
                     International Journal of Web Applications   Volume   14    Number   2   June   2022           35

Vladislav Vasilev
Faculty of Telecommunications at Technical University of Sofia
8 Kl. Ohridski Blvd, Sofia 1000
Bulgaria
v.g.vasilev@tu-sofia.bg

ABSTRACT: In the wireless sensor networks, the link and connectivity issues are major concern. To ensure perfect connec-
tivity and problem-free system, is to use a robust and scalable system which is called as unsupervised learning. In this work,
we have used an isomorphism of a particularly hypergraph to arrive at an efficient clustering model. We in this work further
calculated the chromatic polynomial and created a chordal graph way.
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1. Introduction

One of the simplest and most basic of tasks in a Wireless Sensor Network (WSN) is the procedure of neighbour discovery. It
allows a given node to choose upon all of the nodes that it could possibly reach, through its neighbours. Reachability, in turn,
is directly related to routing, which is a NP-problem in general. Since, the network’s time dynamic state is not changing
completely at random, then a node discovery procedure should use an unsupervised clustering method. Currently, there are a
lot of available clustering tools in the literature [1]. The most commonly used clustering algorithms are k-Nearest Neighbour and
K-Means. Both can scale well with appropriate approximations, but unfortunately, they perform badly in higher dimensions as
the distance between data points becomes uninformative. One way to go about this problem is to try to use appropriate
projections in lower dimensions and then, use the modes of the projections to make inferences about the clusters [2]. An
alternative to this is to represent the data set as vertexes of a hyper-graph and then, to try to find such a hyper-edge that
maximizes a criteria for a subset of vertexes to belong to a cluster. An example of this is given in [3]. In general, clustering
problems are well defined in the scope of hyper-graph theory [4]. A common problem of most clustering algorithms, which utilize
some kind of distance such as an Euclidean norm, is that the number of clusters and the termination conditions are hard to be
determined. Hence, it is possible to have empty clusters or clusters that have a number of clusters within themselves. Moreover,
these algorithms are very sensitive to the scaling of the data that will artificially make certain clusters more or less separable.

Furthermore, in the case of connection evaluation the clusters are also time dependent. Hence, the system can't spend much
resources on cluster estimation, if they are going to loose their relevance in a short period of time. Hence, the model needs some
time dependent predicting power of the network structure.

Isomorphism of Hypergraphs at an Efficient Clustering Model
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The most common approach to these issues is to use biologically inspired methods like Genetic Algorithms (GA) [5], Evolution-
ary Algorithms (EA) [6], Ant Colony (AC) [7] or others like in [8]. Probably the most used algorithm is Particle Swarm Optimisation
(PSO) [9]–[12] and its many variants. In this paper we take a different approach. We define the problem in a hyper-graph theory
framework similar to that in [13], which then after a number of appropriate transformations are made will result in a heuristic cost
function for the cluster of close neighbours with respect to a single node.

The rest of the paper is organized as follows: Section 2 derives the heuristic cost function; Section 3 explains the data set
obtained from the simulation and the respective results; Section 4 presents some concluding remarks.

2. Index Invariance

Let us define the hyper graph G = ({V}, {E}) with vertex set {V} and hyper-edge set {E}, where the degrees of the hyper-edges
d {|V|} are arbitrary. An example of such a graph is given in Figure 1. For each vertex V

i
 there exists a node in the network. We

assume that two sensors are neighbors and constitute a hyper-edge E2 of degree two, if they are pairwise in each other’s range
of coverage.

When the vertex V
i 
makes a first time connection to a set of vertexes {V}, it makes no a priori difference between the labels of the

vertexes as long as they are different. For that reason, let us define the notion of index invariance.

A hyper-graph  with vertex set  and hyper-edge set {E} is index invariant, if the incidence matrix [I]
of the graph is upper triangular and the elements of the vector of unique indexes  can be rearranged in an arbitrary

way {}, without this causing change in the graph S and this is given in Eq. (1).

An example of such hyper-graph S is given in Figure 1.

Figure 1. An example of an index invariant hypergraph

Theorem 2.1: An Index Invariant Graph (IIG) S and its dual graph S
D are isomorphic. An alternative statement is that the

transpose matrix [I]T of the matrix [I] induces such a graph S
D, that is isomorphic to S.

We prove the theorem by induction on the number of vertexes n. The theorem is true for n = 1, 2, 3, hence, assume it is true for
all graphs with no more that n vertexes. For the induction step, we add one vertex V

n+1
 and one hyper-edge E

n+1 
to  which results

in I (n +1)
 
in Eq. (2).

We transpose Eq. (2). Since I (1)
 
 is upper triangular, then its transposed matrix I T(n)

 
 is lower triangular in Eq. (3).

We assumed by the induction hypothesis, that all matrices I T(n) with a size smaller or equal to n can be transformed into upper

(2)

(1)
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triangular  I T(n)
 
 =  I (n)

 
. Next, we note that any reordering in the columns and rows of  I T(n + 1)

 
 in Eq. (3), does not change row

V
n+1 

and column E
n+1

, neither the structure of the graph. We move the rows of  I T(n + 1) with one position downwards, so that

V
1 
goes in place of V

2
, goes in place of V

3 
and likewise for each row V

n - 1 
= V

i 
other than V

n+1
. Next, V

n 
goes in place of which gives

Eq. (4).

In Eq. (4) we swap row and , which yields Eq. (5).

We move columns E
i
 with one rightwards, so that E

1 
goes in place of E

2
, E

2
 goes in place of E

3 
and every column other than E

n+1

with one rightwards E
i-1 

= E
i
. Next, E

n 
 goes in place of E

1
. Finally, we swap columns E

n 
and E

n+1
 which gives Eq.(6).

Eq. (6) proves the theorem, since the matrix is upper triangular.

We can substitute in Eq. (1) to obtain Eq. (7)

A direct consequence of Eq. (7) is that for each IIG there exists exactly one dual, while the two of them are isomorphic to one
another. Because the ordering of the labels of the vertexes of S  and the ordering of the labels of the hyperedges of the dual S

D

are the same and are of no consequence, then the two graphs are indistinguishable from one another S = S
D .

Let us examine the IIG S (n)  and one of its sub hypergraph , as it is done in Figure 2. There exist number 

of sub graphs, that are indistinguishable by Eq. (7). Therefore, we consider them as one and the same graph leading to Eq. (8).

 (3)

 (4)

 (5)

 (6)

 (7)
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We note at this point that the number of sub IIGs of size k coincides with the chromatic polynomial  of the complete
graph  with k vertexes and n colors. Let us observe Figure 2 further in order to prove that the IIG is a special case of a complete
graph.

Figure 2. An example of a sub IIG

A vertex that is not in S (k)  must have a label that is different than the labels of each vertex in S (k) . That is true for all S (k)

and all k. If we build a 2-uniform graph K
n
 having the same vertex set as S (k) where two vertexes of K

n 
are neighbors if they have

different labels, then we can see that there is an edge of degree 2 between each two vertexes of K
n
. This means that K

n 
is a

complete graph and an IIG is a special case of a complete graph.

Therefore, Eq. (8) allows us to evaluate the index invariance with the chromatic polynomial [14] of the 2- section graph
(S)2 .

 (9)

where N(V
i
)
 
is the number of neighbors of the simplicial vertex in the simplicial decomposition  and is the total number of

vertexes having that number of neighbors in the decomposition.

Because the metric grows fast, we can normalize each polynomial with its minimum value and further take the logarithm. Let n be
the number of vertexes in the tree, then we write Eq.(10).

(10)

Another consequence of Eq. (8) is that if two IIGs have a common vertex, then they form an entire IIG, meaning that two
independent IIGs do not intersect. The inverse is also true. If two IIGs do not intersect, then they are independent.

3. Simulation and Results

For the purposes of this study we view the network from the perspective of a single initial node. In Figure 3 it is shown as
follows: all nodes are marked as crosses and their coverage range is given in blue; the initial node and its coverage range in
green; with red - all neighbouring relations; in black – cover trees rooted at the initial node.

 (8)



                     International Journal of Web Applications   Volume   14    Number   2   June   2022           39

On each iteration, the coverage of each sensor changes, which changes the structure of the graph, which in turn changes the
access capabilities and resources. On the other hand, in each time interval requests enter the system. At each time new nodes
can become connected to the initial node and in the same time some nodes might get disconnected as the range of each node
changes. Naturally, if a node has no resources to accept packets or the path between the nodes gets disconnected packets will
be dropped.

After we accumulate data on the network structure as it changes in time, we can then compute each structure's corresponding
heuristics. On Figure 4 we plot the metric in an increasing order and the packet loss rate that is measured for that structure.

The results show, that with the increase of the heuristics, the probability of packet loss also rises. For instance, two hyperedges
with indexes e1 = 12 and e1 = 19, have heuristics H1 = 0.56 and H2 = 1.58 and their respective packet success probability is P1 =
0.43 and P2 = 0.33.

It must be also noted, that the metric is time slice specific, while th change in packet losses can be subject to differential
processes.

In conclusion, the sensors should negotiate a maximum acceptable value for the heuristics and participate only in such hyper-
edges that are bellow that value in order to minimise their packet loss in the network.

Figure 3. A State of a WSN
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Figure 4. An example of a sub IIG

4. Conclusion and Future Work

In this paper a method for evaluating the connectivity in a wireless sensor network is proposed. In the future we need to compare
our results with different algorithms that tackle the same problem and also we need to increase the simulation complexity with
respect to the sensor behaviour and environment.
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