Utilization of SAM-based Network for Developing Function Approximation
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ABSTRACT: We have previously reported progress in
developing a multilayer SAM spiking neural network and
a training algorithm, suitable for implementation on an
FPGA with “On- Chip Learning”. Here we report on utiliza-
tion of a SAM -based network for continuous function
approximation, which to date has proved difficult to achieve
on a LIF type spiking neural network, by using a spike
coding approach called ‘NFR-coding’. We demonstrate
‘interpolated XOR” and 3-polynominal function approxi-
mation of this SAM network in computational experiments.
It is demonstrated that the SAM network has the capabil-
ity to perform these function approximations to high ac-
curacy.

Subject Categories and Descriptors: [C.2 COMPUTER-COM-
MUNICATION NETWORKS]: Neural nets; [G.1.2 Approxima-
tion]

General Terms: Neural Networks, Approximation, Training
algorithm, SAM neurons

Keywords: Spiking neural network(SNN), SAM Neuron Model,
FPGA implementation, On-chip learning, Function Approxi-
mation

Received: 18 June 2022, Revised 10 August 2022, Accepted 24
August 2022

Review Metrics: 0/6, Review Score: 5.05, Inter-reviewer con-
sistency 81.5%

DOI: 10.6025/jdim/2022/20/4/148-155
1. Introduction

The effectiveness of neural networks in deep-learning re-
search and development is well known. Models in these
algorithms often use the sigmoidal activation function, or
the ReLU activation function, which is derived from the
sigmoidal activation function. Alternatively, spiking neu-
ral network (SNN) models have been proposed in the bio-
logical, brainscience, and engineering areas, and have
been applied to a number of industrial applications. In
particular, a spiking neuron model can treat time series
data with only one neuron element, and has advantages
for realisation on digital hardware such as FPGAs.

In this paper, we focus attention on a spiking neuron model
called the SAM neuron model proposed by Shigematsu
etal..[1] The SAM neuron model was proposed for a brain-
type computer, and is a type of Leaky Integrated and Fire
(LIF) spiking neuron model. The SAM model is an adap-
tation of the LIF model, incorporating one additional pa-
rameter, and is able to express bursting and other spik-
ing behaviours. It is reported that the model has the ad-
vantage of treating time information within a single neu-
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ron body, avoiding a reduction in the frequency of output
spikes even if the sampling interval is wide.

We achieved to develop a supervised training algorithm
for the layered SAM neural network which is constructed
by connecting the SAM neuron model in a hierarchical
manner. The algorithm aims to implement the SAM net-
work into digital circuits such as FPGAs, while avoiding
the use of on-chip circuit multipliers. We have already
succeeded to achieve “on-chip supervised learning” on
FPGAsI[2].

However, application of the SAM network has only been
demonstrated with classification problems such as the
Iris and WBC datasets. It has not been applied in func-
tion approximation or more general problems so far. This
paper reports on the application of networks based on the
SAM model to two function approximation problem, namely
the Interpolated XOR ( as in Bohte et al.’s SpikeProp[3])
and a 3rd degree polynomial function approximation (as
lannella’s SNN[4]).

2. SAMNEURAL Network and Trainnig Algorithm

2.1. SAM Neuron Model

The Spike Accumulation and Modulation (SAM) neuron
model is a type of spiking neuron model, which reflects
biological neuronal functions (Figure 1) The behavior of
the SAM neuron model is as follows. At a discrete time ¢,
if the j -th neuron receives a spike X;(t) € B ={0,1} =
{0,1} from the i-th neuron, then the inner potential
U;(t) € R of the j -th neuron is calculated by the sum of
product between the link weights W}; € R and input spikes
X, (1), plus the addition of the weighted previous inner po-
tential aV;(t — 1) (where a is a decay parameter). Thus,

UG =Y WX+ a1
i=1

The j-th neuron output X;(t) € B is obtained by applying
the activation function g() to U;(t), where g() is a step
function such that if U;(t) is less than 0 the output is 0,

LU .0
1

Figure 1. SAM neuron model

corresponding to no spike; if U;(t) is greater than 0 the
output is 1 and a spike is generated. 6 is the threshold,
i.e.,

X;(t) = g(U;(®) - ), @

w=U(t) -0, 3)
0 0

9@ = {1 ((;; 0)). @

Moreover, the inner potential is decreased by an amount
p upon activation, such that

V;(©) = U;(t) — pX; (0). Q)

The SAM model is essentially similar to the LIF model
except that it treats time discretely, incorporates the term
p on activation; and does not set a refractory period.

2.2. SAM Neural Network
We define the membrane potentials and outputs of neu-
rons in the hidden(2nd layer) as

ni

uP® =Y WP xOO + @6 -1,

i=1

X2 @) = g(UP @) -6, @), 7
V2 ® =uP® - px© ®
Where V%= 0.

For neurons in the 3rd(output) layer, we define

nz

PO =Y w0 +a®e -1, @)

j=1
xP) = g(UP® - 6, ), (10)
v = U () - pxP () (11)

Where ;/*(0) = 0. Here, superscript (I) indicates the
layer number.

The thresholds of the SAM neuron models are set for

each neuron, namely 8%, 6{*; but are varied during train-
ing, in a similar manner to link weights.

Moreover, we define an inner potential « which contains
the threshold parameter for deriving the training algorithm,
as follows
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Figure 2. Multilayer SAM neural network
u? () @ U ) -6, (12)

u?(@®) 2 U1 -6, (13)

2.3. Training Algorithm for SAM neural network
The training approach for the multilayer SAM neural net-
work is based on an extension of the approach by Motoki
et al. [5] We define the objective function E as

ns

EZ%Z X0-150) (4
P=1t=1

k=1

IIm

=2~

where 7% (¢) € Bis the teacher signal of k-th output neu-
ron for a pattern P at a time «. We derived the training
algorithm by calculating the gradient for link weights W of
E and updating the training parameters (link weights and
thresholds). To simplify we considered the number of pat-
tern P=1 in the followings.

For the neurons of the output layer, we can state

tn

oE ax(t

I X(3)(t) _ T(3>(t) k ®)
ow s ‘ ‘ ow s
kj t=1 kj

N 3) 3)
X, (t) 0uy' (t)
- Z (X'(€3)(t) - T'?)(t)) @ aw®
t=1 k (t) kj

il (3)
= z (Xff)(t) — T,§3)(t)) ( <3>( )) oy <(3)). (15)
t=1

By expressing a general equation of progressing time ¢

=X +axPt -1+ a2X 7t - 2) + -

at—lxj(z) (1)

1
~ plag' P (D) Wé))

kj

aulP(2)

at~2g’ (3)
9'(u " (2))
oW

au,(f)(t -1

17,.43)
+ ag'(w'(t = 1) oW }
= HJ®) - ap)f) (- 1) (16)

Here, H,S)(t) represents input historical values, defined
by

HY®) & alH - 1)+ X7 (0. (17)
In addition,

43
I © 2yl ¢ - D+ g (uf (”)aw<3> (18)
kj

By approximating we used
aulP (t)
(3)
oW,

= H (0. (19)

As a result,

J0E
—W<3(>t() D = (xP® -12®) g (uf ©)HS ©. (20

For the hidden layer,

OE(t)

— = (X0 -170) ¢ (W O)HP® (21
6%“(0 (1 J ) (1 )1 (21)

where, 7}(2)(t) € B is Teacher signal of j-th hidden neu-

ron,
( 2 OE(t)
1 (X; ') - an‘2>(t)> >0.5

AE(t) (22)
0 [ X% - 0.5.
(XJ ®) an(z)(t)><

7}(2)@) —

Here,

9E (©) _i AEW®) ax>(®) ud(®)
XA LaxPmoul () ax (1)

k=

= Z (X,(f)(t) - Tk(3)(t)) g (u§(3>(t)) 6Wk<j3)(t) . (23)
k=1

Generally, for the /-th layer,

JE(t) ,
m = (X,‘p(t) = T,ﬁl>(t))g (u;b(t)) HO () ”
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W W JE(t)
Wi (¢ + 1) = Wy (8) =71 PRI (25)
And,
OE (t) ,
20000 (@ -1®) g (' ©)  (6)
JE (t)
97(11)(1: + 1) — 02”({') — Lm- (27)
3.NFR-CODING

The manner in which information is encoded into spikes
is crucially important both for learning and implementa-
tion efficiency. A number of coding systems have been
proposed by SNN researchers e.g.[3]. In this paper we
state a coding system called NFR-coding which is appro-
priate for the characteristics of the SAM neuron model.
NFR-coding is based on rate coding.

The NFR-coding system is explained as follows. The val-
ues of [0.0, 1.0] € R are expressed by n. neurons and t,
discrete times. Resolution r, is 1.0/(n. x t.). Figure
shows an example when r, = 0.01,n, = 10,t, = 10. A
single neuron can express 0.1 which is the maximum
expression value of 1.0 divided by the number of neuron
n¢. Similarly a single neuron expresses [0.0, 0.1] within
time interval ¢, (we refer to this as Neuron Focused). The
spikes expressed by a single neuron represent rate cod-
ing (Frequency), and therefore the spike rate is the ex-
pression value. Moreover, the set of spike intervals is cy-
clic and the spikes are evenly distributed (a property known
as Cyclicity). For example, when expressing the value x
= 0.02, there are 2 spikes every 5 time units; when ex-
pressing a value x=0.03, there are 3 spikes every 3.3 time
units on average.

Furthermore, the spikes of n. neurons within the time [1,
tc] are repeated in the window t¢ + 1 to 2¢. This repeat

is for the ‘decode’ to enhance decode robustness (we
refer to this as ‘Distinguishable’).

A definition of NFR-coding can be formulated as follows.
Codes for x(€ R:[0.0,1.0], rounded in resolution

rc = 1/(tc X n¢)) are expressed in a matrix 4, whose
elementis a,, € B ={0,1} (t € N:[1,t;],n € N:[1,n.]),

1 (n<x-ng)

A Eic(t,n) (x-nCSn<(x-nC+1)) 28)
0 ((x-nc+1)<n),
st e

T fend’U frone s froomd
|t <tc)and
(29)

c(t,n) = t=t +1,\t +1+ J

( G G fr'nC

te+1+ -I-—],'-'t <t<2t

{C ﬂ'nC fr'n(] G C)

0 otherwise.

Here fr=x—(n—1) n—lc and means a fragment of the
value x .

The term in Eq.(29) is the spike interval. An ex-

frmc

ample of NFR-coding A of value x = 0.13 is shown in Fig.4.

Secondly, we explain the decoding method. The identify-
ing (decode) from spike sequences is calculated not from

the period [1,¢.] but [tc + 1, 2t.]. Namely, the decoded
value x4 is

10)

A
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2t n
1 Cc C (30)
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Figure 3. NFR-coding
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Figure 4. Matrix expresstion of NFR-coding (x = 0.13,t, = 10,n; = 10)

The NFR-coding approach for the SAM neural network is
used because of its properties of Continuity, Frequency,
Cyclicity, Distinguishable, Dispersability. NFR-coding
satisfies all of these features. We consider that these 5
features are generally required to achieve good perfor-
mance for neural network learning algorithms. Existing
coding methods do not satisfy all such features at the
same time, and there is no coding method exploiting a
repeat of the spikes.

4. Function Approximation By Computational Experi-
ment

This section describes the application of the SAM net-
work and NFR coding to the two function approximations
cases previously mentioned. First, we show the trainability
of the model with a 2 term function approximation called
Interpolated XOR. Second, we examined the generaliza-
tion ability with a 3 degree polynomial function.

4.1. Interporated

Bohte et al. applied a training algorithm called SpikeProp
to an SRM type SNN, and showed results for the Interpo-
lated XOR task[4]. We examine the SAM neural network
trainability for the same task. The function equation is:

y= f(xpxz) =10+ 1+ e_2(|x1_x2|_3)' (31)

We normalized linearly the values x,, x,, y of this function
to [0.1, 0.9] in order to be trainable easily for the SAM
network. The SAM network was trained using total
961points of training data, 31 points for X1, X, respectively.

The parameters used for the NFR-coding are n, = 10, t. =
10 and the resolution of the values was r; =0.01.

The results are shown in Figure 5. The SAM network can
express the smooth curved surface. The network configu-
ration is 10:130:10 (input: hidden: output), while the train-
ing epoch is 1400.

Figure 5. Interpolated XOR

152 Journal of Digital Information Management

O Volume 20

Number 4 0 December 2022



0.5

03

b
0.2

01r

I e AN eI IO P e e Oppa o 9]

training data ——
testdata ———

1000

2000 3000 4000 5000
Training Steps

Figure 6. Tranining curve of E

0.1

RMS error

T
training data ——
testdata ———

0.08

1000

2000 3000 4000 5000
Training Steps

Figure 7. Training curve of RMSE

0.06 |-

0.05

training data (nC=4,1C=25) ——
training data (nC=5,tC=20) =
training data (nC=10,tC=10) e

g
o 04| \ / :
= 8 \ ra
4 . \
0.03 S y 1
~_
ey, Theeg e
0.02 |- R
. B B a
.
001 | . ¢ 1
0 L L L L L
0 10 20 30 40 50 60
Number of Hidden Units (n2)

Figure 8. Training ability

Journal of Digital Information Management

d Volume 20 Number 4 Q0 December 2022

153



4.2. 3" degree polynomial function approximation
We examined the generalization abilities of the SAM net-
work with the 3™ degree polynomial function approxima-
tion. The function used (Eq 32) is the same as the func-
tion of lannella et al.’s paper [4],

y=f(x)=02x—-16)—-2x+4 (32)
This function is neither monotonically increasing nor mono-

tonically decreasing, but demonstrates both upward con-
vex and downward convex behaviours.

0.08

test data (nC=4,tC=25)
test data (nC=5,tC=20)

i test data (nC=10,tC=10) - -#
.07

0.06

0.05

0.04

RMS error

003
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Figure 9. Generalization ability

We generated experimental data by normalizing linearly
[0.0, 1.5] to [0.2, 0.8] of x of Eq.(32) and [min max] to
[0.2,0.8] of y. The resolution » is 0.01 and the values are
rounded to this resolution. Of the 61 data points, we used
16 points for training and 45 points for testing.

The SAM neuron parameters were fixedtoa = 0.9, p =
0.5. For the initial values of link weights and thresholds,
we randomly set the values within [-1.0, 1.0) . We tried
the experiments with various combinations of (n, t;) in-
cluding (4, 25), (5,20), (10,10), and the number of hidden
units n, = 10,20,30,40,50. The learning coefficient was set
to =0.001, 0.0001, or 0.00001 (; = 0.2n)- We experimented
with 10 conditions of initial seed values of the link weights
and thresholds.

As an example of the training, we show the curve of the
objective function E (Fig.6) and RMS error of the function
approximation (Fig.7), where the conditions are ((nc, t¢)
=(5, 20), n, =40, =0.0001 (; = 0.2n). Here E is equiva-
lent to the averaging error per 1 spike, and the RMS error
means the averaging error per 1 value of function approxi-
mation, as given by Eq.(33).

(33)
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output for training data  ©
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06 | . .

04 |- E I

02|

(a) before training

output fo‘r testdata e
output for training data  ©
ideal output for training data (teacher signal)  +
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(b) after training
Figure 10. Function approximation results

where y, is the decoded value from the network output
(function approximation value), § is value of function (de-
sired valued), Nis number of data (= 61). As shown in this
figure, it is clear that both £ and the RMS error are de-
creasing as the training proceeds. Generally, the training
curve of the sigmoidal MLP is smooth, whereas the
changes in this training curve are more rapid. This phe-
nomena is considered to come from the characteristic
SNN feature of outputs = 1 or 0.

In the RMS error graph, we can observe that the RMSE of
test data is higher than RMSE of training data in some
cases. In other words, it is possible that the approxima-
tion is good for the test data, even though the output spikes
are slightly different from the teacher spikes by NFR-de-
coding. This phenomenon cannot be observed in ordinary
machine learning. We consider that this phenomenon
comes from the fact that the number of training data
samples is relatively large (1:3; training data : test data),
the resolution of values 1, is not so fine, and the effect of
‘Continuity’ in NFR-coding. In future work, we plan to con-
firm this hypothesis by further changing the experimental
conditions.

Next, we show the training error and the generalization
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error in Figure 8 and Figure 9 respectively. These values
are averaged values of the minimum values for the RMS
error for training data (training error) and the RMS error
for test data (generalization error) during 10000 training
epoch each for the 10 sets of initial values of the link
weights and thresholds. These figures show that there
are cases which the generalization ability is better than
the training ability; the best generalization performance
are found when (ng, t¢) = (5,20 ). The improvement in
performance ceases if the number of hidden units n, is
increased, i.e. a saturation is reached.

Finally, we show an example of function approximation
results before training and after training in Fig.10, with
the parameters set at n, = 40,n, = 5,t, = 20. Before
training, the approximated values are random (Fig.10(a)),
whereas after training, the approximated values are close
to the teacher data at the training epoch 4000 (Fig.10(b)).
Moreover, from Fig.10(a) it is observed that the test out-
put values coincide with the training output values, even
though the network parameters are random (before train-
ing). This result expresses the ‘Continuity’ aspect of the
NFR characteristics as mentioned before, showing the
effectiveness of NFR-decoding. Earlier work in [4], reported
final learned values within an error of 0.01 in all training
data points, whereas the corresponding SAM network’s
learned values (linearly transformed values) were within
0.128 (maximum error), while the average error was 0.04.
We consider that this performance arises from the cho-
sen resolution of the NFR-coding (r,).

5. Conclusions

This paper describes function approximation experiments
using neural networks composed of the SAM neuron
model, while exploiting an innovative NFR-coding scheme.
In the Interpolated XOR experiment, the SAM network
can perform a smooth approximation. Better performance
was observed in the 3rd degree polynomial function ap-

proximation experiment. The case when the approxima-
tion of test data is better than the training data is ob-
served.

The observation that the SAM neuron model (one of most
simplest of SNN models) can achieve good performance
in function approximation (including a function with both
upward convex and downward convex aspects), is impor-
tant, since approximation using LIF-type SNN is very dif-
ficult. Future work will explore other characteristics of this
model in detail.
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