembering, the
faculties of comparing, the faculties of inferring, are not separable from each other. In any mental process, these faculties operate
together in an integrated form. That is to say, the mind is an integrated cognitive system.

In their work[2], Jon and Ziyuan argue that computer security can learn from Kant’s holistic view of mental functions. They
postulate that computer programs as creations of the human mind share certain structural similarities with the mind. First, like the
Kantian mind, a secure program never allows input data from an external environment to generate computational results directly.
It always integrates the input data with its internal algorithm and memory state to determine the computing outcomes. Second, like
the Kantian mind’s unity, a secure program’s different elements are functionally integrated during the runtime execution. Jon and
Ziyuan argue that the above two conditions are necessary for any program to be secure. To illustrate the point, they use a case
study of structured query language (SQL) injection attack against a web application to show that a secure web application always
integrates its key components: data storage, logical controller, and user-inputs, while an insecure web application fails to maintain
its unified form under a SQL attack.

In the next section, we will use case studies of data-only attacks to validate the above thesis on the conditions of secure
computing. We restrict our attention to the imperative, procedural programming paradigm. Other programming paradigms, includ-
ing the object-oriented and functional approaches, do not exhibit the same duality, structuring respectively around data and
around algorithm logic. The degree to which Kantian duality applies to such paradigms, and the form(s) it may take, is a

 2. i := 1; 3. sum := 0; 4. product := 1; 5. while i <= n do 6. { sum := sum + i; 7. product := product * i; 8. i := i + 1; } 9. write (sum); 10.write (product);

 Information Security Education Journal Volume 8 Number 2 December 2021 69

consideration for future work.

3. Case Study Analysis

In this section, we will evaluate their thesis in the cases of data-only attacks. Data-only attacks are an emerging threat to
vulnerable programs . The threat is seen most often in imperative procedural programming languages such as C. Unlike the
conventional exploitation techniques which either inject executable code or alter the structure of the code in a target program,
data-only attacks only manipulate the data structure of a target program[10]. By controlling the states of critical variables or
data structures, a data-only attack can cause the target program to perform unintended operations, completely deviating from
the original intent of its algorithm . In this paper, we will provide detailed analysis of two examples of data-only attacks: an
attack against an authentication program written in C and an attack against a file server. Our analysis is informal and qualitative
. Our goal in this paper is not to develop any new solution to mitigate data-only attack vulnerabilities. Instead, we will use data
-only attacks as empirical case studies to examine the above thesis as steps toward a more general theory of secure
computation. This study aims to show that Kantian philosophy of mind can illuminate the essence of software security. In each
case study , we will examine the union of data and programming logic and the functional unity within the program . As
illustrated below, the data-only attacks have destructive effects on the functional unity of target programs . We will also see
that the countermeasure to mitigate the data- only attacks is, in its effect, to ensure such unity.

3.1 A Motivating Case Study: A Vulnerable Password Checker
Our motivating case study is a program that implements a simple login algorithm that verifies a user’s password. The program
receives a user-provided password through the network, then compares it with the pre-stored correct password. Depending on
the comparison result, the program either accepts the login request or rejects it. The program is depicted in Code 3. The C program
first declares a character array named buf; then an integer variable named auth with an initial value of 0. It reads a user input
data from the network , stores it in the buffer (see line 3), and then compares the stored input data with “abcd” - the correct
password (see line 4). If the user-provided input data matches the correct password, the code will update auth to 1 (see line 5).
Otherwise , auth remains in its initial state of 0. Finally , the program uses the state of auth to decide whether to call the
function authentication_pass() or the function authentication_fail() (see line 6, 7 and 8). 1. char buf[5]; 2. int auth = 0; 3. readData(sockfd, buf); 4. if(strcmp(buf, “abcd”) == 0)

We are interested in reasoning about the set of statements that affect auth’s state in line 6. Figure 2 shows the
program dependence graph of the program from line 1 to 6.

As illustrated in the PDG, statements in lines 1, 2, 3, 4 and 5 are all involved in computing the value of auth . That is to say, the
meaning of auth’s value in line 6 depends on all the preceding statements . The meaning of these lines of code is integrated to
determine auth’s state. The user-provided input also influences auth. However, it does not directly determine the value of auth. It

 is processed by and integrated with these lines of code before influencing the final state of auth.

Now, consider the situation of an attack to see how it affects the integration of the program. The attack which we will examine is
a form of data-only attack. The character array buf has a limited capacity of size 5. Suppose that the function readData (see

 5. auth = 1; 6. if(auth != 0) 7. authentication_pass(); 8. else authentication_fail(); Code 3. A simple password checker written in C

 Information Security Education Journal Volume 8 Number 2 December 2021 70

 Figure 2. The program dependence graph of the program in code 3

line 3) does not check the size of the user input. A long user-provided input will overflow buf and directly overwrite the adjacent
memory locations allocated for the variable auth. A simple way to attack the password checker program is to send it a user input
consisting of five ‘A’ characters , appended by a 32-bit integer value of 1. The layout and contents of memory locations after the

 attack is illustrated as the following: buf [] auth"AAAAA" 0x00000001
Here, 0x00000001 is the hexadecimal representation of the integer value of 12 . Due to the buffer overflow effect , auth is
directly set to 1. This would allow the attacker to bypass the authentication without providing a correct password. This attack
is data-only since it only modifies critical variables or data structure without injecting any executable code or altering the
control flow structure of the program. The attack violates the functional integration of the target program. Since auth’s value
is directly set to 1 by the user input, the statements in lines 2, 4, and 5 are no longer relevant in determining the state of auth.
That is to say, these lines of code are no longer integrated with the overall authentication process . The attack violates the
original functional unity of the program and reduces it to the following simple form:

 char buf[5]; readData(sockfd, buf); if(auth != 0) pass(); else fail();
 Code 4. The reduced form of the simple password checker during the attack

The attack also makes the user input have a more direct influence on auth. During the attack, the user input completely bypasses
the code in lines 2, 4, and 5, having a more direct influence in determining the computational outcome . From a programmer ’s
perspective , the solution to prevent data -only attacks is to have the readData function validate the user input ’s size before
copying it to buf [11]. If the input size exceeds the size of the buffer, the program will throw an exception.

 The size of an integer depends on the CPU architecture. This article focuses on 32-bit Intel X86 CPU architecture, which
represents an integer with a 32-bit size.

2

 Information Security Education Journal Volume 8 Number 2 December 2021 71

3.2. Data-only attack against a vulnerable FTP server
In this case study, we will use an example of a vulnerable file transfer protocol (FTP) server to illustrate more sophisticated data-
only attacks. The example is first presented in Hu’s work [10]. The purpose of this example was to show that data-only attacks are
capable of expressing a rich set of computations. Code 5 shows the C source code snippet of the vulnerable FTP server:

The server’s primary purpose is to receive users’ file transfer requests from the network and carry out different operations
according to the type of request encoded in the received network packet. First, the program declares a pointer variable named srv of a structure type server (see line 1). The structure has three elements to describe the state of the server:

• Maximum size of the current user’s file transfer request (int cur_max)

• The total number of bytes that the server has received so far (int total)
• The type of the current user request (int typ)

In line 2, a variable named connect _limit stores the maximum number of connections that the server can support
simultaneously . In line 4, a character buffer named buf is declared with a maximum size of MAXLEN . It is used for the later
storage of the incoming user input data . In line 3, the program declares two pointer variables : size which is defined as the reference to the size field of the user request and type which is defined as the reference to the type field of the request (see line 5).

In a while loop , the function readData receives a user request from a network packet and stores it in buf . The program
examines the type and the size of the request by dereferencing the pointer variable type and size. If the type is “NONE”, the loop
will

 immediately terminate (see line 8). If the type is “STREAM”, the program truncates the size of the user request (see line 10). If
the request type is neither “NONE” or “STREAM ”, the program updates the type of the current user request (srv->typ) and total

 size of received bytes (srv->total). It then proceeds to process the user request.

If we focus on the state of srv->total , it is clear that all the statements from line 1 to line 9 and line 11 affect its final state.
They form a functional unity – an integrated group of statements — in the determination of the result . The user input also
influences the state of srv->total. However , its influence is indirect . The input data is integrated with these lines of code to
produce the result.

Let us examine how a data-only attack affects the functional integration of code. Suppose that the function readData in line 7
does not check the length of the incoming user input. Because of this vulnerability, if an attacker provides a long input that

 1. struct server{ int total, cur_max, typ;} *srv; 2. int connect_limit = MAXCONN; 3. int *size, *type; 4. char buf[MAXLEN]; 5. size = &buf[8]; type = &buf[12]; 6. while(connect_limit--) { 7. readData(sockfd, buf); // stack buffer overflow 8. if(*type == NONE) break; 9. if(*type == STREAM) // condition 10. *size = srv->cur_max; 11. else { 12. srv->typ = *type; // assignment 13. srv->total += *size; // addition 14. } 15. ... (following code skipped) ... 16. } Code 5. The code snippet of a FTP server written in C [10]

 Information Security Education Journal Volume 8 Number 2 December 2021 72

exceeds the capacity of buf, she can cause a buffer -over and overwrite four variables : connect _limit, size, type and srv. With these variables under her control, the attacker can invent very expressive forms of computations that are not originally
intended. Suppose that the system uses a linked list to store users’ privilege information . Each node in the linked list uses an
integer number to describe a user’s privilege , with zero representing low access privilege and non-zero representing high
access privilege. The following figure illustrates the linked list:

Figure 3. A linked list which stores users’ privilege information

Here , a variable named list is a pointer that points to the first node of the linked list. That is to say, it stores the memory
address of the first node. Suppose also that the attacker knows the address of the variable list and her goal is to escalate the
access privilege of the first user stored in the linked list. She can use a long malicious input to overwrite the variables with the
following parameters:buf [] type size connect_limit srv"AAAAAAAA... AAAAAA" &list &addend 0x100 &srv-8
The attacker directly sets the variable type to & list - the memory address of list, the variable srv to &srv-8 - its own memory
address &srv minus 8. Since the assignment statement in line 12, srv->typ = *type, is equivalent to *(srv + 8) = *type, it is
now transformed to the following assignment statement:

 srv = list;
At this point, the attacker has successfully set srv to list. The code in line 13 srv->total += *size is transformed to the
following addition operation:

 *(list) += addend
Here, addend is a variable that contains a non-zero integer. The operations above effectively escalate the first user’s privilege
stored in the first node of the linked list. The attacker also keeps the while running indefinitely by directly setting connect_limit to 0x100. With complete control of the loop’s termination, the attacker can move to the other elements in the linked list
and continue the subversion. In the next round of the while loop, she can use another long user-input to corrupt the variables
with the following parameters:buf [] type size connect_limit srv&STREAM &list 0x100 list
The attacker directly sets the variable type to &STREAM - the memory address of a variable that contains the same STREAM value. She also sets size to &list, srv to list. This forces the program execution to take the statement *size = srv->cur_max in line 10. Since the statement is equivalent to *size = *(srv + 4), it is now transformed to list = list -> next3 . "AAAAAAAA... AAAAAA"

 Information Security Education Journal Volume 8 Number 2 December 2021 73

The attacker successfully moves to the next node in the linked list! As Hu argues in his paper [10], from the attacker ’s
perspective, the while loop in this example is essentially a virtual CPU that dispatches different operations during its iterations
. By alternating the above two exploits, the data-only attack can traverse all the nodes in the linked list, arbitrarily modifying
any user’s access privilege.

The above data-only attacks violate the functional integration of the code. Since the attacker directly sets the values of three
variables:

 connect_limit, size,

and

 type,

the

code

in

lines

2,

3

and

5

no

longer

participates

in

the

computational

process,

the user-

provided

input

data

gains

a

more

direct

influence

on

the

computational

result

by

bypassing

the

code

in

lines

2,

3

and

5.

We
 have

now

completed

the

analysis

of

two

data-only

attack

case

studies .

As

illustrated

above,

Jon

and

Ziyuan’s

proposed

thesis

of two

necessary

conditions

of

secure

computation

is

valid

in

both

case

studies .

For

a

program

to

be

secure ,

it

must

never

allow

the user

input

to

bypass

the

code

in

the

program

to

produce

the

computational

outcomes.

A

secure

program

must

also

maintain

its internal

functional

unity

while

processing

the

user

input .

It

must

never

allow

the

user

input

to

disrupt

the

unified

form

in

the original

algorithm.

In

other

words,

secure

computation

is

an

integrated

computation.

It

is

worth

noting

that

our

thesis

on

the

conditions

of

secure

computation

is

congruent

with

the

development

of

secure

software

engineering.

One

secure

programming

practice

to

prevent

cyber-attacks

due

to

malicious

input

data

is

input

validation

[14].

For

example,

buffer

overflows

mentioned

above

can

be

prevented

by

ensuring

that

input

data

does

not

exceed

the

limit

of

the

size

of

the

buffer

in

which

it

is

stored4 .

From

a

Kantian

perspective,

the

prevention

technique

essentially

keeps

input

data

from

directly

influencing

the

computational

outcome.

Consequently,

and

unwittingly,

the

approach

protects

the

functional

unity

of

the

pro-

gram

from

the

potential

disruptive

power

of

the

external

influence.

Since

2008,

Microsoft

has

incorporated

input

validation

as

a

critical

secure

coding

practice

in

its

secure

software

development

life

cycles

[15].

4.

The

Implications

to

Computer

Science

Education

Computer

science

education

has

long

adopted

an

instrumental

view

of

digital

technical

objects

such

as

software.

The

dominating

technical

normativity

today

is

that

of

coding.

This

view

is

consistent

with

a

culture

that

has

alienated

technical

beings,

reducing

them

to

mere

usage,

as

the

word

‘application’

connotes.

French

philosopher

of

technology,

Gilbert

Simondon,

describes

the

contemporary

culture’s

limited

view

of

technical

beings

in

the

introduction

of

On

the

mode

of

existence

of

technical

objects:

“Culture

has

become

a

system

of

defense

against

technics;

now,

this

defense

appears

as

a

defense

of

man

based

on

the

assumption

that

technical

objects

contain

no

human

reality.

We

should

like

to

show

that

culture

fails

to

take

into

account

that

there

is

a

human

reality

in

technical

reality

and

that,

if

it

is

to

fully

play

its

role,

culture

must

come

to

incorporate

technical

entities

into

its

body

of

knowledge

and

its

sense

of

values

...

The

most

powerful

cause

of

alienation

in

the

contemporary

world

resides

in

this

failure

to

understand

the

machine,

which

is

not

caused

by

the

machine

but

by

the

non-understanding

of

its

nature

and

essence

...

“

[12].

Due

to

such

a

narrowed

view

of

technical

being,

software

development

tends

to

adopt

a

reductionist

engineering

attitude.

Traditional

computer

science

education

encourages

students

to

think

of

software

as

functions

that

take

inputs

and

return

desired

outputs

for

users.

In

the

process

of

solving

a

computational

problem,

students

are

trained

to

dissect

the

problem

as

a

whole

into

parts,

express

each

part

in

a

computational

way,

then

later

find

a

way

to

connect

them

[13].

Little

attention

has

been

paid

to

the

internal

structural

necessity

of

programs

in

their

own

right.

As

illustrated

in

the

above

case

studies,

such

a

reductionist,

atomist

approach

has

often

led

to

insecure

coding

practices,

resulting

in

vulnerable

software.

In

the

age

of

cybersecurity,

a

new

paradigm

of

technical

development

is

needed.

Software

development

should

focus

more

on

the

unity

of

a

program’s

internal

structures

as

the

necessary

condition

for

its

survival.

The

new

paradigm

recognizes

that

the

structural

and

functional

unity

in

a

technical

object

has

its

origin

in

human

reality.

As

Simondon

points

out,

“what

resides

in

the

machines

is

human

reality,

human

gestures

fixed

and

crystallized

into

working

structure”

[12].

More

precisely,

for

a

computer

program,

its

human

reality

is

the

mental

process

incarnated

in

coding.

Following

Kant’s

constructivist,

anti-reductionist

theory

on

the

human

mind,

we

argue

that

a

computer

program

should

‘inherit’

the

structural

and

functional

unity

from

the

mind

-

its

creator.

3 Here, we assume that the size of a pointer is 32-bit.
4 Input validation is not limited to secure C programming. It is also used to prevent vulnerabilities in web applications written in
other high-level programming languages such as PhP, Java.

 Information Security Education Journal Volume 8 Number 2 December 2021 74

Future software developers are the ones who are involved in maintaining the integrated form of a software system throughout
its life-cycle as if cultivating a quasi-cognitive organism.

5. Conclusion

As the examples in this article demonstrate, a deep understanding of software security and vulnerability needs to consider the
functional and structural unity within the program. The data-only attacks against vulnerable C programs show that a secure
computation is always integrated. It integrates the input data with its internal algorithm and integrates the operations within the
algorithm. A violation of these integrations violates the program’s intended meaning and security. We believe that Jon and
Ziyuan’s thesis on the necessary conditions of secure computation is the right step toward a theoretical foundation of software
security. By making connections between the Kantian theory of the human mind and computer programs, their thesis points to a
non-reductionist approach to cybersecurity research. From a Kantian perspective, the attempts to create more secure computing
environments would do well to take more cues from the nature of the mind. This study also has educational ramifications.
Computer science education needs to reconnect to philosophical traditions and realize that the technocentric, reductionist
approach to software development cannot provide a sustainable cyberinfrastructure in the future.

References

[1] Kushner, D. (2013). The real story of stuxnet, IEEE Spectrum, 50 (3) 48–53.

[2] Burmeister, J., Ziyuan Meng. (2021). Kant, Cybernetics, and Cybersecurity: Integration and Secure Computation.” SYSTEMICS,
CYBERNETICS AND INFORMATICS VOLUME 19 - NUMBER 4.

[3] Smith, R. (2019). Aristotle’s Logic”, The Stanford Encyclopedia of Philosophy (Summer 2019 Edition), Edward N. Zalta (ed.).
Retrieved from https://plato.stanford.edu/archives/sum2019/entries/aristotle-logic.

[4] Wirth, N. (2008). Algorithms + data structures = programs. New Delhi, India: Prentice-Hall of India.

[5] Craig Kernighan, B. W. (2021). Wrapup on Software. In Understanding the digital world: What you need to know about
computers, the internet, privacy, and security (pp. 117–118). essay, Princeton University Press.

[6] Tip, F. (1995). A survey of program slicing techniques. J. Program. Lang., 3.

[7] Ferrante, J., Ottenstein, K. J., Warren, J. D. (1987). The program dependence graph and its use in optimization. ACM Tra
nsactions on Programming Languages and Systems, 9(3), 319–349. https://doi.org/10.1145/24039.24041

[8] Kant, I. (1965). Critique of Pure Reason (unabridged edition). St. Martin’s Press.

[9] Kant, I. (1987). Critique of Judgment (1st ed.). Hackett Publishing.

[10] Hu, H., Shinde, S., Adrian, S., Chua, Z. L., Saxena, P., Liang, Z. (2016). Data-oriented programming: On the expressiveness of
non-control data attacks. 2016 IEEE Symposium on Security and Privacy (SP). https://doi.org/10.1109/sp.2016.62

[11] Seacord, R. C. (2005). Secure Coding in C And C++ (1st ed.). Addison-Wesley Professional.

[12] Simondon, G. (2017). On the mode of existence of technical objects (C. Malaspina & J. Rogove, Trans.). Minneapolis, MN,
United States: Univocal Publishing.

[13] Hunsaker, E., Hunsaker, Ottenbreit-Leftwich, A., Kimmons, R., & Enoch HunsakerEnoch Hunsaker is a Master’s student at
Brigham Young University. (1970, January 1). Computational thinking. The K-12 Educational Technology Handbook. Retrieved
January 18, 2022, from https://edtechbooks.org/k12handbook/computational_thinking

[14] Seacord, R. C., Pethia, R. D. (2015). String. In Secure coding in C and C++ (pp. 29–110). essay, Addison-Wesley.

[15] Sullivan, B. (2008, September). Security briefs: SDL embraces the web. Developer tools, technical documentation and coding
examples. Retrieved April 23, 2022, from https://docs.microsoft.com/en-us/archive/msdn-magazine/2008/september/security-briefs-
sdl-embraces-the-web

