
 Progress in Machines and Systems Volume 11 Number 2 October 2022 27

Deterministic Algorithms for Solving Coding Theory Issues

Stojanche Panov1 and Saso Koceski2

1, 2 Faculty of Computer Science at ‘Goce Delchev’ University - Stip
blvd. Krste Misirkov bb., 2000
Stip, R. Macedonia
stojance.panov@ugd.edu.mk, saso.koceski@ugd.edu.mk

ABSTRACT: Using the reducing domain algorithms, we have studied the differences and issues in the available approaches
to solve puzzles and have come out with a new deterministic approach for arriving at good solutions. Whereas other
algorithms are available, we in this paper have provided a new kind of solution to this problem and found more acceptable
results. We are confident that to solve the coding theory issues, this kind of development of effective deterministic algorithms.

Keywords: Backtracking Algorithms, Coding Theory, Deterministic Algorithms, Kakuro Puzzles

Received: 19 April 2022, Revised 15 July 2022, Accepted 29 July 2022

DOI: 10.6025/pms/2022/11/2/27-33

Copyright: with authors

1. Introduction

Kakuro puzzles are considered to be a mathematical transliteration to crossword puzzles. They are consisted of an n x m grid of
black and white cells, where black cells can be either empty, having one number or two numbers, indicating the row or column
sum they indicate, whereas every white cell can be typically filled with numbers in range [1; 9]. There are also variations of this
puzzle that use greater or smaller ranges. Hence, the typical maximal sum that can be obtained with these puzzles is 45, which
gives enough information for constructing domain sets of candidate values for the white cells to be filled with. Every con-
structed sum of elements in a row or column must satisfy the constraint of unique numbers, i.e. none of the numbers must appear
more than once in a concrete combination sum. Example of Kakuro puzzles are shown in Figure 1 and Figure 2.

Kakuro puzzles have been considered as a great logical challenge, not only for manual solving, but also for developing
algorithms that can solve these puzzles as effectively as possible in a real-time acceptable manner. There have been many

 Progress in Machines and Systems Volume 11 Number 2 October 2022 28

approaches that solved these puzzles, both with deterministic and metaheuristic methods.

The main goal of this research study is to present a novel method of solving a Kakuro puzzle, namely the Reducing Domain
Values (RDV) Algorithm. This new algorithm is then compared to other deterministic approaches for solving and gives detailed
and elaborated results that show the relevance of the discovery of this novel method.

2. Related Work

A Kakuro puzzle consists of several constraints that ought to be respected in order to get a unique solution, hence one can treat
such puzzle as a constraint satisfaction problem, which has been recently published [1]. The NP-completeness of the Kakuro
solving problem has already been proven and documented [2], but there have been also some other proofs of this NP-complete-
ness that included using SAT solvers for the purposes of the research studies [3]. A relatively new study presented an approach
that significantly reduced the execution time of the algorithm by using generalized arc consistent (GAC) version of all-different
sums constraint, and these performances have been compared to MIP [4] and SAT techniques [5].

Existing algorithms published in the past several years solved this problem and presented many deterministic and metaheuristic
approaches to solving a Kakuro puzzle. One such type of a deterministic method with using backtracking and simple heuristics
and pruning has been shown to be of an eminent matter to coding theory problems as well [6]. A research study presented
several types of algorithms, both deterministic and metaheuristic approaches, including stackbased backtracking solvers,
genetic algorithms and tabu search [7]. There has also been another metaheuristic approach, known as nested Monte-Carlo of
level 2 method which proved to be effective and performed with accelerations in execution [8].

Figure 1. Example Kakuro puzzle

 Progress in Machines and Systems Volume 11 Number 2 October 2022 29

Figure 2. Solution to Kakuro puzzle in Figure 1

3. Stack-based Backtracking Solver

The Stack-Based Backtracking Solver [8] implements a simple backtracking technique starting with an empty Kakuro grid with
domain sets of values available for each of the white cells in the grid. It presents a depth first search technique that starts with
smaller number values and makes assignments of these numbers to the white cells, whilst having affinity to assign the smallest
numbers first, i.e. in the earlier stages of the algorithm. It’s based on keeping the grid states on a stack, thus repeatedly checking
the validity of the grid. When assigning the values to the grid, it performs checking of the constraint satisfaction for the stored
states. If the next value needed to be assigned to a cell violates such constraint, then it’s excluded for searching, otherwise it’s
kept on the stack of grid states. Continuing in this fashion, this algorithm checks all of the possible states until it finds a certain
state that satisfies all of the constraint having filled all of the white cells with the proper numbers.

This algorithm can be described in the next detailed steps:

1. Initialize the stack of states and other iteration variables.

2. Initialize the start state as current state and start cell as current cell.

3. Check if there are empty cells in the grid. Check for validity of state. If state is valid, continue to step 4. If this is false, then
backtrack and try other assignments, continuing to step 3.a. Otherwise, continue to step 3.a.

a. Assign a value to next free cell.

b. Check for validity of assignment of the value.

If the check is valid, then push this state on the stack and repeat from step 3.a. for another free cell. Otherwise, continue with
assigning another value for the cell.

4. Print Optimal Solution

There are also several variations to this well-known simple algorithm. These are the Run-Based Ordering, Value Ordering,
Decisive Value Ordering and Project Run Pruning. These algorithms are detailed in the next following sections.

 Progress in Machines and Systems Volume 11 Number 2 October 2022 30

5. Run-based Ordering

This type of backtracking approach uses a simple elimination of not needed values that are meant to be assigned to the white
cells. This means that a kind of heuristics needs to be implemented for this to be fulfilled. This heuristics utilizes the values that
are candidate members in the row and column sums. This would mean that for a given white cell, an intersection of domain set
values is computed and only the numbers that are valid candidates for that cell remain in the backtracking process. For instance,
if there’s a column sum of 6 containing 3 elements and a row sum of 4 containing 2 elements, the possible column sums are
contained from the numbers {1, 2, 3}, whereas the row sum can be obtained by the numbers {1, 3} (since 2+2 is not acceptable
according to the puzzle constraints), so the intersection of the two domain sets is {1, 3} and these would be the candidate values
for that white cell.

6. Value Ordering

The Value Ordering variation of the Stack-Based Backtracking algorithm consists of having all of the numbers in the range [1, 9]
in the domain sets for the white cells, but with additional heuristics of certain ordering (sorting) of the numbers. One such
example would be if the domain set candidate variables are sorted in descending order, which is certainly a poor heuristic, but it
is a heuristic that would help if the values in the first few cells have greater solution values for those cells. This means that this
heuristic still stays efficiently applicable only for smaller grid sizes and concrete types of solutions, which is the same case with
the Stack- Based Backtracking algorithm.

7. Decisive Value Ordering

As an addition to the Value Ordering heuristics, the heuristic of the Decisive Value Ordering can be defined based on research
on what solution values are statistically more present in the first few white cells. This would mean computing some kind of
average values for numbers appearing in the white cells, and then using this information to construct a type of sorting of the
domain set elements that works best for all of the puzzles that will be processed as input to the algorithm. For instance, if the
average of values is smaller than 5, then the ordering of the values is in increasing order. Otherwise, if the average value is
greater than 5, then a decreasing ordering of values is used.

7. Projected Run Pruning

This approach, previously mentioned as a modification to the Stack-Based Backtracking method, differentiates from previously
described techniques in the way of reducing the domain sets of values for the white cells. Namely, this method introduces a type
of pruning that excludes all of the values in domain sets that give sums smaller than the required column sum or row sum, i.e. if
a value of 7 needs to be obtained from three numbers, than we know that when getting to the value assignment of the triple {1,
2, 3} it doesn’t add up to 7, then this combination of values is discarded from search and only sums that add up to 7 and greater
are included in the search space. This proved to be of an eminent improvement of the algorithm and gave great accelerations in
time execution of the algorithm [8].

8. Reducing Domain Values Algorithm

This novel deterministic algorithm, called the Reducing Domain Values algorithm, is an approach that uses a very sophisticated
heuristics that reduces the domain sets of values for the white cells, thus converging to the optimal solution in a shorter period
of time than other naive backtracking approaches. This reduction is done in a continuous manner that reduces number of the
sets to the point where there’s no more numbers to be removed and only one value remains in each of the domain sets, i.e. the
solution value for the cell. This algorithm proved to perform better than other deterministic techniques, which is described later
in this research.

The Reducing Value algorithm consists of the next simple steps:

1. For each white cell, compute the intersections of members in the column and row sums and set these newly generated sets to
be the new domain sets for the cells.

2. Perform a check if there’s a white cell that has a domain set with more than one candidate value. If this is false and all of the

 Progress in Machines and Systems Volume 11 Number 2 October 2022 31

domain sets have one value, then proceed to step 5. Otherwise, proceed to step 3.

3. Check for unique numbers in the cells, i.e. numbers that are not present in each of the other cells in the same row and column.

4. If there are unique numbers, these values indicate the solution values for these cells. Return to step 2.

5. Print found optimal solution.

9. Results

All of the above mentioned algorithms, including the novel Reducing Domain Values (RDV) algorithm, have been compared in
terms of average time execution for a puzzle. The results for the Stack-Based Backtracking, Run-Based Ordering, Value Ordering,
Decisive Value Ordering and Projected Run Pruning have been utilized from the research presented in [8], and then these results
have been compared with the results that were obtained from examining the Reducing Domain Values. The RDV algorithm was
written in Java programming language and tested on a machine having Intel® Core i5 processor with frequency of 2.53 GHz, 4GB
of RAM, and 64bit Windows 8 operating system. Grid sizes of 2x2, 4x4, 5x5, 6x6, 7x7, 8x8, 9x9 and 10x10 have been tested, each
of the grids having 0-40% black cells coverage in the Kakuro grid.

The results from the examination of the algorithms and their comparison are detailed in diagrams in Figure 3, Figure 4 and Figure
5. As results have shown, the RDV algorithm performed better than all of the other available deterministic algorithms. This is due
to the fact that RDV continuously reduces the domain sets, thus reducing the search space and leaving the solution number as
the only label for the white cells of interest.

Figure 3. Comparing algorithms for 2x2, 4x4 and 5x5 grids in dependence of time execution

 Progress in Machines and Systems Volume 11 Number 2 October 2022 32

Figure 4. Comparing algorithms for 6x6, 7x7 and 8x8 grids in dependence of time execution

Figure 5. Comparing algorithms for 9x9 and 10x10 grids in dependence of time execution

10. Conclusion

This research paper introduced a novel Reducing Domain Values algorithm, i.e. a deterministic algorithm that is intended to
provide an efficient solution and accelerate the process of obtaining an optimal solution, thus converging in a small amount of
time. This Algorithm has been compared to other available deterministic approaches and has proved to perform better in terms
of time execution. This algorithm is a great foundation for developing efficient deterministic algorithms for game theory, thus
applying their principles in other fields, such as coding theory.

 Progress in Machines and Systems Volume 11 Number 2 October 2022 33

References

[1] Simonis, H. (2008) Kakuro as a constraint problem. Proceedings of the Seventh Int. Works. on Constraint Modelling and
Reformulation.

[2] Seta & T.A.K.A.H.I. R.O. ‘The Complexity of CROSS SUM.’ IPSJ SIG Notes, AL-84 (2002), 51–58.

[3] Ruepp, O. & Holzer, M. The computational complexity of the KAKURO puzzle, revisited. Fun with Algorithms. Springer: Berlin,
Heidelberg (2010).

[4] Achterberg, T., Koch, T. & Martin, A. (2006) MIPLIB 2003. Operations Research Letters, 34, 361–372.

[5] Eén, N. & Sörensson, N. (2004) An extensible SAT-solver. Lecture Notes in Computer Science. Springer: Berlin, Heidelberg,
502–518.

[6] Davies, R.P., Roach, P.A. & Perkins, S. (2009) Automation of the solution of kakuro puzzles. Research and Development in
Intelligent Systems, XXV, 219–232.

[7] Davies, R.P. (2009). An Investigation into the Solution to, and Evaluation of, Kakuro Puzzles. [Masters Phil Thesis]. University
of Glamorgan.

[8] Cazenave, T. (2010) Monte-Carlo kakuro. Lecture Notes in Computer Science, 45–54.

