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ABSTRACT

The Parallel Software Framework for Time-Critical Many-Core Systems aims
to develop a new designframework that allows current and future applica-
tions with high performance and real-time requirements to fully exploit the
huge performance opportunities of the most advanced many-core proces-
sors. We have developed a new timing analysis methodology to estimate
themaximum execution time of parallel applications running on a many-core
architecture. We discuss briefly the results obtained by running it on thethree
project use cases on the many-core development board.
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1. Introduction

The objective of the European project P-SOCRATES [7] (Parallel Software
Framework for Time-Critical Many-core Systems) was to develop a new
design framework to allow current and future applications with high-
performance and real-time requirements to fully exploit the huge performance
opportunities brought by the most advanced many-core processors, whilst
ensuring a predictable performance and maintaining (or even reducing) the
development costs of the applications. The main outcome of the project is
the UpScale SDK [1].

Upscale is a framework for the development of real-time high-performance
applications in many-core platforms. The SDK targets systems that demand
more and more computational performance to process large amounts of
data from multiple data sources, whilst low these performance requirements
to be achieved, by integrating dozens or hundreds of cores, interconnected
with complex networks on chip, paving the way for parallel computing.
Unfortunately, parallelization brings many challenges, by drastically affecting
the system’s timing behavior: providing guarantees becomes harder, because
the behavior of the system running on a multi-core processor depends on
interactions that are usually not known by the system designer. This causes
system analysts to struggle to provide timing guarantees for such platforms.
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UpScale tackles this challenge by including technologies from different computing segments to
successfully exploit the performance opportunities brought by parallel programming models used
in the high-performance domain and timing analysis from the embedded real-time domain, for the
newest many-core embedded processors available.

Most of the current state-of-the-art software techniques for analysis and scheduling assume that
the system activities (the tasks) are functionally independent and most of their parameters,
including their worst-case execution time (WCET), are known at design time. However, at run-
time, the tasks that are co-scheduled on different cores share hardware resources, including
caches, communication buses and main memory. Those resources introduce implicit functional
dependencies among the tasks, as concurrent accesses to the same resource are not allowed,
affecting their timing behaviour. This effect is exacerbated when scaling to many-core architectures.
Therefore, current analysis and scheduling techniques cannot be applied as-is and need to be
augmented to include all the sources of contention due to the increased number of shared resources.

As part of P-SOCRATES, we have developed a new timing analysis methodology to estimate the
maximum execution time of parallel applications running on a many-core architecture. Preliminary
results towards this direction have already been presented (see for example [4, 3, 5, 9, 8]) but we
will not elaborate on those works in this paper. Our timing analysis methodology has been automated
and the corresponding tool is now part of the UpScale SDK. In this paper, we describe the
methodology, its automation tool, and we discuss briefly the results obtained by running it on the
three project use-cases on the Kalray MPPA-256 many-core development board [2].

2. Overview of the Application Structure and Execution Model

In the P-SOCRATES execution model, the real-time applications start their execution on the host
cores of the accelerator (i.e. the IO cores in the Kalray MPPA). To execute faster, they can offload
some parts of their computation onto the accelerator at any time during their execution. The
offloaded parts are organized in sets of potentially parallel segments of code that may be modeled
as a directed acyclic graph (DAG). DAG nodes are implemented with OpenMP tasks with edges
representing dependencies among these tasks (implemented with the depend OpenMP clause).
We call each offloaded part, a “phase” of the application. Each phase can thus be seen as a graph
of openMP tasks that can execute concurrently on different clusters. The focus of our analysis
work is on the DAGs, where little previous works exist. Traditional real-time techniques can then
be used to integrate the full computation, i.e. the sequential execution on the host cores and the
offloaded phases.

Figure 1. P-SOCRATES analysis flow using dynamic mapping and scheduling
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To analyze the timing behavior of the applications, we define two different analysis flows: one for
systems that use dynamic mapping and scheduling techniques and another one for static techniques.
Due to space limitations, we only provide a brief summary of the differences between these two
approaches. When dynamic techniques are used, the task-to-thread mapping of the lightweight
runtime is performed during execution, based on OpenMP task mapping algorithms, and the
scheduling in the operating system uses global migration of threads. Therefore the system adapts
better to variability in the load, achieving in principle higher performance (due to better load
balancing). However, as variability is higher, less information exists to perform both timing and
schedulability analyses, which may lead to pessimistic theoretical worst-case scenarios (which in
practice may not occur). When static approaches are used, a specific mapping algorithm assigns
the OpenMP tasks to particular threads in the OpenMP runtime, with each thread then statically
assigned to a particular core, with the operating system using partitioned per-core schedulers. In
this case, the system is less adaptable, in many cases incapable of taking advantage of eventual
spare capacity (a core may be idle while tasks wait in other cores), which may lead to worse
average performance. However, there is more information on the configuration of the system,
which may allow a tighter analysis, leading to improved worst-case scenarios.

3. Analysis Flow for Systems using Dynamic Mapping and Scheduling Techniques

Figure 1 depicts the end-to-end analysis flow. As mentioned above, adopting the dynamic scheduling
scheme means that all the OpenMP tasks are not pinned to a specific thread and can migrate from
one core to another at runtime. In this case, there is only one queue for all pending/waiting
OpenMP tasks. As soon as a core finishes the execution of a task, it starts (or resumes) the
execution of the first task in that single shared queue. To analyze this configuration, the implemented
steps are as follows.

Step 1: The application is compiled and the compilation of its source code generates at least two
files: a multibinary file – the executable file to be run on the MPPA – and one DAG per application
phase. Every phase (i.e., every “#pragma omp target” directive found in the source code that
offload parts of the computation to the MPPA accelerator) leads to the creation of a set of omp
tasks generated and executed in the accelerator. This set of tasks and their inter-dependencies
are represented by a Task Dependency Graph (TDG) created at this point by the compiler. More
precisely, the TDG represent the graph of dependencies between all the tasks.

Step 2: In this step, we estimate the maximum execution time of every openMP task when it
suffers a maximum interference on the shared resources. We call this execution time the MEET of
the tasks (Maximum Extrinsic Execution Time). The MEET is thus measured by enforcing the
“nastiest” execution environment in which the analyzed tasks suffer as much interference as
possible from other tasks and applications running concurrently. In these execution conditions,
every analyzed task is executed multiple times over the same set of “worst” input data. This step
requires to slightly modify the source code of the application and insert specialized code that will
artificially generate those nasty execution conditions at runtime. In short, in this step all the
openMP tasks of the application execute sequentially on the same core, by a single thread, while
all the other threads execute on the other cores and generate as much interference as possible on
the shared resources (memory, NoC, etc.). At the end of this step, every node of every TDG
(which represents an OpenMP task) is annotated with its MEET.

Step 3: The annotated TDGs and the timing parameters of the applications (period and deadline)
are given as input to the schedulability analysis tool to check whether all the timing requirements
are met (i.e., no deadline is missed). Since in the case of dynamic mapping and scheduling we do
not know beforehand on which core the tasks will execute, nor concurrently with which other
tasks, the schedulability analysis must use the MEET as the worst-case execution time of every
task, i.e., it assumes a maximum interference on every task. If the schedulability analysis fails,
we have no other option than changing the timing parameters of the application (period and
deadline) or optimizing its source code. We will see in the next section that we can reduce this
pessimism by using a static scheduler.

4. Analysis Flow for Systems using Static Mapping and Scheduling Techniques

By using a static scheduling scheme, more information is available at design time. For example,



dline.info/dspai 26

D
ig

it
al

 S
ig

na
l 

P
ro

ce
ss

in
g 

an
d 

A
rt

if
ic

ia
l 

In
te

ll
ig

en
ce

 f
or

 A
ut

om
at

ic
 L

ea
rn

in
g

V
ol

um
e 

3 
N

um
be

r 
1 

M
ar

ch
 2

02
4

the task-to-thread and thus the task-to-core mappings are known and, for every application, the
subset of openMP tasks running concurrently is also known. This additional information allows us
to considerably reduce the inherent pessimism of a dynamic scheduler, using a more complex
analysis flow (see Figure 2).

Step 1: The first step is similar to Steps 1 and 2 for dynamic scheduling. The MEET is computed
for every OpenMP task of the TDGs and is annotated to the graphs.

Step 2: The mapping tool is used to define a static task-to-core mapping that is schedulable. If
the tool finds a valid mapping then the process ends and returns it. Note that the actual execution
time of the tasks at runtime can only be lower than their MEET since the runtime interference will
be lower. This means that any mapping found at this step that meets all the deadlines while
assuming the MEET of every task is also guaranteed to meet all the deadlines for shorter tasks
execution times.

Step 3: If the mapping tool does not find any mapping that meets all the timing requirements,
then we check if there exists a feasible mapping in the opposite scenario, i.e. while assuming the
best execution conditions. That is, we measure in this step the maximum execution time of every
openMP task when there is no interference whatsoever on the shared resources. To do so, similarly
to the extraction of the MEET, we run all the openMP tasks sequentially on one core, by a single

Figure 2. P-SOCRATES analysis flow using static mapping and scheduling

thread, but this time all the threads running on the other cores stay idle (busy-waiting) and do not
use any resource. We call this maximum execution time the “MIET” of the tasks (Maximum
Intrinsic Execution Time). At the end of this step, the MIET of every OpenMP task is annotated to
the TDGs. The reason for measuring the MIET of the tasks is because in the case of static scheduling,
we know that some tasks will not execute concurrently with some others (if they are mapped to
the same core for example) and thus assuming the MEET was the most pessimistic assumption
we could make. The MIET, on the other hand, is the most optimistic one.
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Step 4: This step is similar to step 2. The mapping tool tries to derive a mapping that meets all
the timing requirements but contrary to step 2, it assumes that all the OpenMP tasks execute for
their MIET (instead of using the MEET estimates as in step 2). If it does not find a feasible
mapping then the process stops. In this case, there is no way to find a feasible mapping since the
tool did not even find one assuming the best execution conditions, i.e. no interference whatsoever
between the OpenMP tasks. The application is thus not schedulable. If the tool did find a valid
mapping, then we need to check whether that mapping still meets all the timing requirements
even with the interference that will occur at runtime, which is the next step.

Step 5: This step runs the application by using the static mapping found at step 4 and records
the maximum actual execution time of every OpenMP task (also referred to as MAET – Maximum
Actual Execution Time). Those MAETs are also added to the TDGs information.

Step 6: The schedulability analysis tool is now used to check if the mapping that has been tested
at the previous step is still schedulable when assuming for each OpenMP task its maximum
actual/observed execution time (MAET) recorded at Step 5. If this is the case, then the process
stops and returns the mapping. Otherwise, the process moves on to Step 7.

Step 7: At this stage, we know that the mapping defined at step 4 meets all the timing
requirements if the tasks do not execute for longer than their MIET. However, when executed at
step 5, it turned out that some of the tasks took longer to complete (as potentially expected) and
with those new estimations of their execution times (i.e., the MAETs), the mapping failed the test
at step 6. In this case, we display a table containing for each task: its MIET, MAET, MEET, and the
set of tasks it has potentially been executed concurrently with (i.e., the subset of tasks allocated
to a different core). If a task has a MAET closer to its MEET than to its MIET, we can conclude that
the execution of that task is strongly impacted by the tasks that execute concurrently. Hence, it
may be wise not to execute them on different cores. On the contrary, if its MAET is closer to its
MIET, it means that the task is barely affected by the execution of the concurrent tasks and it
may be judicious not to change that task-to-core allocation. During that step, we let the user
register a “restriction”, telling the mapper that in the next mapping to be produced a particular
task cannot be assigned to the same core as the set of tasks it is currently mapped with. Those
restrictions will be taken into account by the mapping tool at the next step 8 when trying to find
another mapping.

Step 8: The mapping tool is used again to derive a new mapping. This time the tool considers the
restrictions defined by the user at step 7 and assumes the tasks execution times obtained at step
5, i.e. the MAETs. If the tool still does not find any valid mapping, then the user may try another
set of restrictions with less, or different constraints. If this time a valid mapping is found, then we
must re-test it, i.e., we must re-extract the maximum execution times (i.e., the MAETs) observed
at runtime for that particular mapping and re-check the schedulability of the system while assuming
those new MAETs. That is, the process goes back to Step 5 with the mapping obtained at this
step.

Except for these last two steps of defining task restrictions to guide the mapping, which requires
manual intervention, the whole analysis process has been automatized within the analysis tool
presented in the next  section. The feedback loop could also be automatized, but there is yet no
known heuristic for the mapping which is able to converge to a stable state.

5. Our P-SOCRATES Timing Analysis Tool

Figure 3 is a screenshot of the tool developed to run the entire timing analysis methodology for a
given application. The tool is written in Python 2.7 and is now part of the UpScale SDK, available
at [1]. It offers a generic interface to easily implement, connect, and run together different
application scripts, possibly written in different programming languages. The tool is based on
three main concepts: commands, actions, and variables.

The commands are the basic blocks of the tool. A command is defined in a specific programming
language and has a pre-defined type. A command is typically a small script that is used to
perform a specific operation and its type describes how it must execute it. For example, one can
define the commands “Upload the source code to the testing device” or “Compile the code remotely
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on that device”. The former is of type “SFTP – Put” and its code lists the files to be uploaded
(following a pre-defined syntax), whereas the latter can be a Shell script of type “SSH - Remote

Figure 3. Screenshot of the P-SOCRATES analysis tool-chain that is part of the UpScale SDK.

command[s]”, meaning that it will be executed by a remote terminal through SSH. The current
version of the tool supports scripts written in Python, R, as well as in any shell script supported by
the machine running the script. Files can be sent and received through SSH or SFTP and Shell
scripts can be executed remotely through SSH.

The variables are defined by the user. They are simply characterised by a name, a type, and a
value. Before each command is executed, the tool performs a simple “search and replace” on the
code of the command to replace every reference to a variable with its value. Therefore, variables
can be used and accessed by every command, irrespective of its programming language, simply
by referring to it as “@{variable name}” in the command’s code.

The actions are the means to connect the commands together. Each action is defined as a set of
commands and executing an action simply runs all its commands in the order defined by the user.
Note that the tool also provides special control-flow commands that allow to implement loops and
simple conditional statements. Those control-flow commands are kept relatively simple as the
ambition of the tool is (for now) not to design a new programming language.

6. Results and Conclusions

Our timing analysis methodology has been tested on three use-case applications at the end of the
project: a pre-processing sampling application for infra-red detectors, an online semantic analysis
tool, and a complex event processing engine. Although it is difficult to draw general conclusions
from the analysis of these use-cases, the results did provide information which allows to reason
on the static and dynamic scheduling and mapping approaches proposed in the project, as well as
on the use of the overall analysis flow. It is infeasible in this short paper to summarize the three
application use-cases down to a level of details that would allow the reader to verify our conclusions,
or to make his own. This is why we simply summarize here the main results that we obtained and
the conclusions we made.

One focus of our analysis was on the difference between the MIET, MEET, and MAET of the
openMP tasks. That is, we wanted to evaluate the gap between the maximum execution time
measured for every openMP task in situations where (a) there is no interference at all on the
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shared resources (MIET), (b) there is an extreme  contention for the shared resources(MEET),
and (c) the tasks are executed normally (globally or statically) and their inter-task interference is
thus accounted for (MAET).

In [6], we showed that on the Kalray MPPA-256 (Andey) many-core platform the interference
generated by concurrent tasks can slow down the execution of a given task by a factor 8, i.e. a
task’s MEET may be up to 8 times higher than its MIET. In the second half of the P-SOCRATES
project, we change the board from a Kalray MPPA Andey to a Kalray MPPA Bostan because the
company officially announced that they will no longer support the Andey. Unfortunately, those
slow-down factors of 8 could not be reproduced on the Bostan. The reason is that on the Andey,
the task interference generated when measuring the MEET of a given task was artificially created
by (1) allocating data in the same memory banks as the data of the analyzed task, and then (2)
repeatedly accessing those data at runtime. This way we were saturating the controllers of the
memory banks used by the task under analysis, thereby slowing down its overall execution. On
the Bostan board, we were no longer able to apply this approach because the linker scripts that
allowed us (in the Andey) to allocate data to specific banks were not yet implemented at the time
on the Bostan.

An interesting observation that we made while analyzing the execution time of the openMP tasks
running on the Bostan board is that, by repeatedly calling the built-in “printf()” function from the
other cores (that do not run the analyzed tasks), we were able to generate a near-starvation
scenario. That is, for some tasks, the execution was taking around 49 milli-seconds (with
interference) against 117 micro-seconds (without interference) and 124 micro-seconds (when
executed normally). This means a slow-down factor or more than 400. Note however, that this
result may be due to the internal implementation of the printf function that may temporarily
freeze all the cores for some debugging reasons. We have not yet investigated further the reasons
for such a slow-down factor.

The results obtained in this analysis allowed to note that static approaches are more time predictable
than the dynamic ones. Although for a large number of tasks static mapping and scheduling
approaches may experience  lower performance at the runtime due to their by-nature
conservativeness (thus increasing the actual response  time of the application), their prediction
on the worst-case response time are tighter and more accurate. The work also leads to conclusions
on the need to research on more accurate interference analysis, which leads to less pessimism
than worst-case.
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