
Received: 4 September 2023

Revised:28 October 2023

Accepted: 9 December 2023

Copyright: with Author(s)

DLINE JOURNALS

PSTE 2024; 13 (1)
https://doi.org/10.6025/pste/2024/13/1/18-43

Progress in Systems and
Telecommunication Engineering

Print ISSN: 2319-457X

Online ISSN: 2319-4588

dline.info/pste 18

The Generalisation of Cutler and Shiloah’s Algorithm
for Routing

Julia Chuzhoy1 and David H. K. Kim2

1Toyota Technological Institute at Chicago
6045 S. Kenwood Ave
Chicago Illinois 60637
USA
{cjulia@ttic.edu}

2Department of Computer Science, University of Chicago
1100 East 58th Street
Chicago, Illinois 60615
USA
{hongk@cs.uchicago.edu}

ABSTRACT

This paper generalizes Cutler and Shiloah’s algorithm for routing with well-sepa-
rated destinations. We provide an O(n1/4· log n) approximation algorithm for NDP on
grids and give the APX-hardness proof. In this work, we discuss the integrality gap
of the multicommodity flow LP relaxation when all terminals are far from the grid
boundary.

Keywords: Shiloah’s Algorithm, Approximation Algorithm, Grid Boundary

1. Introduction

In the classical Node-Disjoint Paths (NDP) problem, the input is an undirected n-
vertex graph G = (V, E), and a collection {(s1 ,t1), . . . , (sk ,tk)} of pairs of vertices,
called sourcedestination, or demand, pairs, that we would like to route. In order to
route a pair (si , ti), we need to select some path P connecting si to ti . The goal is to
route the largest possible number of the demand pairs on node-disjoint paths: that
is, every vertex of G may participate in at most one path in the solution.

NDP is one of the most basic and extensively studied routing problems. When the
number of the demand pairs k is bounded by a constant, Robertson and Seymour
[27, 29] have shown an efficient algorithm for the problem, as part of their seminal
Graph Minors project. However, when k is a part of the input, the problem is known
to be NP-hard [17]. Even though the NDP problem, together with its many variants,
has been extensively studied, its approximability is still poorly understood. The best

currently known upper bound on the approximation factor is [22], achieved
by the fol lowing simple greedy algorithm: start with graph G and
an empty solution. While G contains any path connecting any

dline.info/pste 19

P
ro

gr
es

s
in

 S
ig

na
ls

 a
nd

 T
el

ec
om

m
un

ic
at

io
n

E
ng

in
ee

ri
ng

 V
ol

um
e

13
 N

um
be

r
1

M
ar

ch
 2

02
4

demand pair, choose the shortest such path P, add P to the solution, and delete all vertices of P
from G.Surprisingly, this elementary algorithm is the best currently known approximation
algorithm for NDP, even for restricted special cases of the problem, where the input graph G is
a planar graph, or even just a grid. On the negative side, it is known that there is no O(log1/2

 n)- approximation algorithm for NDP for any constant , unless NP  ZPTIME(npoly log n) [5, 4].

Perhaps the biggest obstacle in breaking the -approximation barrier for the problem is
the fact that the integrality gap of the standard multicommodity flow LP-relaxation for NDP is

, even in grid graphs. In the LP-relaxation, instead of connecting the demand pairs by
paths, we try to send as much flow as possible between the demand pairs, subject to the

constraint that each vertex carries at most one flow unit. The -approximation greedy
algorithm described above can be cast as an LP-rounding algorithm for the multicommodity flow

LP, and therefore, the integrality gap of the LP is . So far, rounding this LP relaxation has
been the main method used in designing approximation algorithms for a variety of routing

problems, and it appears that new techniques are needed in order to improve the -
approximation factor for NDP.

In this paper we break the -barrier on the approximation factor for NDP on grid graphs1,

by providing an O(n1/4 · log n)-approximation algorithm. Our algorithm distinguishes between
two types of demand pairs: an (si , ti) pair is bad if both si and ti are close to the grid boundary,
and it is good otherwise. Interestingly, the standard integrality gap examples for the
multicommodity flow LP relaxation usually involve a grid graph, and bad demand pairs. Our
algorithm deals with bad and good demand pairs separately, and in particular it shows that if all
demand pairs are good, then the integrality gap of the LP relaxation becomes O(n1/4 · log n) (but
unfortunately it still remains polynomial in n - see Section 6). We complement these results by
showing that NDP is APX-hard even on grid graphs. We believe that understanding the
approximability of NDP on grid graphs is an important first step towards understanding the
approximability of the NDP problem in general, as grids seem to be the simplest graphs, for
which the approximability of the NDP problem is widely open, and the integrality gap of the

multicommodity flow LP is . We hope that some of the techniques introduced in this

paper will be helpful in breaking the -approximation barrier in general planar graphs.

NDP in grid graphs has been studied in the past, often in the context of VLSI layout. Aggarwal,
Kleinberg and Williamson [1] consider a special case, where the set of the demand pairs is a
permutation  that is, every vertex of the grid participates in exactly one demand pair. They

show that for any permutation, one can route demand pairs. They also show that

with spacing d, every permutation contains a set of pairs that can be routed on
node-disjoint paths. Our algorithm for routing on grids is inspired by their work.

Cutler and Shiloach [16] studied NDP in grids in the following three settings. They assume that
all source vertices appear on the top row R1 of the grid, and all destination vertices appear on
some other row Rl of the grid, sufficiently far from the top and the bottom rows (for example, l
= [n/2]). In the packed-packed setting, the sources are a set of k consecutive vertices of R1,
and the destinations are a set of k consecutive vertices of Rl . They show a necessary and a
sufficient condition for when all demand pairs can be routed in the packed-packed instance. The
second setting is the packed-spaced setting. Here, the sources are again a set of k consecutive
vertices of R1, but the distance between every consecutive pair of the destination vertices on Rl
is at least d. For this setting, the authors show that if d  k, then all demand pairs can be
routed. We extend their algorithm to a more general setting, where the destination vertices

1Since n denotes, by convention, the number of vertices in the input graph, the size of the grid is
.

dline.info/pste 20

P
ro

gr
es

s
in

 S
ig

na
ls

 a
nd

 T
el

ec
om

m
un

ic
at

io
n

E
ng

in
ee

ri
ng

 V
ol

um
e

13
 N

um
be

r
1

M
ar

ch
 2

02
4

may appear anywhere in the grid, as long as the distance between any pair of the destination
vertices, and any destination vertex and the boundary of the grid, is at least (k). This extension
of the algorithm of [16] is used as a basic building block in both our algorithm, and the APX-
hardness proof. We note that Robertson and Seymour [28] provided sufficient conditions for the
existence of node-disjoint routing of a given set of demand pairs in the more general setting of
graphs drawn on surfaces, and they provide an algorithm whose running time is poly(n) · f (k) for
finding the routing, where (k) is at least exponential in k. Their result implies the existence of the
routing on grids, when the destination vertices are sufficiently spaced from each other and from
the grid boundaries. However, we are not aware of an algorithm for finding the routing, whose
running time is polynomial in n and k, and we provide such an algorithm here. The third setting
studied by Cutler and Shiloach is the spaced-spaced setting, where the distance between any pair
of source vertices, and any pair of destination vertices is at least d. The authors note that they
could not come up with a better algorithm for this setting, than the one provided for the packed-
spaced case.

Other Related Work
A problem closely related to NPD is the Edge-Disjoint Paths (EDP) problem. It is defined similarly,
except that now the paths chosen to the solution are allowed to share vertices, and are only
required to be edge-disjoint. It is easy to show, by using a line graph of the EDP instance, that NDP
is more general than EDP. The approximability status of EDP is very similar to that of NDP: there is
an -approximation algorithm [13], and it is known that there is no O(log1/2- n)-approximation

algorithm for any constant , unless NP  ZPTIME(npoly log n) [5, 4]. As in the NDP problem, we can

use the standard multicommodity flow LP-relaxation of the problem, in order to obtain the -

approximation algorithm, and the integrality gap of the LP-relaxation is even on planar
graphs. However, for even-degree planar graphs, Kleinberg [19], building on the work of Chekuri,
Khanna and Shepherd [12, 11], has shown an O(log2 n)-approximation LP-rounding algorithm.
Aumann and Rabani [8] showed an O(log2 n)-approximation algorithm for EDP on grid graphs, and
Kleinberg and Tardos [21, 20] showed O(log n)-approximation algorithms for wider classes of
nearly-Eulerian uniformly high-diameter planar graphs, and nearly-Eulerian densely embedded
graphs. Recently, Kawarabayashi and Kobayashi [18] gave an O(log n)-approximation algorithm
for EDP when the input graph is either 4-edge-connected planar or Eulerian planar. It appears that
the restriction of the graph G to be Eulerian, or near-Eulerian, makes the EDP problem significantly
simpler, and in particular improves the integrality gap of the LP-relaxation. The analogue of the
grid graph for the EDP problem is the wall graph (see Figure 1): the integrality gap of the standard
LP relaxation for EDP on wall graphs is , and to the best of our knowledge, no better than

-approximation algorithm for EDP on walls is known. Our O(n1/4 · log n)-approximation
algorithm for NDP on grids can be extended to the EDP problem on wall graphs (see Section 7).

Figure 1. A wall graph

dline.info/pste 21

P
ro

gr
es

s
in

 S
ig

na
ls

 a
nd

 T
el

ec
om

m
un

ic
at

io
n

E
ng

in
ee

ri
ng

 V
ol

um
e

13
 N

um
be

r
1

M
ar

ch
 2

02
4

A variation of the NPD and EDP problems, where small congestion is allowed, has been a subject
of extensive study. In the NDP with congestion (NDPwC) problem, the input is the same as in the
NDP problem, and we are additionally given a non-negative integer c. The goal is to route as many
of the demand pairs as possible with congestion at most c: that is, every vertex may participate
in at most c paths in the solution. EDP with Congestion (EDPwC) is defined similarly, except that
now the congestion bound is imposed on edges and not vertices. The classical randomized rounding
technique of Raghavan and Thompson [25] gives a constant-factor approximation for both
problems, if the congestion c is allowed to be as high as (log n/ log log n). A recent line of work
[12, 24, 3, 26, 14, 15, 10, 9] has lead to an O(poly log k)-approximation for both NDPwC and
EDPwC problems, with congestion c = 2. For planar graphs, a constant-factor approximation with
congestion 2 is known [30]. All these algorithms perform LP-rounding of the standard
multicommodity flow LP-relaxation of the problem.

Organization
We start with Preliminaries in Section 2, and show a generalization of the algorithm of Cutler and
Shiloah [16] for routing with well-separated destinations in Section 3. In Section 4 we provide an
O(n1/4 · log n)-approximation algorithm for NDP on grids, and we provide the APX-hardness proof
in Section 5. We discuss the integrality gap of the multicommodity flow LP-relaxation when all
terminals are far from the grid boundary in Section 6, and we sketch the extension of our O(n1/

4 log n)-approximation algorithm to EDP on wall graphs in Section 7.

2. Preliminaries

We consider the NDP problem in two-dimensional grids: The input is an (N×N)-grid graph

G = (V, E), and a collection = {(s
1

, t
1
), . . . , (s

k
, t

k
)} of pairs of vertices, called demand, or source-

destination, pairs. The goal is to find a largest cardinality collection P of paths, where each path in
 connects some demand pair (s

i
, t

i
), and every vertex of G participates in at most one path in .

The vertices in the set {s
1

,t
1

, . . . ,s
k
,t

k
} are called terminals. By convention, we denote n = |V|, so

n = N2.

We assume that the grid rows are indexed R1, . . . , RN in the top-to-bottom order, and the

columns are indexed C1, . . . , CN in the left-to-right order. We denote by the unique vertex

in Ri  Cj . Given a vertex  V, let col() denote the column, and row() denote the row in which
 lies. The boundary of the grid is (G) = R1  RN  C1  CN. We call R1 ,RN ,C1 ,CN the boundary

edges of the grid. Given any integers 1  i  i’  N, 1  j  j’  N, we denote by G[i : i’, j : j’] the sub-
graph of G, induced by the set {v(i”, j”) | i  i”  i’, j  j”  j’ } of vertices. We sometimes say that
G[i : i’, j : j’] is the sub-grid of G, spanned by rows Ri , . . . ,Ri’ and columns Cj, . . . ,Cj’ .

Given a path P in G, and a set S of vertices of G, we say that P is internally disjoint from S, if no
vertex of S serves as an inner vertex of P. We will use the following simple observation.

 Observation 1. Let G be a (h × w)-grid, with w, h > 2, and let k  min {w2, h2} be an
integer. Then for any pair L,L’ of opposing boundary edges of G, for any pair S  V (L), T  V (L’)
of vertex subsets on these boundary edges, with |S| = |T| = k, there is a set ofk node-disjoint
paths, connecting the vertices of S to the vertices of T in G, such that all paths in are internally
disjoint from V (L  L’). Moreover, the path set can be found efficiently.

Proof. Let G’ be the sub-graph of G, obtained by deleting all vertices of (L  L’) \ (S  T) from G.
It is enough to show that there is a set P of k disjoint paths connecting the vertices of S to the
vertices of T in G’.

Assume without loss of generality that L is the top and L’ is the bottom boundary edge of G.
Assume for contradiction that such a set of paths does not exist. Then from Menger’s theorem,
there is a set Z of at most k  1 vertices, such that in G’ \ Z, there is no path from a vertex of S
\ Z to a vertex of T \ Z. However, the vertices of S lie on k distinct columns of G, so at least one
such column, say C, does not contain a vertex of Z. Similarly, there is some column C’ of G that

dline.info/pste 22

P
ro

gr
es

s
in

 S
ig

na
ls

 a
nd

 T
el

ec
om

m
un

ic
at

io
n

E
ng

in
ee

ri
ng

 V
ol

um
e

13
 N

um
be

r
1

M
ar

ch
 2

02
4

contains a vertex of T, and V (C’) \ Z = ;. Finally, since there are at least k + 2 rows in G, there issome
row R  R1, Rh, that contains no vertex of Z. Altogether, (C  R  C’) \ G’ lie in the same connected
component of G’ \ Z, and this connected component contains a vertex of S and a vertex of T, a
contradiction. The set of paths can be found efficiently by computing the maximum single-
commodity flow between the vertices of S and the vertices of T in G’, and using the integrality of
flow.

Consider the input grid graph G. The L-distance between two vertices and (i’, j’) is defined

as d((i, j), (i’, j’)) = max(|i  i’|, |j  j’|). The distance between a set S  V (G) of vertices and
a vertex  V (G) is d(, S) = minuS {d(v, u)}.

Multicommodity Flow LP Relaxation
For each demand pair (si ,ti)  , let be the set of all paths connecting si to ti in G, and let

. In order to define the multicommodity flow LP-relaxation of NDP, every path P  is
assigned a variable f(P) representing the amount of flow that is sent on P, and for each demand
pair (si ,ti), we introduce variable xi, whose value is the total amount of flow sent from si to ti. The
LP-relaxation is then defined as follows.

(LP-flow) max

 s.t.  f(P) = xi 1  i  k

 f(P)  1  V

 f(P)  0 1  i  k, P 

Even though this LP-relaxation has exponentially many variables, it can be efficiently solved by
standard techniques, e.g. by using an equivalent polynomial-size edge-based formulation.

It is well known that the integrality gap of (LP-flow) is even in grid graphs. Indeed, let G be
an (N × N)-grid, and let k = N  2. We let the sources s1 , . . . , sk appear consecutively on row R1,
starting from (1, 1) in this order, and the destinations appear consecutively on row RN starting
from (N, 1), in the opposite order: tk , . . . , t1 (see Figure 2). It is easy to see that there is a
solution to (LP-flow) of value k/3 = (N): for each pair (si , ti), we send 1/3 flow unit on the path Pi,
where Pi is an si–ti path lying in the union of columns Ci ,CNi1 and row Ri + 1. On the other hand, it
is easy to see that the value of any integral solution is 1, since any pair of paths connecting the
demand pairs have tocross. Since the number of vertices in G is n = N2, this gives a lower bound of

 on the integrality gap of (LP-flow).

Figure 2. Integrality gap example

dline.info/pste 23

P
ro

gr
es

s
in

 S
ig

na
ls

 a
nd

 T
el

ec
om

m
un

ic
at

io
n

E
ng

in
ee

ri
ng

 V
ol

um
e

13
 N

um
be

r
1

M
ar

ch
 2

02
4

3. Routing with Well-Separated Destinations

In this section we generalize the results of Cutler and Shiloach [16], by proving the following
theorem.

 Theorem 2. Let H be the (N×N)-grid, and let ={(s
1
, t

1
), . . . , (s

k
, t

k
)} be a set of k  4 demand pairs in H, such

that: (i) s
1
, . . . , s

k
 are all distinct, and they appear on the first row of H; (ii) for all 1  i  j  k, d(t

i
, t

j
) > 4k + 4; and (iii)

for all 1  i  k, d(t
i
, V ((H))) > 4k + 4. Then there is an efficient algorithm that routes all demand pairs in in graph

H.

The rest of this section is devoted to proving Theorem 2. For each destination vertex tj, we define
a sub-grid Bj of H of size ((2k + 3) × (2k + 3)), centered at tj , that is, if tj = (i, i’), then Bj is a
sub-grid of G spanned by rows R

i - (k+1)
, . . . ,R

i+(k+1)
 and columns C

i’ - (k+1)
, . . . ,C

i’+(k+1)
 of H.

We call the resulting sub-grids B1, . . . , Bk boxes. Notice that all boxes are disjoint from each
other, due to the spacing of the destination terminals. We start with a high-level intuitive description
of our algorithm. For each box Bj , we can associate an interval I (Bj)  (1, N) with Bj , as follows:
If C ,C are the columns of H containing the first and the last columns of Bj, respectively, then

I(B
j
) = (i

1
, i

2
). We say that the resulting set = {I(Bj)} of intervals is aligned, if for all i  j, either

I(B
i
) = I(B

j
), or I(B

i
)(B

j
) = . For simplicity, assume first that all intervals in are aligned, and let

{I1, I2, . . . , Ir} be the set of all distinct intervals in , ordered in their natural left-to-right order.

For each 1  h  r, let be the set of all boxes Bj with I(Bj) = Ih , and let = {Bj| 1  j  k}. We

define a “snake-like” ordering of the boxes in as follows. For all 1  h < h’  r, the boxes of

appear before all boxes of ’ in this ordering. Within each set , if h is odd, then the boxes of
are ordered in the order of their position in H from top to bottom, and otherwise they are ordered
in the order of their position in H from bottom to top. We then define a set of k paths, that start
from the sources s

1
, . . . , s

k
, and visit all boxes in in this order (see Figure 3). We will make sure

that when the paths of traverse any box j, the path Pj  that originates at sj visits the
vertex tj. In order to accomplish this, we need the following lemma.

Figure 3. Traversing the boxes

dline.info/pste 24

P
ro

gr
es

s
in

 S
ig

na
ls

 a
nd

 T
el

ec
om

m
un

ic
at

io
n

E
ng

in
ee

ri
ng

 V
ol

um
e

13
 N

um
be

r
1

M
ar

ch
 2

02
4

 Lemma 3. Let B be the ((2k + 3) × (2k + 3)) grid, t = v(k + 2, k + 2) the vertex in the center of the grid,
and 1  j  k any integer. Let X = {x

1
, . . . , x

k
} be any set of k vertices on the top boundary edge L of

B and Y = {y1, . . . , yk} any set of k vertices on the bottom boundary edge L’ of B, both sets
ordered from left to right. Then we can efficiently find k disjoint paths P’1, . . . , P’k in B, such that
for 1  i  k, path P’ i connects x

i
 to y

i
; al l paths are internal ly disjoint from

V (L  L’); and path P’j contains t.

Proof. Let U = {u
1
, . . . , u

k
} be any set of k vertices on row Rk+2 of B, ordered from left to right, such

that u
j
 = t. Let B’  B be the grid spanned by the top k + 2 rows of B, and B’ B’’ the grid spanned

by the bottom k + 2 rows of B. Note that B’ \ B’’ = R
k+2

.

From Observation 1, there is a set of k node-disjoint paths in B’, connecting the vertices of X

to the vertices of U, and there is a set of k node-disjoint paths in B’’, connecting the vertices

of U to the vertices of Y . Moreover, the paths in are internally disjoint from V (Rk+2  L 

L’ . By concatenating the paths in and , we obtain a set of k node-disjoint paths in B,
connecting the vertices of X to the vertices of Y , such that the paths in are internally disjoint
from L  L’. The intersection of each path in with the row Rk+2 is exactly one vertex. Since
graph B is planar, the paths in P’ cross the row Rk+2 in the same left-to-right order in which their
endpoints appear on L and L’. Therefore, for 1  i  k, the ith path connects xi to yi, and the jth
path contains the vertex t.

Since in general the intervals in I may not be aligned, we need to define the ordering between the
boxes, and the set of paths traversing them more carefully. We start by defining an ordering of

the destination vertices , which will define an ordering of their corresponding boxes.

We draw vertical lines in the grid at every column whose index is an integral multiple of (3k + 2),
and let {V1, V2 , . . . } denote the sets of vertices of the resulting vertical strips of width 3k + 2,
that is, for 1  m  N/(3k + 2),

We assign every terminal tj to the unique set Vm containing tj . We then define a collection S of
vertical strips of H as follows: For each set Vm , such that at least one terminal is assigned to Vm,

we add H[Vm] to . We assume that the set of strips S = {S1, . . . , Sp} is indexed in their natural
left-to-right order. Abusing the notation, we will denote V (Sm) by Vm , for 1  m  p.

Consider some vertical strip Sm, and let ti , tj  Vm , for j  i. Then the horizontal distance between
ti and tj, | col(ti)  col(tj)|  3k + 2, and since d(ti , tj) > 4k + 4, ti and tj must be at a vertical
distance at least 4k + 4. Therefore, we can order the destination terminals assigned to the same
vertical strip in the increasing or decreasing row index. We define the ordering of all destination
terminals as follows: (1) for every 1  m < m’ p, every terminal ti  Vm precedes every terminal
tj  Vm’; and (2) for ti , tj  Vm , with row(tj) > row(ti), if m is odd then ti precedes tj, and if m is
even, then tj precedes ti. Let = {Bj | 1  j  k} be the set of boxes corresponding to the
destination vertices. The ordering of the destination vertices now imposes an ordering on . We
re-index the boxes Bj according to this ordering, and we denote by t(Bj) the unique destination
terminal lying in Bj. We will say that a box Bj belongs to strip Sm iff the corresponding terminal
t(Bj)Vm. (Note that Bj is not necessarily contained in Sm). The following observation is immediate.

 Observation 4. If box Bj belongs to strip Sm, then at least k + 2 vertices from the top boundary
of Bj , and at least k + 2 vertices from the bottom boundary of Bj belong to Vm.

dline.info/pste 25

P
ro

gr
es

s
in

 S
ig

na
ls

 a
nd

 T
el

ec
om

m
un

ic
at

io
n

E
ng

in
ee

ri
ng

 V
ol

um
e

13
 N

um
be

r
1

M
ar

ch
 2

02
4

In order to complete the construction of the set of paths routing all demand pairs, we define,
for 1  i  k, a set of k disjoint paths, with the following properties:

P1. Paths in connect to some set of k vertices on the top boundary of B1;

P2. For i > 1:

 Bi1 and Bi belong to the same strip Sm, and m is odd, then paths in connect k vertices on
the bottom row of Bi1 to k vertices on the top row of Bi ;

 Bi1 and Bi belong to the same strip Sm, and m is even, then paths in connect k vertices on
the top row of Bi1 to k vertices on the bottom row of Bi;

 Bi1 belongs to strip Sm and Bi to strip Sm+1, and m is odd, then paths in connect k vertices
on the bottom row of Bi1 to k vertices on the bottom row of Bi;

 Bi1 belongs to strip Sm and Bi to strip Sm+1, and m is even, then paths in connect k
vertices on the top row of Bi1 to k vertices on the top row of Bi; and

P3. All paths in are disjoint from each other, and each path is internally disjoint from
V(B).

 Theorem 5. There is an efficient algorithm to find the collections of paths with properties (3)(3).

We prove Theorem 5 below, and we first complete the proof of Theorem 2 here. Assume that we
are given the path sets with properties (3)–(3). For each box Bj , let Xj  V(Bj) be the
set of k vertices that serve as endpoints of the paths of , and let Yj V(Bj) be the set of k
vertices that serve as endpoints of the paths in . (For j = k, we choose the set Yk of k
vertices on the top or the bottom boundary of Bk (opposing the boundary edge where the vertices
of Xk lie) arbitrarily). We construct the set of paths gradually, by starting with , and
performing k iteration. We assume that at the beginning of iteration i, set contains k disjoint
paths, connecting the k source vertices to the vertices of Xi. This is clearly true at the beginning
of the first iteration. The ith iteration is executed as follows. Assume that t(Bi) = tr , and let u 
Xi be the vertex where the path of originating at sr terminates. From Lemma 3, we can find a
set of paths inside Bi, connecting the vertices of Xi to the vertices of Yi , that are internally
disjoint from the top and the bottom boundary edges of Bi, such that the path originating at u
contains the vertex tr. We then concatenate the paths in with the paths in , and, if i < k,
with the paths in , to obtain the new set of paths, and continue to the next iteration. After
k iterations, we obtain a collection of k node-disjoint paths that traverse all boxes Bj, such that
for each 1  i  k, the path originating from si contains the vertex ti. It now remains to prove
Theorem 5.

Proof of Theorem 5. For each box Bj, for 1  j  k, we define four sub-graphs of H, ,
that will be used in order to route the sets of paths.

Consider some box Bj , and assume that it belongs to strip Sm. Let Cl, Cr be the columns of H that
serve as the left and the right boundaries of Sm, respectively. Let Rt ,Rb be therows of H containing

dline.info/pste 26

P
ro

gr
es

s
in

 S
ig

na
ls

 a
nd

 T
el

ec
om

m
un

ic
at

io
n

E
ng

in
ee

ri
ng

 V
ol

um
e

13
 N

um
be

r
1

M
ar

ch
 2

02
4

Figure 4 Graphs and

the k + 1 rows immediately above row Rt , in addition to the row Rt , and is defined similarly

below Bj . Formally, is the sub-grid of H spanned by columns Cl , . . . ,Cr , and rows Rt k1 , . . .

,Rt , so contains k + 2 rows and 3k + 2 columns. Similarly, is the sub-grid of H spanned by

columns Cl , . . . ,Cr, and rows Rb , . . . ,Rb+k+1, so contains k + 2 rows and 3k + 2 columns (see

Figure 4).

We now turn to define the grids and . Graph is defined as follows. Assume w.l.o.g. that

m is odd (recall that Sm is the strip containing t(Bj)). If Bj is not the topmost box that belongs to

Sm , then let Ra be the row of H containing the bottom row of ; otherwise let Ra = R2k+1 if j >

1 and Ra = Rk+1 if j = 1. Let Ra’ be the row of H containing the top row of . We would like to

be the grid containing the segments of the middle k columns of Sm , between rows Ra and Ra’ .

Formally, we let be the sub-grid of H spanned by rows Ra and Ra’ , and columns C
l+k+2

, . . ., C
l+2k+1

.

We define the graph similarly. If Bj is not the bottommost box of Sm , then let Rc be the row of

H containing the top row of , and otherwise let Rc = RNk1. Let Rc’ be the row of H containing

the bottom row of . Graph is the sub-grid of H spanned by rows Rc’ , . . . ,Rc , and columns

Cl+k+2, . . . ,Cl+2k+1.

Notice that if Bj is not the topmost box of Sm, then = , and if Bj is not the bottom most

box of Bm , then = . We need the following observation.

dline.info/pste 27

P
ro

gr
es

s
in

 S
ig

na
ls

 a
nd

 T
el

ec
om

m
un

ic
at

io
n

E
ng

in
ee

ri
ng

 V
ol

um
e

13
 N

um
be

r
1

M
ar

ch
 2

02
4

 Observation 6. For all 1  q  k, Bq ,Bq = . Moreover, if q  j, then additionally Bq

,Bq = .

Proof. We prove for and . The proofs for and are symmetric.

Consider some box Bq with q  j, and assume for contradiction that Bq  . Then the vertical

distance between t(Bq) and t(Bj) is less than 4k + 4, and so the horizontal distance between

them must be greater than 4k + 4. However, t(Bj) lies in the strip Sm, and, since Bq intersects

, the horizontal distance between t(Bq) and the left or the right column of Sm is at most k + 1,

and so the total horizontal distance between t(Bq) and t(Bj) is at most 4k + 4, a contradiction.

Consider now some box Bq, for 1  q  k, and assume for contradiction that Bq = . If Bj is

the topmost box in Sm, then Bq cannot belong to Sm. If Bj is not the top most box of Sm, then Bq

cannot belong to Sm due to the definition of . Therefore, t(Bq) lies in either Sm+1 or Sm1. But

since Bq is a box of width 2k + 3, with t(Bq) lying in (k + 2)th column of Bq, it is impossible for Bq

to intersect .

We are now ready to define the sets of paths. In order to do so, we define a collection {H1, .

. . ,Hk} of disjoint sub-graphs of H, and each such sub-graph Hi will be used to route the set

of paths. We start by letting H1 be the union of three graphs, , and the sub-grid of H

spanned by the top k + 1 rows of H. We denote this latter graph by H’1. Recall that the terminal

t(B1) lies in strip S1. Let A1 be the set of k vertices on the top boundary of , A2 the set of k

vertices on the bottom row of , and let A3 be any set of k vertices on the top row of B1, that

lie in S1 (from Observation 4, such a set exists). From Observation 1, we can construct three

sets of paths: set in , connecting each source vertex to some vertex of A1; set in

connecting the vertices of A1 to the vertices of A2 (the paths in are just the columns of),

and set in , connecting the vertices of A2 to the vertices of A3. We let be obtained by

concatenating the paths in , , and .

Consider now some index 1 < j  k, and assume that Bj1 belongs to some strip Sm. We assume

w.l.o.g. that m is odd (the case where m is even is dealt with similarly), and we show how to

construct the set of paths. We consider two cases. The first case is when Bj also lies in Sm.

We then let Hj be the union of , and . The set of paths will be contained in Hj , and

it is defined as follows. Let A1 be any set of k vertices on the bottom row of Bj1 , that lie in Vm

(this set exists due to Observation 4); let A2 and A3 be the vertices of the top and the bottom

rows of , respectively, and let A4 be any set of k vertices on the top row of Bj that lie in Vm.

As before, using Observation 1, we can construct three sets of paths: set in , connecting

each vertex of A1 to some vertex of A2; set in connecting the vertices of A2 to the

vertices of A3 (the paths in are just the columns of), and set in , connecting the

vertices of A3 to the vertices of A4. We let be obtained by concatenating the paths in , ,

and .

Finally, assume that Bj belongs to Sm+1. Let Cl and Cr be the columns of H that serve as the left

boundary of Sm and the right boundary of Sm+1 , respectively. Let be the sub-grid of H,

spanned by columns Cl , . . . , Cr , and rows RNk1, . . . ,RN. We let Hj be the union of

 and . Using methods similar to those described above, it is easy to find a

dline.info/pste 28

P
ro

gr
es

s
in

 S
ig

na
ls

 a
nd

 T
el

ec
om

m
un

ic
at

io
n

E
ng

in
ee

ri
ng

 V
ol

um
e

13
 N

um
be

r
1

M
ar

ch
 2

02
4

set of k disjoint paths in Hj , connecting k vertices on the bottom row of Bj1 to k vertices on

the bottom row of Bj .

The case where m is even is dealt with similarly. The only difference is that in the case where Bj

belongs to Sm+1, we use rows Rk+2, . . . ,R2k+1 to define H’j, instead of rows RNk+1, . . . ,RN, to

avoid collision with the graph .

From the construction of the graphs Hi , it is easy to see that all such graphs are mutually disjoint,

and therefore we obtain the desired sets , . . . , of paths with properties (3)(3).

4. An (n1/4)-Approximation Algorithm

We assume that we are given the (N × N) grid graph G = (V, E), so n = |V| = N2, and a collection

 = {(si , ti)} of demand pairs. We say that a demand pair (si ,ti) is bad if both d(si ,(G)),

d(ti ,(G))  4 + 4, and we say that it is good otherwise. Let denote the sets of

the good and the bad demand pairs in , respectively. We find an approximate solution to each of
the two sub-problems, defined by and , separately, and take the better of the two solutions.
The following two subsections describe these two algorithms.

4.1. Routing the Good Pairs

Our first algorithm provides an O(n1/4 log n)-approximation for the special case when all demand
pairs are good. We start with a high-level overview of the algorithm. The algorithm is based on LP-
rounding of (LP-flow), and so it proves that the integrality gap of (LP-flow) for this special case is
O(n1/4 log n). The first step of the algorithm is to reduce the problem to the following special case:
We are given a grid A of size ((m) × (m)), where m  N/8 is some integer, and two disjoint sub-
grids Q,Q’ of A, of size (m × m) each, such that the minimum L-distance between a vertex in Q
and a vertex in Q’ is (m). We are also given a set (Q,Q’) of demand pairs, where for each pair

(s, t)  (Q,Q’), s  Q, t  Q’, and d(s, (Q)) > 4 + 4 (where N is the size of the side of our
original grid G). We refer to the resulting routing problem as 2-square routing. We show that an
-approximation algorithm to the 2-square routing problem immediately implies an O( log n)-
approximation to the original problem. We note that a similar reduction to the 2-square routing
problem has been used in the past, e.g. in [1]. It is now enough to design an O() = O() =

O(n1/4)- approximation algorithm for the 2-square routing problem. Let OPT’ be the optimal solution
to this problem, and let (Q,Q’) be the subset of the demand pairs routed in OPT’. Notice that
|OPT’|  4m, since each path in the optimal solution must contain at least one vertex of (Q). We
define a partition of Q into sub-squares of size (() × ()), and show an efficient

algorithm to find a subset (Q,Q’) of (|OPT’|/) demand pairs, with | |  , so that the
following holds. Let S’ and T’ denote the sets of the source and the destination vertices, participating
in the pairs in , respectively. Then (i) for each square X  , |V (X) S’|  1; (ii) all vertices in
T’ can be simultaneously routed to (Q’) \(G) on node-disjoint paths; and (iii) every vertex of A
participates in at most one demand pair. Set is found by setting up an appropriate instance of
the maximum flow problem. It is then easy to route all vertices in T’ to (Q) on paths that are
node-disjoint and internally disjoint from Q. We then use Theorem 2 to complete the routing inside
Q. We now turn to describe the algorithm more formally.

Let (f, x) be the optimal solution to the linear program (LP-flow) on instance (G,), and let OPTLP
be its value. We show an algorithm that routes (OPTLP /(n

1/4· log n)) demand pairs. The algorithm
consists of two steps. In the first step, we reduce the problem to routing between two square sub-
grids of G. We note that a similar reduction has been used in prior work, e. g. by Aggarwal et al.
[1]. In the second step, we show an approximation algorithm for the resulting sub-problem.

dline.info/pste 29

P
ro

gr
es

s
in

 S
ig

na
ls

 a
nd

 T
el

ec
om

m
un

ic
at

io
n

E
ng

in
ee

ri
ng

 V
ol

um
e

13
 N

um
be

r
1

M
ar

ch
 2

02
4

Reduction to the 2-Square Problem
In this step, we reduce the problem of routing on G with a general set of good demand pairs,
to a problem where we are given two disjoint sub-grids (or squares) Q1, Q2 of G, and every
demand pair (sj ,tj) has sj  Q1 and tj  Q2 , or vice versa.

We start by partitioning the set of the demand pairs into dlogNe subsets, ,
where

For each 1  h  logN, let Fh = , where xj is the amount of flow sent from sj to tj

in the solution to (LP-flow). We let h* be the index maximizing Fh* , so Fh*  OPTLP / logN. From

now on, we focus on routing the pairs in , and we will route (Fh* /n
1/4) such pairs. Assume

first that h*  6. In this case, we partition the grid into sub-grids of size at most (256 × 256) with
a random offset, as follows. Select an integer 0  z < 256 uniformly at random, and use the set

 of columns and the set of rows to partition the

grid into sub-grids. Let be the resulting collection of sub-grids. We define a new LP-solution as
follows: start with the original LP-solution; for every demand pair (sj ,tj)  , set xj = 0, and

f(P) = 0 for all paths P  . For every demand pair (sj ,tj)  , if sj or tj lie on a row of or a

column of , or if they belong to different sub-grids in Q, set xj = 0 and f(P) = 0 for all paths P 

. Since for each pair (sj ,tj)  , d(sj ,tj) < 64, it is easy to see that the expected value of the

resulting LP-solution is W =(Fh*) = (OPTLP /logN) = (OPTLP /log n). By trying all possible

values 0  z < 256, we can find a partition of G, and a corresponding LP-solution, whose value
is at least W. Notice that for each sub-grid Q  , the number of vertices of Q is bounded by
2562, and so the total amount of flow routed between the demand pairs contained in Q is bounded

by 2562. For each sub-grid Q  , if there is any demand pair (sj ,tj)  with sj ,tj  Q, and a
non-zero value xj in the current LP-solution, we select any such pair and route it via any path P
contained in Q, which is disjoint from the boundary of Q. It is easy to see that the total number
of the demand pairs routed is (W) = (OPTLP /log n). From now on, we assume that h* > 6.

For convenience, we denote h by h from now on. Let m = 2h/16. We partition the grid into a
collection = {Qp,q| 1  p  N/m , 1  q  N/m} of disjoint sub-grids, or squares, as follows.
First, partition G into N/m disjoint vertical strips V1, . . . , VN/m,each containing m consecutive
columns of G, except for the last strip, that may contain between m and 2m1 columns. Next,
partition each vertical strip Vp into N/m disjoint sub-grids, where each sub-grid contains m
consecutive rows of Vp , except possibly for the last sub-grid, that may contain between m and
2m1 rows. The width and the hight of each such sub-grid is then between m and 2m1, where
m  N/16. Notice that for each such grid Qp ,q  , if L is the left boundary edge of Qp ,q , and L’ is
the left boundary edge of G, then either L  L’, or L and L’ are separated by at least m1 columns.
The same holds for the other three boundary edges. We need the following observation.

 Observation 7. Let (sj, tj)  be a demand pair, and assume that sj  Qp,q and tj  Qp’, q’.
Then:

5 |p p’| + |q  q’|  34.

Proof. We first show that |p- p’| + |q - q’|  5. Indeed, assume otherwise. Then both the horizontal
and the vertical distances between s

j
 and t

j
 are less than 8m = 8· 2h/16 = 2h-1, while d(sj ,tj)  2

h1, a
contradiction.

Assume now for contradiction that |p p’| + |q  q’| > 34. Then d(sj ,tj) > 16m = 2h, contradicting
the fact that d(sj ,tj) < 2h.

dline.info/pste 30

P
ro

gr
es

s
in

 S
ig

na
ls

 a
nd

 T
el

ec
om

m
un

ic
at

io
n

E
ng

in
ee

ri
ng

 V
ol

um
e

13
 N

um
be

r
1

M
ar

ch
 2

02
4

We say that a pair of squares in is interesting . Let be

the set of all interesting pairs of squares in . We associate an NDP instance with each such pair

, as follows. Let be the set of all demand pairs where

and , or vice versa. We also define a box A(Z), that contains , and adds a

margin of m around them, if possible. More precisely, let l be the smallest integer, such that

 Similarly, be the largest integer, such that

. Similarly, let be the smallest and the largest inte-

gers, respectively, such that ;. We then let A(Z) be the sub-grid of G

spanned by rows , and by columns . For every

interesting pair of squares , we now define an instance of the NDP problem on graph A(Z),

with the set of demand pairs. Let F(Z) be the total amount of flow routed between the

demand pairs in in the current LP-solution Fh to our original problem (notice that in our LP-

solution, the fractional routing of the demand pairs in is not necessarily contained in A(Z)).

From the above discussion, . We will show an algorithm that routes, for

each demand pairs in integrally, in graph A(Z). However, it is possible

that for two pairs and the two routings may interfere with each other.

We resolve this problem in the following step.

From Observation 7, it is easy to see that for each interesting pair of squares , the number

of pairs is bounded by some constant c. We construct a graph H, whose

vertex set is , and there is an edge iff . As observed above,

the maximum vertex degree in this graph is bounded by some constant c, and so we can color H

with c + 1 colors. Let be the set of vertices of color i. We select a color class i, maximizing

the value . Clearly, . For every pair of vertices in Ui*, we

now have A(Z) A(Z’) = ;. In order to obtain an O(n1/4 log n)-approximation algorithm for the

special case where all demand pairs are good, it is now enough to prove the following theorem.

 Theorem 8. There is an efficient algorithm, that, for every interesting pair of squares,

routes demand pairs of inside the grid A(Z).

The Rounding Algorithm

From now on we focus on proving Theorem 8. We assume that we are given an interesting pair

Z = (Q, Q) of squares, where the width and the height of each square is bounded by 2m- 1. We

are also given a collection of demand pairs, that, for convenience, we denote by from now

on. For each demand pair , we can assume without loss of generality that .

Recall that we have a fractional solution (f, x) that routes F* = F(Z) flow units between the demand

pairs in , in the grid G. Additionally, we are given a square A = A(Z), containing Q and Q, as

defined above. Recall that for any pair of vertices, .

From our definition of good demand pairs, it is possible that for a pair

 or , but not both. We say that (sJ, tJ) is a type

 and we say that it is a type-2 demand pair otherwise. Let F1 be the total

flow in the LP-solution between the type-1 demand pairs, and F2 the total flow between type-2

demand pairs. We assume without loss of generality that F1 F2, so F2  F */2. From now on we

focus on routing type-2 demand pairs. Abusing the notation, we use to denote the set of all

type-2 demand pairs.

dline.info/pste 31

P
ro

gr
es

s
in

 S
ig

na
ls

 a
nd

 T
el

ec
om

m
un

ic
at

io
n

E
ng

in
ee

ri
ng

 V
ol

um
e

13
 N

um
be

r
1

M
ar

ch
 2

02
4

We next define a sub-grid Q+ of A, obtained by adding a margin of m around the grid Q, if

possible. Specifically, let

be the rows of G, containing the top and the bottom rows of Q,

respectively. Similarly, let C
b
,C

b‘
 be the columns of G, containing the left and the right columns

of Q, respectively. We let Q+ be the sub-grid of G, spanned by and

columns . From our definition of . Moreover, since m —N, and since
we have assumed that all demand pairs are type-2 good pairs, all source vertices corresponding
to the demand pairs in are within distance at least from the boundary of Q+. We
start with the following simple observation.

 Observation 9. Let be a boundary edge of , such that , and let be any
set of its vertices. Then there is a boundary edge L of Q+, and a set of |Y| disjoint paths in
graph A, connecting every vertex of Y to a distinct vertex of L, such that the paths in P are
internally disjoint from .

Proof. If the top boundary edge of Q+ is separated by at least m rows from the top boundary
edge of G, then set L = ; otherwise, let L be the bottom boundary edge of Q+ - notice that it
must be separated by at least m rows from the bottom boundary edge of G. Let be any set

of |Y| vertices, and let be the graph obtained from A, by deleting all vertices in Q+ \ X and Q
\ Y from it. It is enough to show that there is a set P of |X| = |Y | disjoint paths in A0, connecting
the vertices of X to the vertices of Y. Let z = |X|. From Menger’s theorem, if such a set of paths
does not exist, then there is a set J of at most z - 1 vertices, such that in A0 \ J there is no path
from a vertex of X \ J to a vertex of Y \ J. But from our definition of Q+,Q, and A, it is clear that no
such set of vertices exists.

Let r be the smallest integral power of 2 greater than . Our next step is to

partition Q into a collection of disjoint sub-grids of size (r × r) each. For , we let X
p,q

be the sub-grid of Q, spanned by rows and columns . We

then let . The next theorem is key to finding the final routing.

 Theorem 10. There is a subset demand pairs, such that every vertex of
 participates in at most one demand pair. Moreover, if S1 and T1 denote the sets of all

source and all destination vertices of the pairs in , respectively, then:

For every square , at most one vertex of belongs to S1; and

There is a boundary edge L of Q, with , and a set of node-disjoint paths in graph ,

connecting every vertex of T1 to a distinct vertex of L.

Proof. Let U be the union of the boundary edges L of Q, with . We build a flow network
, starting with the graph . We add a source vertex a, that connects to every vertex in U with

a directed edge. Let be the set of all vertices participating in the demand pairs in as

sources. Observe that each vertex may participate in several demand pairs in . We add
every vertex to graph , and for each demand pair (s, t) , we connect t to s with a
directed edge. Next, for each square , we add a vertex , and we connect every

vertex to with a directed edge. Finally, we add a destination vertex b, and connect

every vertex for to b with a directed edge. We set all vertex-capacities (except for
those of a and b) to 1.

We claim that there is a valid flow of value from a to b in . Indeed, consider the

dline.info/pste 32

P
ro

gr
es

s
in

 S
ig

na
ls

 a
nd

 T
el

ec
om

m
un

ic
at

io
n

E
ng

in
ee

ri
ng

 V
ol

um
e

13
 N

um
be

r
1

M
ar

ch
 2

02
4

multicommodity flow between the demand pairs in , given by our current LP-solution. For each

-pair in , we send flow units on the edge in . For each flow-path ,
notice that P must contain some vertex of U. Let v be the last such vertex on P (where we view
P as directed from sj to tj), and let P’ be the sub-path of P from v to tj. We send f(P)/4r flow units
on every edge in P. For every vertex v U, we set the flow on the edge (a, v) to be the total flow
leaving the vertex v; for each vertex s S, with s Xp,q, we set the flow on the edge (s, u

p,q
) to be

the total amount of flow entering s. The flow on edge (u
p,q

, b) is then set to the total amount of
flow entering up,q. Notice that for each square X

p,q
, every flow-path originating at a vertex of S 

Xp,q must cross the boundary (X
p,q

) of X
p,q

, that contains at most 4r vertices. Therefore, the
total amount of flow in the original LP-solution leaving the vertices in is at most 4r. It is

now easy to see that we have defined a valid a-b flow of value .

From the integrality of flow, there is an integral flow of the same value in . Let be the set of
paths carrying one flow unit in the resulting flow. Then there is a boundary edge L of Q, such

that , with at least of the paths in containing a vertex of L. Let P P be this set of
paths. We are now ready to define the final set of the demand pairs, and the corresponding
set of paths. Consider some path , and let (t, s) be the unique edge with on
this path. We then add . Let P be the sub-path of P, starting from the last vertex on P

that belongs to L, to vertex t. We add P to 1. This finishes the definition of the subset of
demand pairs, and the corresponding set 1 of paths.

If | | > , then we discard pairs from , until holds, and we update the sets S1, T1,

and P1 accordingly.

For , let be a subset containing all vertices lying in the squares Xp,q,

where p = w mod 2 and q = w mod 2. Then there is some choice of , so that

. We let for this choice of , and we define , and T2 as the

set of all destination vertices for the pairs in . Let be the set of paths originating from
the vertices of T2. Let Y be the set of endpoints of the paths in P2 that lie on the boundary edge
L of Q. Finally, from Observation 9, there is a boundary edge L of Q, a set Y of |Y| vertices of L,
and a set of disjoint paths in A, connecting every vertex in Y to a distinct vertex of Y, so that
the paths in are internally disjoint from . By concatenating the paths in P2 and , we
obtain a new set P of paths, connecting every vertex of T2 to a distinct vertex of Y’. Denote

, and let be the vertex where the path , originating at vertex tj ,

terminates. Notice that all vertices in S2 are now at the L1-distance at least from

each other, and at distance at least from the boundaries of Q+, and | | —pm. From

Theorem 2, we can efficiently find a set Y of disjoint paths in graph Q+, connecting every vertex

 to the corresponding vertex . By concatenating the paths in P* and Y, we obtain a
set of paths routing all pairs in .

Notice that from the above discussion, . It is easy to see that ,

since every flow-path routing a pair in must cross the boundary of Q. Therefore, .

Since , our algorithm routes demand pairs.

4.2. Routing the Bad Pairs
The goal of this section is to prove the following theorem.

 Theorem 11. Let be an instance of the NDP problem, where G is an (N × N) grid, and

dline.info/pste 33

P
ro

gr
es

s
in

 S
ig

na
ls

 a
nd

 T
el

ec
om

m
un

ic
at

io
n

E
ng

in
ee

ri
ng

 V
ol

um
e

13
 N

um
be

r
1

M
ar

ch
 2

02
4

. Assume further that for each demand pair , both
, for some parameter . Then there is an efficient

algorithm that finds an O(d*)-approximate solution to the NDP instance (G,).

Notice that by setting , so that , we obtain an - approximate solution
for NDP instances on grid graphs, where all demand pairs are bad.

The rest of this section is dedicated to proving Theorem 11. Let T be the set of all vertices
participating in the bad demand pairs. We call the vertices in T terminals. Let L1, L2, L3, L4 be the
four boundary edges of the grid G. Notice that a terminal may be within distance d from up
to two boundary edges. For each terminal , we let L(t) be any boundary edge of G, such
that . We now partition all bad demand pairs into 16 subsets: for , set

 contains all pairs , where and . Let OPT be the optimal solution to
the NDP instance. For every possible choice of , let be the optimal solution
restricted to the pairs in p,q. Clearly, there is a choice of p and q, such that at least |OPT|/16
of the demand pairs routed in OPT belong to p,q, and so . For each choice of
values 1  p, q  4, we show an algorithm that routes (|OPTp,q|/d*) demand pairs in p,q. We
then take the best of these solutions, thus obtaining an O(d*)-approximation algorithm.

Fix some  p, q  4. We consider three cases.

The first case happens when Lp and Lq are two distinct opposing boundary edges of G. We
assume without loss of generality that Lp is the top, and Lq is the bottom boundary of G. We say
that a subset of demand pairs is a monotone matching, if the following holds. Let be
the set of all source vertices, and the set of all destination vertices, participating in the pairs
in ’. Then:

• All vertices of lie in distinct columns of G;

• All vertices of lie in distinct columns of G;

• Every vertex of participates in exactly one demand pair; and

• For any two distinct pairs iff .

The following observation is immediate.

 Observation 12. Let be any monotone matching with . Then there is an
efficient algorithm to route all pairs in ’ in graph G.

Our algorithm then simply computes the largest monotone matching , using standard
dynamic programming: We maintain a dynamic programming table , that contains, for all

, an entry (x, y), whose value is the size of the largest monotone matching
, such that every source vertex s participating in pairs in (x, y)

has , and every destination vertex t participating in pairs in (x, y) has 1 —col(t)
—y. We fill the entries of the table from smaller to larger values of x + y, initializing (x, 0) = 0
and (0, y) = 0 for all x and y. Entry (x, y) is computed as follows. If there is a pair (s, t)

, with col(s) = x and col(t) = y, then we let (x, y) be the maximum of (x - 1, y - 1)

dline.info/pste 34

P
ro

gr
es

s
in

 S
ig

na
ls

 a
nd

 T
el

ec
om

m
un

ic
at

io
n

E
ng

in
ee

ri
ng

 V
ol

um
e

13
 N

um
be

r
1

M
ar

ch
 2

02
4

+1, (x - 1, y), and (x, y - 1). Otherwise, (x, y) is the maximum of (x - 1, y), and (x, y -

1). The size of the largest monotone matching is then stored in (N,N), and we can use
standard techniques to compute the matching itself. Finally, we show that there is a large enough

monotone matching .

 Lemma 13. There is a monotone matching of cardinality .

Proof. For every source vertex s of a demand pair in p,q, let P(s) denote the segment of the
column in which s lies, from the first row of G to s itself. Similarly, for each destination vertex t of
a demand pair in p,q , let P(t) denote the segment of the column in which t lies, from t to the
last row of G.

Consider the solution OPTp,q, and let be the set of the demand pairs routed in it. For

each pair (si, ti) , let be the path routing this demand pair in the solution. We say

that two demand pairs (si, ti) and (sj, tj) in M* have a conflict iff either Pi contains a vertex of

P(sj) P(tj), or Pj contains a vertex of P(si) P(ti).

Let H be a directed graph, that contains a vertex vi for every pair , and a directed edge

(vj, vj) iff path Pi intersects P(sj) or P(tJ). Notice that the length of every path P(sj) or P(tj) is
bounded by d, and so every vertex of H has in-degree bounded by 2d. Therefore, any vertex-
induced sub-graph H of H with z vertices has at most 2d*z edges, and contains at least one
vertex whose degree (including the incoming and the outgoing edges) is at most 4d*.

We now construct the set of demand pairs as follows. Start with . While H is non-empty,
let vi be any vertex of degree at most 4d*. Delete vi and all its neighbors from H, and add the pair

(si, ti) to . When this procedure terminates, it is easy to see that contains at least
 demand pairs. Moreover, if (si, ti) and (sj, tj) are distinct pairs in

, then there is no conflict between (si, ti) and (sj, tj). In particular, this means that

and . Moreover, if we assume that , then must hold:

this is since the union of and partitions the face defined by into a number of sub-
faces, and both sj and tj must be contained in a single sub-face, as the path Pj cannot intersect

the paths and .

This concludes the analysis of the algorithm for the case where Lp and Lq are two distinct opposing
boundary edges of G. The case where Lp and Lq are two adjacent boundary edges of G is dealt
with very similarly. Finally, we consider the case where Lp = Lq. Assume without loss of generality

that Lp is the bottom boundary edge of the grid. We say that a subset is a nested
matching, if the following holds. Let S be the set of all source vertices, and T the set of all
destination vertices, participating in the pairs in . Then:

All vertices of S lie in distinct columns of G;

All vertices of T lie in distinct columns of G;

Every vertex of participates in exactly one demand pair; and

For any two distinct pairs , with col(si) lying to the left of col(sj), either both

col(si), col(ti) lie to the left of both col(sj), col(tj), or both col(sj), col(tj) lie between col(si) and
col(ti), or both col(si), col(ti) lie between col(tj) and col(sj).

dline.info/pste 35

P
ro

gr
es

s
in

 S
ig

na
ls

 a
nd

 T
el

ec
om

m
un

ic
at

io
n

E
ng

in
ee

ri
ng

 V
ol

um
e

13
 N

um
be

r
1

M
ar

ch
 2

02
4

It is immediate to see that any nested matching , with can be routed

efficiently in G. As before, we can find a largest-cardinality nested matching using
standard dynamic programming techniques. The following lemma will then finish the proof.

 Lemma 14. There is a nested matching of cardinality .

Proof. We construct the paths P(s), P(t), the graph H and the matching corresponding to an
independent set in H exactly as in the proof of Lemma 13. As before, | | = (OPTp, q/d*).
Moreover, if (si, ti) and (sj , tj) are distinct pairs in , then there is no conflict between (si, ti) and
(sj, tj). As before, this means that col(sj) = col(sj) and col(ti) = col(tj). Assume now that col(sj)
lies to the left of col(sj). Then the union of Pi, P(si) and P(ti) partitions the face defined by into
a number of sub-faces, and both sj and tj must be contained in a single sub-face, as before. In
this case, this means that either both col(si), col(ti) lie to the left of both col(sj), col(tj), or both
col(sj), col(tj) lie between col(si) and col(ti), or both col(si), col(ti) lie between col(tj) and col(sj).

4.3. Putting Everything Together
Our algorithm for an input NDP instance (G,), where G is an (N × N) grid, applies the algorithm
from Section 4.1 to the set of the good demand pairs, and the algorithm from Section 4.2 to
the set of the bad demand pairs, and returns the better of the two solutions. Since each of the
two algorithms achieves an O(n1/4 log n)-approximation to the corresponding problem, and since
at least half of the demand pairs routed in the optimal solution are either all good pairs, or all bad
pairs, we obtain an O(n1/4 log n)-approximation overall.

5. APX-Hardness Proof

In this section we prove that NDP does not have a (1 + )-approximation algorithm on grid
graphs, for some fixed  > 0, unless P = NP. We perform a reduction from the 3SAT(5) problem.
In this problem we are given a 3SAT formula  on n variables and 5n/3 clauses. Each clause
contains exactly 3 distinct literals and each variable participates in exactly 5 different clauses. We
say that  is a Yes-Instance if it is satisfiable. We say that  is a No-Instance with respect to
some parameter , if no assignment satisfies more than an -fraction of clauses. The following
well-known theorem follows from the PCP theorem [7, 6].

 Theorem 15. There is a constant : 0 < < 1, such that it is NP-hard to distinguish between Yes-Instances and
No-Instances (defined with respect to) of the 3SAT(5) problem.

Let  be the input 3SAT(5) formula, defined over the set {x1, . . . , xn} of variables, and a set C1,
. . . ,Cm of clauses, where m = 5n/3. Our graph G is the (N × N) grid, where N = (m + 1)(4m + 6).

The set of demand pairs consists of three subsets: set 1 representing the variables of , set

2 representing the clauses, and set 3 of additional auxiliary pairs. We now define each set of
the demand pairs in turn.

Let I1, . . . , In be any set of mutually disjoint sub-paths of the top row R1 of the grid, each
containing exactly 13 vertices of R1. For , let sj be the vertex lying exactly in the middle

let V (j, F) be the set of vertices lying on Ij between sj and . The intuition is that, since the

paths routing the demand pairs are required to be completely disjoint, for each , we can
only route one of the two pairs: (sj, tj) or (sj ,). The routing of the former pair is interpreted as

assigning the value ‘F’ to variable xj, and the routing of the latter pair is interpreted as assigning
the value ‘T’ to variable xj. Intuitively, in the former case, all vertices of V (j, T) will be “blocked”

dline.info/pste 36

P
ro

gr
es

s
in

 S
ig

na
ls

 a
nd

 T
el

ec
om

m
un

ic
at

io
n

E
ng

in
ee

ri
ng

 V
ol

um
e

13
 N

um
be

r
1

M
ar

ch
 2

02
4

by the path routing (sj, tj), while in the latter case all vertices of V (j, F) are “blocked”.

We now turn to define the second set, of the demand pairs. Let R = RN-4m-6 be
the row lying within distance 4m + 6 from the bottom row of the grid. Let y1, . . . , ym be any set
of m vertices on R, ordered from left to right, so that the distance between every consecutive pair
is at least 4m + 5; the distance between y1 and the left boundary of G is at least 4m + 5, and the
distance between ym and the right boundary of G is at least 4m + 5. Since the grid size is N ×N,
and N = (m+ 1)(4m+ 6), we can find such vertices y1, . . . , ym. For each , vertex yh will

serve as a source vertex corresponding to the clause Ch. We will associate it with three destination

vertices, , as follows. Assume that . For , let be the variable

corresponding to the literal . If , then we let zi
h be some vertex in set V (hi, T), and

otherwise we let be some vertex in set . We select the vertices in such a way, that

all vertices in set are distinct. Since each variable participates in exactly
5 clauses, and each set V (j, T), V (j, F) contains 5 vertices, we can ensure that all vertices in Z
are distinct. We define:

.

Before we define the third set of the demand pairs, we provide some intuition. As mentioned
above, we associate each assignment in {T, F} to each variable xj with the routing of

either along the corresponding segment of the first row. For each clause Ch, if

at least one of its literals is satisfied, we will route the corresponding demand pair (we
discuss this in more detail later). However, in the No-Instance case, a solution can “cheat” by

routing the pairs differently: for example, we can route them on a path that goes

around some of the sources yh. In order to avoid this, we create an artificial “bottleneck” by
adding a new set of demand pairs. Recall that v(i, j) is a vertex lying in the intersection of row Ri

and column Cj of the grid. The last set of demand pairs contains 8m demand pairs ,

where for , we define , and . In other words, the
ith demand pair in set consists of the (m+ 1)st and the last vertex of the row . The final
set of the demand pairs is . This completes the description of the NDP instance. We
now analyze its properties.

Completeness
Assume that the 3SAT(5) formula is a Yes-Instance. We show that in this case we can route
9m + n = 16n demand pairs. Consider the assignment that satisfies .

For each , if is assigned the value ‘T’, then we route the pair via the segment

of the row R1 between these two vertices; if is assigned value F, then we route the pair (si, ti)
via the corresponding segment of R1. For each pair (ai, bi) , we route (ai, bi) via the segment
of row Rm+4+i connecting these two vertices. Finally, we define the routing of m demand pairs in
M2. For each clause Ch, let ‘h be any of the literals of Ch that is satisfied by the assignment f, and

let be the destination vertex corresponding to , so that . We will route the

pairs .

In order to do so, we define three sub-grids of G: B1 is the sub-grid spanned by rows R2, . . . ,
Rm+5, and all columns of the grid; B2 is the sub-grid spanned by rows Rm+5, . . . , R9m+4 and
columns C1, . . . ,Cm of the grid; and B3 spanned by rows R9m+4, . . . ,RN and all columns of the
grid.

dline.info/pste 37

P
ro

gr
es

s
in

 S
ig

na
ls

 a
nd

 T
el

ec
om

m
un

ic
at

io
n

E
ng

in
ee

ri
ng

 V
ol

um
e

13
 N

um
be

r
1

M
ar

ch
 2

02
4

For each , let eh be the unique vertical edge of the grid incident on vertex , and let

 be its other endpoint. Let , so S1 contains m distinct vertices on the top

row of B1, and let E0= {eh | 1 h m}. Let S2 be the set of m vertices on the top boundary of B2.
Then the vertices of S2 also lie on the bottom boundary of B1, and from Observation 1, there is

a set of disjoint paths in B1, connecting all vertices of S1 to the vertices of S2, so that the

paths in are internally disjoint from . Let S3 be the set of m vertices on the bottom
boundary of B2, and let 2 be the set of the columns of B2, so 2 is a set of m paths, connecting
all vertices of S2 to the vertices of S3, in graph B2. Finally, consider the graph B3, and observe
that S3 is a set of m distinct vertices lying on the top boundary of B3, while {yh | 1 h m} is a

set of m vertices lying at -distance at least 4m+5 from each other, and from the boundary of
B3. From Theorem 2, we can route any matching between the vertices of S3 and the vertices of

 in graph S3. Let be the set of paths obtained by concatenating .

Then is a set of disjoint paths connecting the vertices of to the vertices of S3.

We denote the vertices of , where is the vertex that serves as an endpoint

of the path of originating at zh. We can now construct a set P3 of disjoint paths in B3, routing

the pairs . By concatenating the paths in and P3, we obtain the final routing of the pairs in

{(yh, zh) | 1 h m}. Altogether, we route n demand pairs in 1, all 8m demand pairs in 3,

and m demand pairs in 2, routing n + 9m = 16n pairs in total.

Soundness
Let , where is the constant from Theorem 15. Assume that is a No-Instance, so
no assignment can satisfy more than m clauses of . We show that the value of the optimal
solution of the corresponding NDP problem is at most ·16n. Assume otherwise, and let P

be a set of paths, routing more than · 16n demand pairs.

Our first observation is that at least 6m of the demand pairs in 3 must be routed by .

Indeed, assume otherwise. Then routes at most n pairs in 1, fewer than 6m pairs in 3,

and at most m pairs in 2. In total, routes at most n + 7m = 38n/3 < (1) · 16n pairs,

since  < 1/200. Therefore, at least 6m of the demand pairs in 3 are routed. Let i be the
smallest index, so that (ai, bi) is routed in , and let be the path routing (ai, bi). Let U be

the set of vertices of column Cm+1 (the column where the sources of the pairs in 3 lie), that

belong to rows R1, . . . , R9m+4. We use the following observation.

 Observation 16. There is a contiguous sub-path of P, containing bi and some vertex of U,

such that is internally disjoint from U, and it does not contain any vertex of row .

Proof. If does not contain any vertex of R, then, since it must contain at least one vertex of
U (the vertex ai), such path ’ clearly exist. Therefore, we assume that ;. Let v be the
last vertex of P lying on row R, where we view P as directed from a

i
 to b

i
. Let P* be the segment of

P from v to b
i
.

We claim that . Indeed, assume otherwise. Let C
j
 be the column in which v lies and let Q

be the segment of C
j
 from v to the bottom vertex of C

j
. If C

j
 is the last column, then path P*

separates all vertices in from all vertices in , contradicting the fact that at least

6m demand pairs in are routed, and i is the smallest index for which pair (a
i
, b

i
) is routed.

Therefore, C
j
 is not the last column. The union of Q and P partitions the face defined by into

dline.info/pste 38

P
ro

gr
es

s
in

 S
ig

na
ls

 a
nd

 T
el

ec
om

m
un

ic
at

io
n

E
ng

in
ee

ri
ng

 V
ol

um
e

13
 N

um
be

r
1

M
ar

ch
 2

02
4

a number of sub-faces. Let F2 be the sub-face containing the top left boundary of the grid, and let

F1 be the union of the remaining sub-faces. Since is disjoint from U, all vertices

belong to F1, while the vertices belong to F1. Therefore, all paths of routing the pairs in

 must intersect Q, while Q contains only 4m + 7 vertices, a contradiction. We conclude that

. Let u be the last vertex on P that belongs to U. We can then let ’ be the segment of
P between u and b

i
.

Let v* be the endpoint of ’ lying in U, and let R’ = row(v*). Let I be the sub-path of R’ between
v* and the first vertex of row R’ (excluding v*). Since path P’ is disjoint from row R, it is easy to
see that every path in that routes a demand pair in has to contain at least one vertex of I.

We partition the set of variables of into three subsets. Set X1 contains all variables xj, such

that none of the pairs is routed by contains all variables xj, such that one of

the pairs (sj, tj), (sj, t
’
j) is routed by some path , and . Set X3 contains all remaining

variables. We need the following three observations.

 Observation 17. .

Proof. Assume otherwise. Then routes fewer than pairs of , at most 8m pairs of

and at most m pairs of . In total, this is fewer than pairs, a
contradiction.

 Observation 18. .

Proof. Assume otherwise. As observed above, if is routed by via some path Q, then

. Since , the number of pairs in routed by is less than m”16n, and the total

number of pairs routed is smaller than

 Observation 19. Let be some variable, and let be the path originating at sj . If Q

terminates at tj, then no path of , routing a demand pair in , may contain any vertex of V (j,

T), and if Q terminates at , then no path of , routing a demand pair in , may contain any
vertex of V (j, F).

Proof. Assume that Q terminates at tj: the proof for is symmetric. Since , the path Q,
together with the sub-path of between tj and sj, forms a closed curve L in the natural drawing

of the grid, such that all sources of all pairs in lie outside L. Therefore, the paths of P originating

from the sources of the demand pairs in cannot contain the vertices of V (j, T).

We now define an assignment to the variables of that satisfies more than m clauses of ,

leading to a contradiction. The assignment is defined as follows. For each variable , let
be the path originating at s

j
. If C

j
 terminates at t

j
, then we assign the value ‘F’ to x

j
; otherwise we

assign the value ‘T’ to it. All other variables are assigned arbitrary values.

Let be the collection of clauses C
h
, such that there is a path originating at vertex y

h
in . It is

easy to see that , since otherwise contains fewer than

 paths. Let be the subset of clauses containing the variables

of . Since each variable participates in at most 5 clauses, from Observations 17 and 18,

dline.info/pste 39

P
ro

gr
es

s
in

 S
ig

na
ls

 a
nd

 T
el

ec
om

m
un

ic
at

io
n

E
ng

in
ee

ri
ng

 V
ol

um
e

13
 N

um
be

r
1

M
ar

ch
 2

02
4

. Let . Then . We claim that every clause s
satisfied by our assignment. Indeed, let be the path originating at yh, and let be its
other endpoint. Assume that the corresponding literal corresponds to variable xj. From our
definition of . Let be the path originating from sj. If , then = xj. From
Observation 19, ’ terminates at , and variable xj is assigned the value ‘T’. If , then

. From Observation 19, ’ terminates at tj, and variable xj is assigned the value ‘F’. In
either case, the assignment to xj satisfies the clause Ch.

To conclude, we have shown an efficient algorithm, that, given a 3SAT(5) formula ‘, constructs
an instance (G,) of the NDP problem, where G is a grid graph, whose size is polynomial in the
size of . If  is a Yes-Instance, then there is a solution of value 16n to the NDP instance, and
if  is a No-Instance, then no solution routes more than demand pairs in the NDP
instance, for some constant . Since it is NP-hard to distinguish the Yes- and the No-instances
of 3SAT(5), we conclude that no efficient algorithm can obtain a better than (1 )-approximation
for NDP on grids, unless P = NP.

6. Integrality Gap of (LP-Flow) for Good Pairs

We prove that the integrality gap of (LP-flow) is even when all of the terminals are far
from the grid boundary. We note that the family of instances that we construct here was
previously used by Cutler and Shiloah [16], to provide a lower bound on the size of permutation
layouts. Our analysis also closely follows theirs.

Given any integer p > 10, let k = p2 and N = 6k. We show that the integrality gap of (LP-flow) on
the (N × N) grid G, where all terminals are within distance at least N/6 from ,
where n = N2 is the number of vertices in the grid.

In order to define the demand pairs, we let S be any set of k consecutive vertices on row R2k of
G, where all vertices are at distance at least 2k from both the left and the right boundary of G,
and define a set T of k consecutive vertices on row R4k similarly. We partition the set S into p
subsets S1, . . . , Sp of p consecutive vertices each, where for , the jth vertex in set Si
is denoted by si, j. Similarly, we partition T into p subsets T1, . . . , Tp of p consecutive vertices
each, and for , the jth vertex in set Ti is denoted by ti,j . The set of the demand pairs
is then:

.

It is easy to see that there is a solution to (LP-flow) of value k/3: for each pair (si, j, tj, i), we
send 1/3 flow unit on the path P, lying in the union , that connects si, j
to tj, i. We next show that the value of any integral solution is O(k3/4), thus establishing the
integrality gap of ..

In our analysis we use the notions of graph drawing and graph crossing number. A drawing of
a graph H in the plane is a mapping, in which every vertex of H is mapped into a point in the
plane, and every edge into a continuous curve connecting the images of its endpoints, such
that no three curves meet at the same point, and no curve contains an image of any vertex
other than its endpoints. A crossing in such a drawing is a point where the images of two edges
intersect, and the crossing number of a graph H, denoted by cr(H), is the smallest number of
crossings achievable by any drawing of H in the plane. We use the following well-known theorem
[2, 23].

dline.info/pste 40

P
ro

gr
es

s
in

 S
ig

na
ls

 a
nd

 T
el

ec
om

m
un

ic
at

io
n

E
ng

in
ee

ri
ng

 V
ol

um
e

13
 N

um
be

r
1

M
ar

ch
 2

02
4

 Theorem 20. For any graph H = (V, E) with .

Let OPT denote the optimal integral solution for the instance , let be the set of the
demand pairs routed by OPT, and let x = |OPT|. We define two bipartite graphs. The first bipartite
graph, H = (S, T, E*) is defined over the sets S and T of the source and the destination vertices of

, and it contains an edge e = (s, t) for every pair . The second graph is ,

where , and contains all edges , where . The
following claim is central to our analysis.

 Claim 21. There is a drawing of with at most 2px crossings.

Figure 5. Altering the drawing around Si

We prove Claim 21 below, after we complete the analysis of the integrality gap here. If ,

then and we are done, so we assume that . Then from Theorem 20, ,

while from Claim 21, . Therefore, . It now remains to prove Claim 21.

Proof of Claim 21. Notice that the natural drawing of the grid G, together with the solution OPT

to the NDP instance gives a planar drawing of the graph H in the plane. For each

be the set of the sources that have an edge incident to them in E*, and define similarly. Let

 and . For each , then the vertex vi of , corresponding to Si

is an isolated vertex, and we can draw it anywhere. Otherwise, let be any vertex. We

draw vi at . Let I(i) be the segment of row R2k containing the vertices of , and no other

vertices. Let Li be a very thin strip (of height 1/10) around the segment I(i) (see Figure 5). We
alter the drawings of all edges in E*, originating at the vertices of S0i, so that they now originate

at , by re-routing them inside the strip Li. Since the number of paths in OPT containing the

vertices of Si is bounded by p, it is easy to do so, by introducing at most pxi crossings. We
perform the same transformation for the sets Ti of destination vertices, and obtain a drawing of

the graph H0 with at most crossings.

(a) before (b) after

dline.info/pste 41

P
ro

gr
es

s
in

 S
ig

na
ls

 a
nd

 T
el

ec
om

m
un

ic
at

io
n

E
ng

in
ee

ri
ng

 V
ol

um
e

13
 N

um
be

r
1

M
ar

ch
 2

02
4

7. Approximation Algorithm for EDP on Wall Graphs

In this section we show that the algorithm from Section 4 can be adapted to give an O(n1/4 · log

n)-approximation for EDP on wall graphs of width and height . In order to construct a
wall W of height h and width r (or an (h × r)- wall), we start from a grid of height h and width 2r.

Consider some column Cj of the grid, for and let be the edges of Cj, in the
order of their appearance on Cj, where ej 1 is incident on v(1, j). If j is odd, then we delete from
the graph all edges ej i where i is even. If j is even, then we delete from the graph all edges ej i
where i is odd. We process each column Cj of the grid in this manner, and in the end delete all
vertices of degree 1. The resulting graph is a wall of height h and width r, that we denote by W
(See Figure 1).

Let E1 be the set of edges of W that correspond to the horizontal edges of the original grid, and let
E2 be the set of the edges of W that correspond to the vertical edges of the original grid. The sub-
graph of W induced by E1 is a collection of h node-disjoint paths, that we refer to as the rows of
W. We denote these rows by R1, . . . , Rh, here for , Ri is incident on v(i, 1). Let V1 denote
the set of all vertices in the first row of W, and Vh the set of vertices in the last row of W. There

is a unique set C of r node-disjoint paths, where each path starts at a vertex of V1, terminates
at a vertex of Vh, and is internally disjoint from . We refer to these paths as the columns
of sub-graph of W is a simple cycle, that we call the boundary of W.

For every vertex , we let col(v) and row(v) denote the column and the row of W to which

v belongs. As before, for a pair of vertices, we define:

and for a vertex v and a subset of vertices, we let .

Assume now that we are given an (N × N)-wall graph G = (V, E), so , and a

collection of demand pairs. As before, we say that a demand pair (si, ti) is bad if

both , and we say that it is good otherwise. Let denote
the sets of the good and the bad demand pairs in , respectively. We find an approximate

solution to each of the two sub-problems, defined by and , separately, and take the better
of the two solutions.

The algorithm for the bad pairs remains exactly the same as the algorithm from Section 4.2. We

now focus on the problem defined by the set of the good pairs. Let be the (N ×N)- grid

obtained from G, by contracting, for each , the unique edge , and consider the

NDP problem instance . Any collection of node-disjoint paths in , routing a
subset of the demand pairs immediately gives a collection of edge-disjoint paths in G,
routing the same subset of the demand pairs. Moreover, it is easy to see that there is an LP-
solution to (LP-flow) on instance of value OPT/2, where OPT is the optimal solution for

the EDP instance (G,). Indeed, for every path , we simply set f(P) = 1/2, where P0 is
the path of G corresponding to the path P of G, and for every demand pair (sj, tj) routed by OPT’
we set xj = 1/2. It is immediate to verify that this is a feasible solution to (LP-flow) on NDP

instance , of value OPT/2. We then use the algorithm from Section 4.1 to find an -

appsroximation solution to , which in turn gives an O(n1/4 · log n)-approximation solution
to the EDP instance (G, M).

dline.info/pste 42

P
ro

gr
es

s
in

 S
ig

na
ls

 a
nd

 T
el

ec
om

m
un

ic
at

io
n

E
ng

in
ee

ri
ng

 V
ol

um
e

13
 N

um
be

r
1

M
ar

ch
 2

02
4

References

[1] Aggarwal, Alok., Kleinberg, Jon., Williamson, David P. (2000). Node-disjoint paths on the
mesh and a new trade-off in VLSI layout. SIAM Journal on Computing, 29(4), 1321–1333.

[2] Ajtai, Miklós., Chvátal, Václav., Newborn, Monroe M., Szemerédi, Endre. (1982). Crossing-
free subgraphs. In Gert Sabidussi, Peter L. Hammer, Alexander Rosa, and Jean Turgeon (Eds.),
Theory and Practice of Combinatorics: A collection of articles honoring Anton Kotzig on the occasion
of his sixtieth birthday (Vol. 60 of North-Holland Mathematics Studies, pp. 9–12). North-Hol-
land.

[3] Andrews, Matthew. (2010). Approximation algorithms for the edge-disjoint paths problem
via Raecke decompositions. In Proceedings of IEEE FOCS, (pp. 277–286).

[4] Andrews, Matthew., Chuzhoy, Julia., Guruswami, Venkatesan., Khanna, Sanjeev., Talwar,
Kunal., Zhang, Lisa. (2010). Inapproximability of edge-disjoint paths and low congestion rout-
ing on undirected graphs. Combinatorica, 30(5), 485–520.

[5] Andrews, Matthew., Zhang, Lisa. (2005). Hardness of the undirected edge-disjoint paths
problem. In STOC, (pp. 276–283).

[6] Arora, Sanjeev., Lund, Carsten., Motwani, Rajeev., Sudan, Madhu., Szegedy, Mario. (1998).
Proof verification and the hardness of approximation problems. Journal of the ACM, 45, 501–
555.

[7] Arora, Sanjeev., Safra, Shmuel. (1998). Probabilistic checking of proofs: A new character-
ization of np. Journal of the ACM, 45, 70–122.

[8] Aumann, Yonatan., Rabani, Yuval. (1995). Improved bounds for all optical routing. In Pro-
ceedings of the sixth annual ACM-SIAM symposium on Discrete algorithms, SODA’95, (pp.
567–576). Society for Industrial and Applied Mathematics.

[9] Chekuri, Chandra., Chuzhoy, Julia. (2013). Half-integral all-or-nothing flow. Unpublished
Manuscript.

[10] Chekuri, Chandra, Ene, Alina. (2013). Poly-logarithmic approximation for maximum node
disjoint paths with constant congestion. In Proc. of ACM-SIAM SODA, 2013.

[11] Chekuri, Chandra., Khanna, Sanjeev., Shepherd, F. Bruce. (2004). Edge-disjoint paths in
planar graphs. In Foundations of Computer Science, 2004. Proceedings. 45th Annual IEEE Sym-
posium on, (pp. 71–80). IEEE.

[12] Chekuri, Chandra., Khanna, Sanjeev., Shepherd, F. Bruce. (2005). Multicommodity flow,
welllinked terminals, and routing problems. In Proc. of ACM STOC, (pp. 183–192).

[13] Chekuri, Chandra., Khanna, Sanjeev., Shepherd, F. Bruce. (2006). An O(pn) approximation
and integrality gap for disjoint paths and unsplittable flow. Theory of Computing, 2(1), 137–
146.

[14] Chuzhoy, Julia. (2012). Routing in undirected graphs with constant congestion. In Proc. of
ACM STOC, (pp. 855–874).

[15] Chuzhoy, Julia., Li, Shi. (2012). A polylogarithmic approximation algorithm for edge- dis-
joint paths with congestion 2. In: Proc. of IEEE FOCS, 2012.

[16] Cutler, M., Shiloach, Y. (1978). Permutation layout. Networks, 8, 253–278.

[17] Karp, R. (1975). On the complexity of combinatorial problems. Networks, 5, 45–68.

[18] Kawarabayashi, Ken-Ichi, Kobayashi, Yusuke. (2013). An o(log n)-approximation algo

dline.info/pste 43

P
ro

gr
es

s
in

 S
ig

na
ls

 a
nd

 T
el

ec
om

m
un

ic
at

io
n

E
ng

in
ee

ri
ng

 V
ol

um
e

13
 N

um
be

r
1

M
ar

ch
 2

02
4

rithm for the edge-disjoint paths problem in eulerian planar graphs. ACM Transactions on
Algorithms, 9(2), 16:1–16:13.

[19] Kleinberg, Jon M. (2005). An approximation algorithm for the disjoint paths problem in
evendegree planar graphs. In FOCS’05, (pp. 627–636).

[20] Jon M. Kleinberg and Éva Tardos. Disjoint paths in densely embedded graphs. In Pro-
ceedings of the 36th Annual Symposium on Foundations of Computer Science, pages 52–61,
1995.

[21] Jon M. Kleinberg and Éva Tardos. Approximations for the disjoint paths problem in
highdiameter planar networks. Journal of Computer and System Sciences, 57(1):61–73, 1998.

[22] Stavros G. Kolliopoulos and Clifford Stein. Approximating disjoint-path problems using
packing integer programs. Mathematical Programming, 99:63–87, 2004.

[23] Frank Thomson Leighton. Complexity Issues in VLSI: Optimal Layouts for the Shuffle-
exchange Graph and Other Networks. MIT Press, Cambridge, MA, USA, 1983.

[24] Harald Räcke. Minimizing congestion in general networks. In: Proc. of IEEE FOCS, pages
43–52, 2002.

[25] Prabhakar Raghavan and Clark D. Tompson. Randomized rounding: a technique for
provably good algorithms and algorithmic proofs. Combinatorica, 7:365–374, December 1987.

[26] Satish Rao and Shuheng Zhou. Edge disjoint paths in moderately connected graphs.
SIAM Journal on Computing, 39(5):1856–1887, 2010.

[27] N. Robertson and P. D. Seymour. Outline of a disjoint paths algorithm. In Paths, Flows
and VLSI-Layout. Springer-Verlag, 1990.

[28] Neil Robertson and Paul D. Seymour. Graph minors. VII. disjoint paths on a surface.
Journal of Combinatorial Theory, Series B, 45(2):212–254, 1988.

[29] Neil Robertson and Paul D Seymour. Graph minors. XIII. the disjoint paths problem.
Journal of Combinatorial Theory, Series B, 63(1):65–110, 1995.

[30] Loïc Seguin-Charbonneau and F. Bruce Shepherd. Maximum edge-disjoint paths in pla-
nar graphs with congestion 2. In Proceedings of the 2011 IEEE 52Nd Annual Symposium on
Foundations of Computer Science, FOCS’11, pages 200–209, Washington, DC, USA, 2011.
IEEE Computer Society.

