
Open-Source Provisioning and Billing System for
Distributed Cloud Computing for Environmental
Applications

George Suciu, Octavian Fratu, Cristian Cernat, Traian Militaru,
Gyorgy Todoran and Vlad Poenaru
Faculty of Electronics, Telecommunications and Information Technology at
Politehnica University of Bucharest
Bd. Iuliu Maniu, nr. 1-3
Bucharest 060042, Romania
{george@beia.ro} {ofratu@elcom.pub.ro}
{cernatcristi@gmail.com} {gelmosro@yahoo.com}
{todoran.gyorgy@gmail.com} {vlad.wing@gmail.com}

ABSTRACT

In large telemetry systems, several hundred RTUs transmit data to intelligence
algorithms and store it in a database accessible through a web interface over
the Internet. This paper discusses how SlapOS (Open-Source Provisioning and
Billing System for Distributed Cloud Computing) centrally collects environmen-
tal information from various sensors at remote observation points.

Keywords: Cloud, Telemetry, Sensors, Remote Monitoring, RTU

1. Introduction

In this paper we develop a test platform for environmental telemetry and use it as
a case study for monitoring ecological parameters in agriculture. We use different
types of RTUs (Radio Transmission Units) and Sensors that monitor and transmit
important information such as temperature, precipitation, wind speed and leaf
wetness from selected locations.

The RTUs will transmit sensor data over GSM/GPRS to our cloud platform where
we can conveniently process the sitespecific weather and soil data in near real-
time, display it in our web-based visualization application and get detailed recom-
mendations when and where to spray and how much to irrigate - resulting in
optimized yield, quality and income.

Our system can also help keeping track of pathogen development, optimize treat-
ments to hit a disease dead on, warn of frost, and to produce crops as environ-

Received: 3 November 2024
Revised: 29 January 2024

Accepted: 24 February 2024
Copyright: with Author(s)

DLINE JOURNALS

JET 2024; 15 (2)
https://doi.org/10.6025/jet/2024/15/2/73-80

Journal of E-Technology
Print ISSN: 0976-3503

Online ISSN: 0976-2930

 73dline.info/jet

74

Jo
ur

na
l

of
 E

-T
ec

hn
ol

og
y

 V
ol

um
e

15
 N

um
be

r
 2

M

ay
 2

02
4

dline.info/jet

mentally friendly as possible and to improve agricultural risk management. Falling producer
prices and rising costs of production are increasingly forcing agricultural businesses to opti-
mize production costs [1]. There fore “precision farming”, the selective use of inputs such as
water, fertilizers or chemicals, is now indispensable in modern agriculture. The growing envi-
ronmental awareness of consumers further accelerates this process and promotes the usage
of remote automatic monitoring system for field information such as the one we developed
[2].

We will introduce in this article SlapOS, the first open source operating system for Distributed
Cloud Computing. SlapOS is based on a grid computing daemon called slapgrid which is capable
of installing any software on a PC and instantiate any number of processes of potentially
infinite duration of any installed software. Slapgrid daemon receives requests from a central
scheduler the SlapOS Master which collects back accounting information from each process.
SlapOS Master follows an Enterprise Resource Planning (ERP) model to handle at the same
time process allocation optimization and billing. SLAP stands for “Simple Language for Ac-
counting and Provisioning”.

This structure has been implemented for cloud-based automation of ERP and CRM software for
small businesses and aspects are under development under the framework of the European
research project “Cloud Consulting” [3]. We will use our platform hosted on several servers
running Ubuntu Linux – Apache – MySQL template with current software release. On our
cloud testing environment we provide the platform for processing information from hundreds
different sensors, enabling the analysis of environmental data through a large sample of RTUs.

In previous approaches RTUs were implemented in most cases on a local server and no com-
pany could aggregate enough sensor data to consider automating the treatment process.

2. Cloud Architecture for Telemetry

2.1. Cloud Architecture
SlapOS is an open source Cloud Operating system which was inspired by recent research in
Grid Computing and in particular by BonjourGrid [4]–[5] a meta Desktop Grid middleware for
the coordination of multiple instances of Desktop Grid middleware. It is based on the motto
that ”everything is a process”.

SlapOS is based on a Master and Slave design. In this chapter we are going to provide an
overview of SlapOS architecture and are going in particular to explain the role of Master node
and Slave nodes, as well as the software components which they rely on to operate a distrib-
uted cloud for telemetry applications.

Slave nodes request to Master nodes which software they should install, which software they
show run and report to Master node how much resources each running software has been
using for a certain period of time. Master nodes keep track of available slave node capacity and
available software. Master node also acts as a Web portal and Web service so that end users
and software bots can request software instances which are instantiated and run on Slave
nodes. Master nodes are stateful. Slave nodes are stateless. More precisely, all information
required to rebuild a Slave node is stored in the Master node. This may include the URL of a
backup service which keeps an online copy of data so that in case of failure of a Slave node, a
replacement Slave node can be rebuilt with the same data.

It is thus very important to make sure that the state data present in Master node is well
protected. This could be implemented by hosting Master node on a trusted IaaS infrastructure
with redundant resource. Or - better - by hosting multiple Master nodes on many Slave nodes
located in different regions of the world thanks to appropriate data redundancy heuristic. We
are touching here the first reflexive nature of SlapOS. A SlapOS master is normally a running
instance of SlapOS Master software instantiated on a collection of Slave nodes which, to-
gether, form a trusted hosting infrastructure. In other terms, SlapOS is self-hosted, as seen
in Figure 1.

 75

Jo
ur

na
l

of
 E

-T
ec

hn
ol

og
y

 V
ol

um
e

15
 N

um
be

r
2

M
ay

 2
02

4

dline.info/jet

 Figure 1. SlapOS Master – Slave Architecture

2.2. SlapOS Master
SlapOS master nodes keep track of the identity of all parties which are involved in the processof
requesting Cloud resources, accounting Cloud resources and billing Cloud resources. This in-
cludes end users (Person) and their company (Organisation). It includes suppliers of cloud
resources as well as consumers of cloud resources. It also includes so-called computer parti-
tions which may run a software robot to request Cloud resources without human interven-
tion. It also includes Slave nodes which need to request to SlapOS master which resources
should be allocated. SlapOS generated X509 certificates for each type of identity: X509 certifi-
cates for people like you and me who login, an X509 certificate for each server which contrib-
utes to the resources of SlapOS and an X509 for each running software instance which may
need to request or notify SlapOS master. A SlapOS Master node with a single Slave node, a
single user and 10 computer partitions will thus generate up to 12 X509 certificates: one for
the slave, one for the user and 10 for computer partitions.

Any user, software or slave node with an X509 certificate may request resources to SlapOS
Master node. SlapOS Master node plays here the same role as the backoffice of a marketplace.
Each allocation request is recorded in SlapOS Master node as if it were a resource trading
contract in which a resource consumer requests a given resource under certain conditions.
The resource can be a NoSQL storage, a virtual machine, an ERP with web-portal interface for
displaying sensor data and Google Maps integration for RTUs localization, a Wiki, etc. The
conditions can include price, region (ex. China) or specific hardware (ex. 64 bit CPU). Condi-
tions are somehow called Service Level Agreements (SLA) in other architectures but they are
considered here rather as trading specifications than guarantees. It is even possible to specify
a given computer rather than relying on the automated marketplace logic of SlapOS Master.

By default, SlapOS Master acts as an automatic marketplace. Requests are processed by try-
ing to find a Slave node which meets all conditions which were specified. SlapOS thus needs to
know which resources are available at a given time, at which price and under which character-
istics. Last, SlapOS Master also needs to know which software can be installed on which Slave
node and under which conditions.

76

Jo
ur

na
l

of
 E

-T
ec

hn
ol

og
y

 V
ol

um
e

15
 N

um
be

r
 2

M

ay
 2

02
4

dline.info/jet

2.3. SlapOS Slave
SlapOS Slave nodes are relatively simple compared to the Master node. Every slave node
needs to run software requested by the Master node. It is thus on the Slave nodes that
software is installed. To save disk space, Slave nodes only install the software which they
really need.

Each slave node is divided into a certain number of socalled computer partitions. One may
view a computer partition as a lightweight secure container, based on Unix users and direc-
tories rather than on virtualization. A typical barebone PC can easily provide 100 computer
partitions and can thus run 100 RTU web portals or 100 sensors monitoring sites, each of
which with its own independent database. A larger server can contain 200 to 500 computer
partitions.

SlapOS approach of computer partitions was designed to reduce costs drastically compared to
approaches based on a disk images and virtualization. As presented in Fig. 2, it does not
prevent from running virtualization software inside a computer partition, which makes SlapOS
at the same time cost efficient and compatible with legacy software.

Figure 2. SlapOS Slave Node

SlapOS Slave software consists of a POSIX operating system, SlapGRID, supervisord and buildout
[3]. SlapOS is designed to run on any operating system which supports GNU’s glibc and
supervisord. Such operating systems include for example GNU/Linux, FreeBSD, MacOS/X, Solaris,
AIX, etc

2.4. SlapOS kernel
SlapOS relies on mature software: buildout and supervisord. Both software are controlled by
SLAPGrid, the only original software of SlapOS. SLAPGrid acts as a glue between SlapOS Master
node (ERP5) and both buildout and supervisord, as shown in Fig. 3. SLAPGrid requests to
SlapOS Master Node which software should be installed and executed. SLAPGrid uses buildout
to install software and supervisord to start and stop software processes. SLAPGrid also collects
accounting data produced by each running software and sends it back to SlapOS Master.

Supervisord is a process control daemon. It can be used to programmatically start and stop
processes with different users, handle their output, their log files, their errors, etc. It is a kind
of much improved init.d which can be remotely controlled. Supervisord is lightweight and old
enough to be really mature (ie. no memory leaks).

 77

Jo
ur

na
l

of
 E

-T
ec

hn
ol

og
y

 V
ol

um
e

15
 N

um
be

r
2

M
ay

 2
02

4

dline.info/jet

Buildout is a Python-based build system for creating, assembling and deploying applications
from multiple parts, some of which may be non-Python-based. Buildout can be used to build
C, C++, ruby, java, perl, etc. software on Linux, MacOS, Windows, etc. Buildout can either
build applications by downloading their source code from source repositories (subversion, git,
mercurial, etc.) or by downloading binaries from package repositories (rpm, deb, eggs, gems,
war, etc.). Buildout excels in particular at building applications in a way which is operating
system agnostic and to automate application configuration process in a reproducible way.

Figure 3. SlapOS Kernel and User Software

Every computer partition consists of a dedicated IPv6 address, a dedicated local IPv4 ad-
dress, a dedicated tap interface (slaptapN), a dedicated user (slapuserN) and a dedicated
directory (/srv/slapgrid/slappartN). Optionally, a dedicated block device and routable IPv4
address can be defined.

SlapOS is usually configured to use IPv6 addresses. Although use of IPv6 is not a require-
ment (an IPv4 only SlapOS deployment is possible) it is a strong recommendation. IPv6
simplifies greatly the deployment of SlapOS either for public Cloud applications or for private
Cloud applications. In the case of public Clouds, use of IPv6 helps interconnecting SlapOS
Slave Nodes hosted at home without having to setup tunnels or complex port redirections.

In the case of private Cloud, IPv6 replaces existing corporate tunnels with a more resilient
protocol which provides also a wider and flat corporate addressing space. IPv6 addressing
helps allocating hundreds of IPv6 addresses on a single server. Each running process can
thus be attached to a different IPv6 address, without having to change its default port set-
tings. Accounting network traffic per computer partition is simplified. All this would of course
be possible with IPv4 or through VPNs but it would be much more difficult or less resilient.
The exhaustion of IPv4 addresses prevents in practice allocation of some many public IPv4
addresses to a single computer. After one year of experimentation with IPv6 in Romania,
using IPv6 native Internet access (more than 50% of worldwide IPv6 traffic), we found that
IPv6 is simple to use and creates the condition for many innovations which would else be
impossible.

3. Research Results and Future Design

In order to collect the information from the RTUs we developed the following test platform as
shown in Fig. 4. The usage of GSM/GPRS data transmission can be extended in areas where

78

Jo
ur

na
l

of
 E

-T
ec

hn
ol

og
y

 V
ol

um
e

15
 N

um
be

r
 2

M

ay
 2

02
4

dline.info/jet

there is no coverage by using a UHF bridge operating in the fixed frequency range 430 – 440
MHz connected to a gateway that has access to the Internet.

Figure 4. General Architecture of Telemetry System

The case study was done on 2 grape yards in Romania (Bucharest and Blaj) with the following
sensors, as seen in Figure 5.

Figure 5. General Structure of RTU and Sensors

The total quantity of rain reported by the system during the months of May – September 2011
was of 222 l/sqm with the following monthly distribution: May – 33 l/sqm, June – 116 l/sqm,
July – 49 l/sqm, August - 5 l/sqm, September – 8 l/sqm. Other climatic parameters such as
Precipitation, Leaf Wetness, Temperature and Relative Humidity can be seen on Fig. 6.

Another important parameter we studied is the accumulation of thermal energy over time,
known as degreedays or heat units. The growth and development of plants, insects, and many
other invertebrate organisms is largely dependent on temperature. In other words, a constant
amount of thermal energy is required for the growth and development of many organisms, but
the time period over which that thermal energy is accumulated can vary. Many organisms slow

 79

Jo
ur

na
l

of
 E

-T
ec

hn
ol

og
y

 V
ol

um
e

15
 N

um
be

r
2

M
ay

 2
02

4

dline.info/jet

Figure 6. Results climatic parameters during a week (26.09 – 02.10.2011)

or stop their growth and development when temperatures are above or below threshold lev-
els. Degree-days and other heat unit measurements have been used for determination of
planting dates, prediction of harvest dates, and selection of appropriate crop varieties.

Figure 7. Heat units graphs (daily degree-days and total)

The calculation methods available for heat unit include: Averaging, Standard, GDD (Growing
Degree-Days), Single Triangle, Double Triangle, Single Sine, Double Sine and Near Real-Time.
As shown in Fig. 7 we used the Averaging Method and the maximum heat unit (26,3 degree
days) was calculated on the date of 10.07.2011 and the total accumulated thermal energy by
the crop on 01.10.2011 was 3.484,2 degreedays.

80

Jo
ur

na
l

of
 E

-T
ec

hn
ol

og
y

 V
ol

um
e

15
 N

um
be

r
 2

M

ay
 2

02
4

dline.info/jet

4. Conclusion

Our system for environmental telemetry can be adapted also to other applications besides
agriculture and meteorology. Knowing how the weather will be is important but knowing how
the environmental parameters are right now is just as much important for power plants,
airports, wind and solar parks, incinerators and landfills - they all need wind, temperature,
radiation data, etc. reliably and up to date.

Even though IPv6 is used to interconnect processes globally on a SlapOS public or private
Cloud, we found that some existing software on RTUs are incompatible with IPv6. Reasons
varry. Sometimes, IP addresses are stored in a structure of 3 integers, which is incompatible
with IPv6. Sometimes, IPv6 URLs are not recognized since only dot is recognized as a sepa-
rator in IP addresses. For this reason, we decided to provide to each computer partition a
dedicated, local, non routable IPv4 address.

We hope in the future that Microsoft Windows will also be supported as a host (Microsoft
Windows is already supported as a guest) through glibc implementation on Windows and a
port of supervisord to Windows.

Acknowledgement

This paper is presented as part of the project “Valorificarea capitalului uman din cercetare
prin burse doctorale (ValueDoc)” Project co-financed from the European Social Fund
through POSDRU, financing contract POSDRU/107/1.5/S/76909 and part of the project
“Cloud Consulting” and “TELE GREEN”.

References

[1] Fukatsu, T., Watanabe, T., Hu, H., Yoichi, H., Hirafuji, M. (2012). Field monitoring sup-
port system for the occurrence of Leptocorisa chinensis Dallas (Hemiptera: Alydidae)
using synthetic attractants, Field Servers, and image analysis. Computers and Electronics
in Agriculture, 80, 8–16.

[2] Jiang, J. A., Tseng, C. L., Lu, F. M., Yang, E. C., Wu, Z. S., Chen, C. P., Lin, S. H., Lin, K. C.,
Liao, C. S. (2008). A GSM-based remote wireless automatic monitoring system for field
information: A case study for ecological monitoring of the oriental fruit fly, Bactrocera
dorsalis (Hendel). Computers and Electronics in Agriculture, 62(2), 243–259.

[3] Suciu, G., Fratu, O., Halunga, S., Cernat, C. G., Poenaru, V. A., Suciu, V. (2011). Cloud
Consulting: ERP and Communication Application Integration in Open Source Cloud Sys-
tems. In: 19th Telecommunications Forum - TELFOR 2011, IEEE Communications Society
(pp. 578-581).

[4] Abbes, H., C´erin, C., Jemni, M. (2008). Bonjourgrid as a decentralised job scheduler.
In APSCC 08.Proceedings of the 2008 IEEE Asia-Pacific Services Computing Conference (pp.
89–94). IEEE Computer Society.

[5] Abbes, H., C´erin, C., Jemni, M. (2010). A decentralized and fault-tolerant Desktop
Grid system for distributed applications. Concurrency and Computation: Practice and Expe-
rience, 22(3), 261-277.

