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ABSTRACT

The purpose of Shape Analysis is to determine the shape invariant, that is, the
structural properties of the heap for programs that deal with pointers and the
allocation of the heap. More recently, very accurate shape analysis algorithms
have been developed to prove the partial accuracy of the programs that
manipulate the heap. In this section, we will look at how shape analysis can be
used to analyze the abstract data type (ADT). We will use the ADT as an
example because it is commonly used and found in most major data types
libraries, such as STL, Java API, and LEDA. We formalise our idea of the ADT
Set using the following algebras. Two prototype C set implementations are
presented. One is based on lists, and the other is based on trees. We will
create a parametric shape analysis framework to perform the analyses that
prove the compliance of these two implementations.

Keywords: Shape Analysis, Abstract Data Type, Data Libraries

1. Introduction

This paper deals with the Shape Analysis of the Abstract Data Type (ADT ) Set.
Its main goal is to use Shape Analysis to prove that Set implementations
written in C comply to an algebraic specification of the ADT Set. The paper
summarizes major results from the author’s Master’s thesis [Rei05].

Shape Analysis [CWZ90, GH96, SRW99, SRW02] is concerned with determining shape
invariants, i.e. structural properties of the heap, for programs that manipulate
pointers and heap-allocated storage. Formerly, it was primarily used to aid
compilers. Knowledge about the structure of the heap allows to carry out several
optimizations, for instance, compile-time garbage collection, better instruction
scheduling and automatic parallelization.

Recently, more precise shape analysis algorithms have been developed that
are able to prove the partial correctness of heap-manipulating programs. In
[LARSW00] bubble-sort and insertion-sort procedures are analyzed. The analyses
were able to infer that the procedures indeed returned sorted lists. They also
successfully analyzed destructive list reversal and the merging of two sorted
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lists.The analyses of [LARSW00] and our analyses are based on the Shape Analysis Framework
presented in [SRW02]. Logical structures are used to represent the program state in this framework.
The concrete semantics is specified in first-order logic. By interpreting the concrete semantics in a
3-valued domain sound and precise abstractions can be extracted automatically.

Set implementations are widely used and can be found in most of the major data type libraries, like
STL [MS96], the Java API [Mic04], or LEDA [MN99]. The ADT Set shall serve as an example of abstract
data types. The main goal of this paper is to show the partial correctness of set implementations
using Shape Analysis. For this purpose we formally define the ADT Set using algebraic specification
[EM85, EM90, LEW97]. It shall serve as a reference for the implementations described later. Algebraic
Specification allows us to express the intended behaviour independently of possible concrete
implementations. The following two axioms are taken from our definition:

                   a s . insert (b) a =
el 

b  a s,                               (3)

                   a s . remove (b) a 
el 

b  a s                             (4)

They capture the eect of the . insert () and .remove ()- functions on the -predicate. Notice that they
do not make any statement about the concrete data structures or algorithms employed.

We present two prototypical C implementations, one based on singly-linked lists, the other on
binary trees. Using Shape Analysis, we demonstrate that these implementations comply to our
specification of the data type. This involves creating precise analyses using the framework of
[SRW02] and linking the results to the specification of the ADT.

2. Sets as Data Abstractions

The formal definition of the ADT Set will serve as a reference for the implementations introduced
later. The definition should be independent of possible implementations. Notice that a concrete
implementation would also constitute a formal specification. It would however contain many design
decisions that are not specific to the data type itself.

A method widely used for the specification of data types is known as Algebraic Specification of Data
Types [EM85, EM90, LEW97]. Here, a specification consists of a signature and axioms. The signature
introduces operations on the data type, while the axioms capture the meaning of the given
operations. Data Types defined in this way are often called Abstract Data Types. This is for three
reasons:

 The specification is concerned with the data type itself as an abstract mathematical object and
not with its implementation by a concrete program in a particular programming language.

 Specifications may be incomplete by only partially specifying the meaning of operations.

 They maybe defined in terms of other data types that serve as parameters. This is also called
generic specification.

While we easily grasp an intuitive meaning of these specifications, it is of course profitable to give
a formalization of the concept. We will not go into detail about this since we do not rely on the
precise definitions in the following chapters. The semantics of such a specification is a set of
manysorted algebras. An algebra belongs to this set if it is a model of the axioms of the specification.
The axioms are implicitly universally quantified. Usually, there are many non-isomorphic models
of a given specification reflecting the incompleteness of the definition. The interested reader may
consult [EM85] and [LEW97] for an in-depth treatment of the topic.

The full specification of the ADT Set is displayed in Table 1. Our specification is parameterized by an
element type. This could also be instantiated with a set itself, building sets of sets of some primitive
type, and so on. We are assuming an existing specification of the natural numbers nat.
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The empty set is provided as a constant. Other sets can be constructed by inserting and removing
elements using .insert () and .remove (). The .selectAndRemove function returns an element and
removes it from the set. It can be used to iterate over a set. The .sizeOf function returns the
cardinality of the set as a natural number. The 2 predicate allows to test set membership. and
= correspond to subset and equality of sets.

Most of the axioms are straightforward. We distinguish equality on sets =, equality on elements
=

el 
, and equality on natural numbers =

nat 
. Axiom (1) assures that every possible set can be

constructed by applications of  and .insert. In axiom (5) we only have an implication because the
.selectAndRemove function chooses an element nondeterministically. Axioms (6) and (7) correspond
to the extensionality axiom of set theory. Axioms (8)-(13) deal with the cardinality of sets. The
axioms are complete in the sense that the meaning of arbitrary formulae over the given alphabet
(the functions and predicates of the ADT specification) can be derived.

Table 1. ADT Set

3. Shape Analysis of Implementations

In this section we analyze two prototypical C implementations of the ADT Set. One implementation
is based on singly-linked lists, the other on binary trees. After briefly introducing parts of the two
implementations, we proceed to describe our analyses. The main goal of the analyses is to prove
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that the implementations comply with the ADT specification given in Chapter 2. The implementations
each contain the two methods, insertElement, removeElement and the function isElement. They
implement the . insert () , . remove () functions and the    predicate, respectively. We chose to
show the following two axioms, since they capture the most important aspects of the ADT Set:

                   a s . insert (b) a =
el 

b  a s,                               (3)

                   a s . remove (b) a 
el 

b  a s                             (4)

Our analyses are conducted using TVLA [LAS00] and are based on previous analyses on lists and
trees contained in the TVLA 2 distribution.

3.1. List-based Implementation

Figure 1. C structure declarations for Lists and Sets and C source of membership test

Our first set implementation uses singly-linked lists to store the elements. It also maintains the
size of the current set. The structure declarations are visible in Figure 1. When allocating such a
set, a compare-function has to be given, that establishes an equivalence relation on the data
elements.

Figure 1 also shows the code for testing set membership. The method simply iterates over the list,
comparing each item with the element that is tested for set membership.

Figure 2 shows the implementations of the insertion and removal methods. The insertion method
iterates over the list until it either finds the element or reaches the final element of the list,
indicated by a null-pointer in the next-field. If the element was not found it is appended at the end.
Removal works similarly. When the element is found, it is decoupled from the list and the memory
is freed.

Data Structure Invariants: Our analyses rely on a number of data structure invariants at entrance to
the methods. Showing their maintenance is part of the proof. By data structure invariants we
mean invariants that are related directly to the concrete data structure employed to implement
the ADT Set. In this case properties of singly-linked lists:

 The list is acyclic

 The list does not contain any duplicate elements

We use instrumentation predicates to capture these properties formally using first-order logic.

typedef struct List

{

void* data;

struct List* next;

} List;

typedef struct Set

{

List* list;

int (*compare)(void*, void*);

int size;

} Set;

            (a)

 int isElement(Set* set, void* element)

{

List* list = set->list;

while (list != 0) {

if (compare(list->data, element) ==
0)

return 1;

list = list->next;

}

return 0;

}

                 (b)
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3.2. Tree-based Implementation
As in the list-based case, a compare-function is needed. This time it has to implement a reflexive
total order. This is necessary, to build an ordered tree. Figure 3 shows the structure declarations.
Every node in the tree stores one of the set elements and maintains pointers to two children
nodes left and right.

Figure 3 also contains the source of the set membership test. The method simply traverses the
tree until it either finds the element or reaches a leaf node. The source of the insertion and
removal methods on trees can be found in the appendix, since it is too large to be dealt with here.
We restrict ourselves to mentioning the main ideas of the two algorithms. New elements are
always inserted as new leaf nodes, by traversing the tree to the correct position. While insertion
of elements if fairly easy and quite similar to its list pendant, removal of elements is a non-trivial
task. Figure 4 illustrates this. Removing elements that are stored in leaf nodes is simple (left).
They can simply be decoupled from their respective parent nodes. If the node has one child, we
can connect this child at the place of the node to its former parent node (middle). The most
complicated case arises when the particular node has two child nodes (right). In this case, we
have to find another node in the tree to replace the element node. This node has to be smaller
than all nodes on the right and greater than all nodes on the left. There are two ways to find such
an element. Either one can take the right-most element of the left subtree or the left-most
element of the right subtree. We chose to always take the right-most element of the left subtree.
In addition, there are some special cases of the latter case. For instance, if the root of the left
subtree is already the right-most element of the left subtree.

Figure 2. C source of Insertion and Removal methods

Data Structure Invariants: In order to prove our ADT Set axioms we need to maintain two data
structure invariants:

 The structure representing the set is a tree

Out of many equivalent de“nitions for binary treeness, we chose the following: Whenever an
element is reachable from the left child of a node in the structure, then it is not reachable from
the right child, and vice versa.
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Figure 3. C structure declarations for Trees and Sets and C source of isElement test

 The tree is ordered

Every element reachable from the left child is smaller and every element reachable from the right
child is greater. This implies that the tree does not contain duplicate elements. It also implies the
“rst data structure invariant. It is still useful to consider the “rst invariant, because it may help in
proving this one.

Again, we used instrumentation predicates to formalize the two invariants using “rst-order logic.
Proving the latter proved to be quite dicult. It is a global property, i.e. it does relate elements in
the tree that are not directly connected. We will go into more detail about this in the analysis
section.

Figure 4. Removal from Ordered Tree
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3.3. Shape Analysis
To prove the ADT Set axioms we perform three analyses for each implementation. The analyses
of the insertion methods prove the following:

isElement (a, s.insertElement (b))  a 
el

 b  isElement (a,s)

Notice the dierence compared with the corresponding axiom (3). The instrumentation predicate
isElement replaces the    predicate. That is we prove the property of the insertion method in
terms of an instrumentation predicate. The same holds for the removal methods and axiom (4).
There, we prove:

isElement (a, s.removeElement (b))  a 
el

 b  isElement (a,s)

To conclude the proofs we show that the isElement functions in both implementations are equivalent
to the instrumentation predicate isElement:

isElement (a,s)  s:isElement (a)

Combining this equivalence with the two preceding proofs yields:

s.insertElement (b). isElement (a)  a 
el

 b  s.isElement (a)

s.removeElement(b).isElement(a)  a 
el

 b  s.isElement  (a)

These two equivalences correspond directly to axioms (3) and (4).

Shape Analysis of List-based Implementation: Our analysis is based on existing analyses on lists and
trees. We borrowed the concrete semantics of most of the statements from these. The following
table shows how we represent the state by logical predicates.

Predicate

x () for each x  Var
n (

1
, 

2
)

deq (
1
, 

2
)

is Set ()
or [n, x] () for each x  Var

Intended Meaning

Pointer variable x points to heap cell .
The next selector of 

1
 points to 

2
.

The data-fields of 
1
 and 

1
 are equal.

 represents a set.
 was reachable from x via next-fields.

As depicted, pointer variables are represented by unary predicates. The next-fields is modeled by a
binary predicate. Since we can only model the structure of the heap by these predicates, primitive
values have to be dealt with dierently. Abstracting from the concrete values of the data-fields, we
capture the equivalence relation between data-fields by the binary predicate deq. This corresponds
to the compare-function needed in the implementation. To dierentiate between set locations and
other locations in the heap, the isSet predicate is used. To be able to relate elements contained in
the list before the execution of one of our procedures with their output structures, we mark
elements reachable from x via next-fields using the or [n , x] predicate.

While the above core predicates suce to define the concrete semantics of all the statements, we
need additional instrumentation predicates to gain precision.

The first four of these instrumentation predicates capture general properties of the shape of the
heap. They have been used in previous analyses of list-manipulating programs. c[n] covers the
acyclicity data structure invariant mentioned in the implementation section.

The noeq[deq, n] predicate is tailored specifically to the current task. It expresses that no two
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Predicate

is [n] ()
c [n] ()
t [n] (

1
, 

2
)

r [n,x] () for each x Var

noeq [deq, n] ()

validSet ()

isElement (
1
, 

2
)

Defining Formula


1
, 

2
.(

1
  

2
  n (

1
, )  n (

2
, ))


1
.(n (

1
, )  n* (

1
, 

2
))

n* (
1
, 

2
)


1
.(x (

1
)  t [n] (

1
, ))


1
.(((t [n] (

1
, )  t [n] (

1
, ))  

1
  

 (deq (
1
, )  deq (

1
, )))

isSet )  noeq [deq, n] ()

isSet (
2
)  .(t [n] (

2
, ) deq (

1
, ) 

  
2
)

Intended Meaning

 is shared.
 resides on a cycle.

Transitive reflexive closure of next.
 is reachable from x via next-fields.

The data-field of  is different from
the data-fields of locations that can
reach  and that are reachable from

.

 represents a valid set (no duplicate
entries).


1
 is an element of set 

2
.

elements in the list have equal data-fields. The definition comprises both directions, i.e. both elements
reachable from  and elements from which  is reachable. This actually makes it easier to reestablish
the property when manipulating the list. It is a formalization of the second data structure invariant
for lists. validSet does not help to increase precision. It only increases the readability of the output
structures.

To capture our notion of set membership we define the isElement-predicate.  is an element of set
 if its data-field is equal to one of the nodes reachable from . Our analysis shows that the eect of
the insertion and removal methods on set membership, expressed by isElement conforms to the
ADT Set axioms.

Our input structures cover all possible lists representing sets pointed to by set. element points to
the element that shall be inserted into the set. Figure 5 displays these structures. In (a) set is
empty. In (b) set is non-empty and set membership of element is unknown, isElement’s value is
indefinite for the nodes pointed to by element and set.

Insertion Running the analysis for insertion yields three output structures that are shown in Figure
6. All of the resulting structures fulfill the data structure invariants, i.e. noeq[deq, n] is true for the
set and c[n] is false everywhere. Also, sElement is true for the nodes pointed to by element and set.
In addition, the or [n, set]-predicate indicates that elements which were formerly reachable from set
are still reachable after the execution of setInsert.

Looking at the structures one can identify the different cases that the insertion method has to deal
with. Structure (a) corresponds to the empty set as input structure. In structure (b) a new element
had to be appended to the list, because the data-field of element is not equal to any of the original
elements of the list (the deq predicate is false). In structure (c) element was alreadycontained in
the list, indicated by the isElement-predicate.

Removal When translating the C code into a Control Flow Graph in TVLA, we omitted the deallocation
of the element in the list. This is only for illustration purposes.

Running setRemove results in four output structures displayed in Figure 7. Again, the maintenance
of the data structure invariants is proven: noeq [deq, n] is true and c[n] is false everywhere. The
element has indeed been removed from the list. This can be observed by the isElement-predicate.
Other elements of the set are still contained, as indicated by the or [n, set]-predicate.

Structures (a) and (c) correspond to the case where element was not contained in the set before.
The two other structures (a) and (d) reflect the case where element was indeed part of the set.
The abstraction also distinguishes between empty (c and d) and non-empty sets (a and b).
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Figure 6. Output Structures for List-based Insertion

Membership Test We omit to display the output structures of this analysis, since the routine is not
manipulating the heap at all. The analysis checked that our isElement function returns true if and
only if the isElement-predicate holds. This is done by separating the structures into those that
reach a point where true is returned and those structures that reach a point where false is returned.
By this, we establish a connection between the dierent analyses. The two other analyses on list
insertion and removal only proved correctness in terms of the isElement-predicate. The current
analysis shows that this was just.

Shape Analysis of Tree-based Implementation The domain is represented in a similar way as in the list-
based case. Instead of having a next-predicate, left and right-predicates are used to model the left
and right-fields in the tree. The left-predicate is also used to model the tree-field in the set structure
to minimize the number of predicates. The tree-field only occurs at most once in all of the
structures.

Figure 5. Input Structures for List-based Insertion and Removal



dline.info/pca 16

Pr
og

re
ss

  i
n 

 C
om

pu
te

r  
A

pp
lic

at
io

ns
  V

ol
um

e 
 1

3 
 N

um
be

r  
1 

 M
ar

ch
  2

02
4

Figure 7. Output Structures for List-based Removal

Predicate

x () for each x  Var
sel (

1
, 

2
) for each sel  {left, right}

dle (
1
, 

2
)

or [x]() for each x  Var
isSet ()

Intended Meaning

Pointer variable x points to heap cell .
The left (right) selector of 

1
 points to 

2
.


1
 data  

1
 data.

 was reachable from x via left and right-fields.
 represents a set.

As noted in the implementation section, an ordering relation is needed here. It is modeled by the
dle-predicate, which is assumed to be reflexive and transitive during the analysis. or [x] and isSet
have the same meaning as before.

While the core predicates used to model the domain were very similar to the list-based case, the
choice of instrumentation predicates was quite dierent. We separate them into two parts. One is
solely concerned with the structure of the trees. The other also deals with ordering.

The two downStar[sel]-predicates record reachability between tree-nodes, where the first selector on
the path is sel. In ordered trees this determines the relation between the elements in the tree. To
be able to check whether the ordering is maintained, it is important to keep this relation precise for
elements that are manipulated. treeNess records the first data structure invariant mentioned in
the implementation section. We decided to make treeNess a global nullary predicate to reduce the
size of the domain. There is a drawback to this approach however. It is nearly impossible to
reestablish the property once it is violated, because we lose information about parts of the heap
that still satisfy the property. A unary treeNess predicate would be able to capture local violations
and make it easier to reestablish the property after it was temporarily destroyed. The methods
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that we checked maintain treeNess in the entire heap permanently allowing to use the nullary
predicate.

Predicate

down (
1
, 

2
)

downStar (
1
, 

2
)

downStar [sel] (
1
, 

2
) for each

sel {left, right}

r [x]() for each x  Var

treeNess

Defining  Formula

left (
1
, 

2
)  right (

1
, 

2
)

down*(
1
, 

2
)

.(sel (
1
, )  down*(, 

2
))


1
.(x (

1
)  downStar (

1
, ))


1
, 

2
, .((downStar [left] (, 

1
) 

downStar [right] (, 
2
)) 

(¬ downStar (
1
, 

2
) 

¬ downStar (
1
, 

2
)))

Intended Meaning

The union of the two selector predicates
left and right.

Records reachability between tree nodes.

Remembers the first selector needed to
reach 

2
 from 

1
.

 is transitively reachable from x.

The heap consists of trees.

The dle [x, sel] captures the relation between the node pointed to by x and other heap nodes. These
predicates are used to partition the heap into elements less than the node pointed to by x and
those that are greater. Being unary predicates they can be used as abstraction predicates. This
could be called a pseudo-binary abstraction, since parts of the binary predicate dle are taken to
form several unary predicates.

inOrder [dle] formalizes the second data structure invariant for ordered trees. It requires elements
in the left subtree of a node to be smaller and elements in the right subtree to be greater than the
node itself. Smaller and greater are expressed in terms of dle.

The set membership property isElement is formalized similarly to the list-based case. 
1
 is an element

of set 
2
 if its data-field is equal to one of the nodes reachable from 

2 
, where equal can be formulated

in terms of dle.

Predicate

dle [x, left] () for each x Var

dle [x, right] () for each x Var

inOrder [dle]

isElement (
1
, 

2
)

Defining Formula


1
.(x (

1
)  dle (, 

1
)  deq (

1
, ))


1
.(x (

1
)  dle (, 

1
)  deq (

1
, ))


2
, 

4
.(downStar [left] (

2
, 

4
) 

(dle (
4
, 

2
)   dle (

2
, 

4
))) 


2
, 

4
.(downStar [right] (

2
, 

4
) 

 dle (
4
, 

2
)  dle (

2
, 

4
)))

isSet (
2
)  

equal
.(downStar (

2
, 

equal 
)

 dle (
equal 

, 
1
)  dle (

1
, 

equal 
) 


equal 

 
2

Intended Meaning

The data-field of  islessthan the
data-field of 

1
, where 

1
 is pointed

to by x.

The data-field of v is greater than
the data-field of 

1
, where 

1
 is

pointed to by x.

All the trees in the heap are in order.


1
 is an element of set 

2
.
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Figure 8. Input Structures for Tree-based Insertion and Removal

Figure 8 displays the input structures for our analysis of the insertion and removal methods. In
the following we omitted several predicates to make the visualizations more readable. The predicates
that we left our were left; right, down, downStar. Again, we want to cover all possible sets by these
abstract structures. In structure (a) set is empty and thus element is not an element of set. Structure
(b) represents non-empty sets. element might be part of the set, indicated by the dotted isElement-
predicate and the dotted dle-predicate between element and the contents of set. We also had to assign
a value to the dle-predicate for set which does not have a data-field. Its data-field is assumed to be
greater than all other data-fields. Elements that were originally reachable from set are marked with
or [set] as in the list-based case.

Insertion Running the analysis for set insertion yields 21 structures at exit. Most of them concern
special cases where the element had to be inserted in the left or right-most position of the tree or
where the left or the right subtree of the root was empty. All resulting structures fulfilled the data
structure invariants and element had been inserted into set. We picked two structures that
represent the most general cases. They can be seen in Figure 9.

Due to the number of binary predicates involved in the analysis the output structures are hard to
read. Also, the visualization engine does not know our intuition behind the dierent predicates,
which could help to generate more readable output. In structure (a) the algorithm found a node in
the tree that is equal to element. The three summary nodes make up the rest of the tree. The
summary node to the right represents the subtree of the node that was found. The other two
summary nodes partition the parents and neighbors into those that have a smaller data-field and
those that have a greater data-field. For this particular case the partitioning of the set is not
important. For structure (b) however it is the key to proving that the ordering is preserved. Here,
no node in the tree was found that was equal to element. Therefore a new heap node was allocated
and inserted into the tree, preserving the ordering. This is were the partition into smaller and
larger elements becomes important. Nodes that are greater than the new node can only reach it
via a path that starts by going left: downStar[left] is indefinite and downStar[right] is false.

Nodes with a smaller data-field can in turn only reach it via a path that starts with a right-edge
(downStar[right] = 1/2 and downStar[left] = 0).

Removal As noticed in the implementation section, tree-based removal was the most complicated
routine that we analyzed. Its size and complexity led to very time-consuming analyses that did
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not allow a trial and error approach when choosing the abstraction predicates. We used the same
predicates as in the analysis of the insertion algorithm. They were developed for this method
though and proved to work for the simpler insertion routine, too.

Figure 9. Sample Output Structures for Tree-based Insertion

Proving that element is not a member of set after the analysis was simple, once the data structure
invariants could be established. The ordering property ensures that every element only occurs
once in the tree. Showing that the ordering data structure invariant was maintained was more
dicult. The key predicates involved in proving this were dle[x, sel] and downStar[sel]. The use of these
predicates in the insertion routine already hints at why they are useful for removal. Figure 4
illustrates the dierent possibilities when removing an element from the tree. As the algorithm
keeps track of the relevant nodes (those represented by circles in the figure) in the graph through
pointer variables, dle[x, sel] delivers the necessary partition to keep relevant ordering information.
In addition downStar[sel] captures the important first selectors on paths between these parts of the
tree.
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To cope with the long analysis times we decomposed the problem into smaller ones first:

 Finding the element to delete.

 The element has one or no children.

 The element has two children, the most dicult case.

Figure 10. Sample Output Structures for Tree-based Removal



dline.info/pca            21

Pr
og

re
ss

  i
n 

 C
om

pu
te

r  
A

pp
lic

at
io

ns
  V

ol
um

e 
 1

3 
 N

um
be

r  
1 

 M
ar

ch
  2

02
4

In the end we put everything together.

Again, we decided to present only two representative output structures out of overall eight. They
are shown in Figure 10. Both structures satisfy the two data structure invariants modeled by
inOrder[dle] and treeNess. In structure (a) element was contained in set and therefore removed
from it. For demonstration purposes we did not free the element taken from the tree. One can see
that the tree has been partitioned into nodes with a greater data-field and nodes with a smaller
data-field than element. The same holds for structure (b). In this case element was not contained
in set at the invocation of the routine. No node was removed from the tree.

Membership Test Again, we omit to display the output structures. It is quite obvious that the
analysis succeeds, because the tree traversal analyzed is part of the insertion and removal methods
as well, which were analyzed before.

Empirical Results Table 2 presents some data about the four analyses. The analysis of the insertion,
removal and membership test methods of our list-based implementation resulted in a similar
number of structures and relatively short analysis times. In the tree-based case, however, the
dierence was considerable. This can probably be explained with the higher number of unary
predicates in the removal analysis, which led to more structures per location. The worst-case
complexity of the analysis is doubly-exponential in the number of abstraction predicates.
Additionally, the control flow graph (see Figure 11) for removal contains more than three times as
many locations as the CFG for insertion.

Discussion We managed to show interesting properties of list- and tree-based set implementations.
Our analyses assumes data structure invariants specific to the respective implementation to hold
at the entrance. The maintenance of these invariants throughout the execution of the routines is
established. Using these invariants our analysis was able to prove that the eect of the insertion
and removal methods complies with axioms of the ADT Set. The nature of the shape analysis
framework limited our proofs to partial correctness.

Table 2. Empirical Results

is established. Using these invariants our analysis was able to prove that the eect of the insertion
and removal methods complies with axioms of the ADT Set. The nature of the shape analysis
framework limited our proofs to partial correctness.

Analysis

Membership,
List-based

Insertion,
List-based

Removal,
List-based

Membership,
Tree-based

Insertion,
Tree-based

Removal,
Tree-based

#locations
in CFG

9

19

22

10

25

76

#unary
predicates

20

29

29

18

24

42

#binary
predicates

5

5

5

11

11

11

#structures

28

81

124

84

536

27697

Average
#structs

perlocation

3

4

 5

8

21

364

Maximal
#structs

perlocation

6

11

11

19

 91

3132

Time

2.570s

2.720s

4.050s

32.84s

69.23s

21767s
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Figure 11. CFG for Tree Removal

We used the isElement-predicate to relate dierent analyses. While the insertion and removal methods
were proved correct in terms of isElement, the analysis of the set membership routine showed the
equivalence of this routine with isElement. This approach loosely corresponds to the abstraction
mechanism used in [LKR04]. They use sets to abstract from more complex data structures, which
limits them to statically allocated data structures. Our use of isElement on the other hand allows to
handle dynamically allocated sets.

Choosing the right instrumentation predicates required a thorough understanding of the data
structures involved. For trees this meant identifying that reachability alone is not very interesting,
but that the first edge on a path from one node to another is important. However, the predicates
are not tailored to specific algorithms, but to the underlying data structures. They might prove
useful for other algorithms on trees and lists as well.

Abstraction Expressions The need to partition the trees into smaller and larger elements led to the
introduction of the dle[x,sel]-predicate family. The eect of these unary predicates on the abstraction
could also be achieved by using the binary dle-predicate in the abstraction process.

Figure 12. Abstraction Expressions

Here, individuals should only be joined if they have the same canonical name and if they agree on
binary abstraction predicates to other canonical names. This is illustrated in Figure 12. The tree on
the left is supposed to be in order. The ordering predicate is not visualized to make it more
readable. Canonical Abstraction would collapse all the nodes not pointed to by x (a). The relation
between the resulting summary node and the node pointed to by x would be inde“nite. Additionally
abstracting from dle would instead create two summary nodes and keep ordering information
definite. Of course, the proposed abstraction can also be achieved using a number of unary
abstraction predicates. The number of predicates needed for this is linear in the number of
abstraction predicates though, to cover all canonical names.
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We propose to specify the abstraction through Abstraction Expressions:

Definition 1. (Syntax of Abstraction Expressions): The set of Abstraction Expressions over a set of unary predicates
U and a set of binary predicates B is defined inductively as follows:

 {u
1
,....., u

n
} is an abstraction expression if {u

1
,....., u

n
}  U,

 AE
1
  AE

2
 is an abstraction expression if AE

1
 and AE

2
 are abstraction expressions,

 AE {b
1
,....., b

n
} is an abstraction expression if AE is an abstraction expression and {b

1
,....., b

n
}  B.

We define the semantics of Abstraction Expressions by giving an associated equivalence relation.
The equivalence relation determines which nodes are to be merged.

Definition 2. (Semantics of Abstraction Expressions): The associated equivalence relation ~AE to an Abstraction
Expression AE is defined inductively as follows:

 x ~{u
1
,....., u

n
} y :  {u

1
,....., u

n
} u(x) = u( y),

 x ~AE
1
  AE

2
 y : x ~AE

1
 y  x ~AE

2
 y,

 x ~AE {b
1
,....., b

n
} y : x ~AE y   z.(  b(x,w) =  b(y,w,w)).

The Abstraction Expression {u
1
,....., u

n
} is equivalent to Canonical Abstraction over {u

1
,....., u

n
}. The abstraction

depicted in case (b) of Figure 12 can be specified using the Abstraction Expression
{x} {dle}. It will be interesting to see whether there are more applications, where abstraction can
be specified more easily using such expressions than by plain Canonical Abstraction.

Dead Predicates To speed up the analyses we included additional actions in the control flow graphs
of the tree-based programs. These actions nullified certain variables and allowed the engine to
collapse structures that were otherwise isomorphic. This was only done for unary predicates
representing dead variables, i.e. predicates that further steps of the analysis did not rely on.
These predicates could be called dead predicates. A similar eect could have been achieved by
marking these predicates as non-abstraction predicates locally. This approach was previously
described in Roman Manevich’s Master Thesis [Man03]. These dead predicates could be determined
by a preceding static analysis. At the time the analyses were conducted it had not been integrated
into TVLA yet. We believe that it may dramatically increase the performance of analyses in larger
programs that contain many loosely coupled sections. Unfortunately, we cannot give experimental
results about the magnitude of the eect. Our analysis for the tree-based removal method did not
terminate within days without this optimization. Of course, the optimization could also decrease
precision, because more structures are collapsed, possibly losing relevant information. However,
in such a case it seems that the wrong abstraction is used, but the analysis succeeds by coincidence.

4. Conclusion

We created a precise shape analysis for programs that are manipulating ordered trees. It is
particularly tailored to invariants of the tree data structure. Choosing the right instrumentation
predicates required a thorough understanding of the data structures involved. This meant identifying
that reachability alone is not very interesting, but that the first edge on a path from one node to
another is important. We implemented the analysis in TVLA [LA00,LAS00] and successfully applied
it to methods of the tree-based set implementation. The analysis proved that the implementation
complies to the axioms (3) and (4) of the ADT Set specification.

a  s.insert(b)  a =
el

 b  a  s, (3)

a  s.remove(b)  a 
el

 b  a  s (4)
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We used the isElement-predicate to relate dierent analyses. Our analyses of the insertion and removal
methods established the two axioms in terms of isElement. Another analysis then established the
equivalence between isElement and the set membership method .insert(). Adapting existing analyses
for singly-linked lists allowed us to show the same property for our list-based set implementation.

Inspired by a family of instrumentation predicates used in our tree analysis, we propose a new
way of specifying abstractions by so-called Abstraction Expressions. These expressions allow to not
only use unary but also binary predicates in the abstraction specification. Abstraction Expressions
have the same expressive power as Canonical Abstraction. However, we need a smaller number of
predicates to express certain abstractions.

5. Future Work

We successfully analyzed a tree-based set implementation. Since the analysis is tailored to the
underlying data structure and not to the specific algorithms employed, it might be possible to
analyze other algorithms working on trees using the same abstraction.

The tree structure lends itself naturally to recursion. We could possibly combine recent work on
interprocedural shape analysis [RS01] with our abstractions to be able to analyze recursive
implementations. Modern data structure libraries usually contain more ecient set implementations
using balanced trees, like AVL or red-black trees. They maintain even more complicated data
structure invariants than the unbalanced tree implementation we analyzed. Algorithms on these
structures can usually be implemented more easily using recursion, too. Extending our analysis to
cope with the invariants of balanced trees might make such algorithms amenable as well.

Abstraction Expressions seem useful where we want to distinguish individuals if they dier by binary
predicates originating from individuals that we distinguish. In our tree-based analysis, we could
separate smaller and larger tree elements. In the shape analysis for RESET, we could use the set
membership relation to separate individuals in terms of the sets they belong to. An implementation
of the concept would allow deeper insight into the usefulness of the approach.
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