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ABSTRACT

Our research delves into the fascinating world of distributed multiprocessor
real-time locking protocols, where resources can only be accessed through
certain synchronization processors. We establish the minimum and maxi-
mum priority inversion blocking limits that are typically unavoidable in these
protocols, building on the foundation laid by previous research on suspen-
sion-based shared-memory multiprocessor locking protocols. The (m) and
(n) maximum pi-blocking under suspension-oblivious and suspension-aware
analysis, respectively, where m denotes the total number of processors and
n denotes the number of tasks. This paper shows that, in the case of distrib-
uted semaphore protocols, two task allocation scenarios exist that give rise
to distinct lower bounds. In the case of co-hosted task allocation, where
application tasks may also be assigned to synchronisation processors (i.e.,
processors hosting critical sections), (· n maximum pi-blocking is un-
avoidable for some tasks under any locking protocol under both suspension-
aware and suspension-oblivious schedulability analysis, where  denotes
the ratio of the maximum response time to the shortest period. In contrast,
in the case of disjoint task allocation (i.e., if application tasks may not be
assigned to synchronization processors), only(m) and (n) maximum pi-
blocking is fundamentally unavoidable under suspension-oblivious and sus-
pension-aware analysis, respectively, as in the shared-memory case. These
bounds are shown to be asymptotically tight with the construction of two
new distributed real-time locking protocols that ensure O(m) and O(n) maxi-
mum pi-blocking under suspension-oblivious.

Keywords: Distributed Multiprocessor Real-time Systems, Real-time
Locking, Priority Inversion, Blocking Optimality

1. Introduction

The principal purpose of a real-time locking protocol is to provide tasks
with mutually exclusive access to shared resources such that the maximum
blocking incurred by any task can be bounded a priori. Such blocking is
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problematic in  real-time systems and must be bounded because it increases worst-case
response times, and hence may cause deadline violations if left unchecked.

Real-time locking protocols should thus avoid blocking as much as possible. Unfortunately, if
tasks require exclusive access, some blocking is inherently possible and can generally not be
avoided. This naturally raises the question of optimality: if some blocking is inevitable when
using locks, then what is the minimal bound on worst-case blocking that any locking protocol
can guarant then what is the minimal bound on worst-case blocking that any locking protocol
can guarantee? In other words, when can a real-time locking protocol be deemed (asymptotically)
optimal?

This question has long been answered for uniprocessor systems [2, 44, 48], where it has been
shown that the real-time mutual exclusion problem can be solved with O(1) maximum blocking:
the priority ceiling protocol (PCP) [44, 48] and the stack resource policy (SRP) [2] both ensure
that the maximum blocking incurred by any task is bounded by the length of a single (outermost)
critical section, which is obviously optimal.

In the multiprocessor case, the picture is not as straightforward, and not as complete. First of
all, there are two classes of multiprocessor locking protocols to consider: spin-based (or spin
lock) protocols, in which waiting tasks remain scheduled and execute a delay loop, and
suspension-based (or semaphore) protocols, in which waiting tasks suspend to make the
processor available to other tasks. Of the two classes, spin locks are much simpler to analyze:
with non-preemptive FIFO spin locks, a lock acquisition is delayed by at most one critical section
on each other processor [23, 29], and it is easy to see that this cannot be improved upon in the
general case.

In the case of multiprocessor real-time semaphore protocols, however, the question of blocking
optimality is considerably more challenging, and has only recently been answered in part [11,
16, 18, 49]. In particular, it has been answered only for the case of shared-memory multiprocessor
semaphore protocols, which fundamentally require shared resources to be accessible from all
processors because they assume that tasks execute critical sections locally on the processor(s)
on which they are scheduled. In this paper, we extend the theory of blocking optimality to
distributed multiprocessor semaphore protocols, which are required if (some) shared resource(s)
can be accessed only from specific (subsets of) processors.

1.1. Motivation
Besides the fact that the restriction to shared-memory systems in prior work is an obvious
limitation, our work is motivated by the observation that there are many systems that either
inherently require, or at least can benefit from, distributed real-time locking protocols.

For instance, in the absence of a shared memory or on heterogeneous hardware platforms (e.
g., if only some processor cores support special-purpose instructions), the execution of critical
sections can be inherently restricted to specific processors. Similarly, when tasks share physical
resources such as network links, I/O co-processors, graphics processing units (GPUs), or digital
signal processors (DSPs), certain devices may be accessible only from specific processors.

Second, even if all processors technically could access all shared resources, it sometimes is
preferable to centralize resource access nonetheless. For example, many shared-memory
multicore processors intended for embedded systems are not cache-consistent (e. g., Infineon’s
Aurix platform for automotive applications does not support hardware-based cache coherency).
On such a platform, the coherency of shared data structures either must be managed in software
(thus introducing an additional implementation burden), or alternatively the execution of critical
sections can simply be centralized on a dedicated processor with the help of a distributed real-
time locking protocol. In fact, even on a cache-consistent shared-memory platform, it can be
beneficial to centralize the execution of critical sections due to cache affinity issues [39].
Furthermore, the use of distributed real-time locking protocols in shared-memory systems can
also yield improved schedulability [14].

As the final example, consider multi-kernel operating systems [6, 51], where each core is
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managed as a uniprocessor and system-wide resource management is carried out using
message passing. Multi-kernels tend to aggressively optimize locality—intuitively, they form a
“distributed system on a chip”—with the effect that some resources may be accessed only on
specific cores.

In each of these examples, the critical sections of some tasks must be executed on a specific
remote processor, since executing them locally is either infeasible or disallowed. This renders
shared-memory semaphore protocols as studied in [11, 16, 18, 49] inapplicable, and a dis-
tributed real-time semaphore protocol must be employed instead.

Naturally, as in the uniprocessor and shared-memory cases, distributed real-time locking
protocols should minimize blocking to the extent possible. However, to the best of our
knowledge,blocking optimality in distributed real-time locking protocols has not been studied
to date, and it is thus not even clear what the minimal “extent possible” is, nor is it known
how protocols should be structured to obtain (asymptotically) optimal blocking bounds. In
this paper, we seek to close this gap in the understanding of multiprocessor real-time syn-
chronization.

2. Related Work

The first discussion of the effects of uncontrolled blocking in real-time systems and possible
solutions dates back to the Mesa project [36]. Sha et al. [48] were the first to study the
problem from an analytical point of view and proposed uniprocessor protocols that provably
bound the worst-case blocking duration. As already mentioned, the Sha et al.’s PCP [48] and
Baker’s SRP [2] were the first uniprocessor semaphore protocols to ensure optimal blocking
bounds.

In the first work on synchronization in multiprocessor real-time systems, Rajkumar et al. [45]
proposed the distributed priority ceiling protocol (DPCP) [44, 45] for partitioned1 multiproces-
sors, which applies the PCP on each processor and uses “agents” to carry-out critical sec-
tions on behalf of tasks assigned to remote processors. As the first and prototypical distrib-
uted real?time semaphore protocol, the DPCP is central to this paper and reviewed in greater
detail in Section 2.2.2. Rajkumar also developed the first suspension-based shared-memory
real-time locking protocol, namely the multiprocessor priority ceiling protocol (MPCP) [43],2 an
extension of the PCP for partitioned shared-memory multiprocessors based on priority queues.
Like the DPCP, the MPCP uses the regular PCP for local resources (i. e., resources used on
only one processor), but when accessing global resources (i. e., resources used by tasks on
multiple processors), tasks execute critical section on their assigned processor in the MPCP
(rather than delegating resource access to “agents” as in the DPCP). In contrast to the PCP
and the SRP, which are obviouslyv optimal on a uniprocessor, the MPCP and the DPCP were
not studied from a blocking optimality perspective.

Favoring spin locks over semaphores, Gai et al. [28, 29] developed the MSRP, a multiproces-
sor extension of the SRP for partitioned shared-memory multiprocessors, wich employs non-
preemptive FIFO spin locks for global resources and the SRP for local resources; Devi et al.
[23] similarly analyzed non-preemptive FIFO spin locks in the context of globally scheduled
multiprocessors.3 As already pointed out, it is not possible to construct spin lock protocols

1Under partitioned scheduling, each task is statically assigned to a processor, and each processor
is scheduled individually using a uniprocessor policy.

2The name “multiprocessor priority ceiling protocol” originally referred to the DPCP in [45], but was
later repurposed to refer to the MPCP in [43]. We follow the terminology from [35, 43, 44], wherein
the MPCP denotes the shared-memory variant.

3Under global scheduling, all processors serve a shared ready queue and tasks migrate among all
processors.
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that ensure, in the worst case, asymptotically less blocking to all tasks than the protocols by
Gai et al. [28, 29] and Devi et al. [23], although it is possible to use priority-ordered spin locks
[32, 33, 41] to ensure that some tasks are less susceptible to blocking than others [52].

In subsequent work on shared-memory real-time locking protocols (both spin-based and sus-
pension-based), numerous new protocols, analysis improvements, and evaluations have been
presented [10, 11, 14, 17, 19, 20, 22, 24, 26, 27, 35, 40, 42, 47]; however, in contrast to this
paper, they Perhaps more closely related are two studies targeting different notions of
optimality.

Perhaps more closely related are two studies targeting different notions of optimality. Soon
after the MPCP was proposed, Lortz and Shin [38] observed that ordering conflicting critical
sections by scheduling priority, as in the MPCP, does not always yield the best results in terms
of schedulability, and proposed using FIFO queues or semaphore-specific locking priorities
instead. They further showed that assigning per-semaphore locking priorities that maximize
schedulability  is an NP-complete problem [38]. More recently, Hsiu et al. [31] studied three
problems related to finding task and resource assignments that minimize system-wide re-
source usage (i. e., the number of processors hosting real-time tasks, the number of proces-
sors hosting shared resources, and the total number of processors) assuming a distributed,
priority-queue-based semaphore protocol similar to the DPCP. Unsurprisingly, they found the
exact optimization problems to be intractable (NP-hard). In contrast to Hsiu et al.’s work [31],
the notion of optimality studied herein focuses on the locking protocol itself (and not system-
wide allocation properties), which makes it possible to find simple, asymptotically optimal
solutions, as we show in Section 5.

Most closely related to this paper is [16], which was the first work to consider blocking optimality
in (shared-memory) multiprocessor real-time systems, and from which we adopt the analyti-
cal framework and key definitions (as reviewed in detail in Section 2.3). In short, it was shown
that even in the shared-memory case alone, there exist not only one, but two lower bounds
on maximum blocking [16]. This is because there exist two sets of analysis assumptions,
termed suspension-aware and suspension-oblivious schedulability analysis, that yield differ-
ent lower bounds due to differences in how semaphore-related suspensions are accounted
for during schedulability analysis. More precisely, in a system with m processors and n tasks,
a lower bound of W (n) was established in the suspension-aware case, whereas the suspen-
sion-oblivious case yields a lower bound of W (m).

In other words, it was shown that there exist pathological scenarios in which some tasks
incur blocking that is (at least) linear in the number of processors (under suspension-oblivi-
ous) or linear in the number of tasks (under suspension-aware analysis), regardless of the
employed locking protocol. These bounds have further been shown to be asymptotically tight
with the construction of practical shared-memory semaphore protocols that ensure bounds
on maximum blocking that are within a small constant factor of the established lower bounds
[11, 13, 16, 18, 25, 49, 50].

To the best of our knowledge, no equivalent results are known for the case of distributed
multiprocessor real-time semaphore protocols.4

3. Contributions

We study the question of optimal blocking in distributed multiprocessor real-time semaphore
protocols and show that there exist two distinct task allocation strategies, which we call co-
hosted and disjoint task allocation, that lead to different lower bounds on blocking. In the
disjoint case, synchronization processors are dedicated exclusively to executing critical sec-

4 The material presented herein was previously made available online in preliminary form as an unpublished manuscript
[12]. Based on [12], an in-kernel implementation and a fine-grained linear-programming-based blocking analysis of the
protocol presented in Section 5.1 was previously discussed and evaluated in [14]. Whereas [14] focuses on accurate (non-
asymptotic) analysis and practical concerns, the material presented in Sections 3–5 pertains exclusively to questions of
optimality and has previously not been published.



dline.info/jisr            39

Jo
ur

na
l 

of
 I

nf
or

m
at

io
n 

Se
cu

ri
ty

 R
es

ea
rc

h 
 V

ol
um

e 
15

 N
um

be
r 

2 
Ju

ne
  

20
24

tions and may not host real-time tasks, whereas in the co-hosted case tasks also execute on
synchronization processors. Notably, in a co-hosted scenario, we observe two surprising
results:

1. In terms of the lower bound, there is no difference between suspension-aware and sus-
pension? oblivious analysis, in contrast to the shared-memory case; and

2. Blocking can be asymptotically worse than in an equivalent shared-memory system by a
factor
of , where  denotes the ratio of the maximum response time and the minimum period
(formalized in Section 2)—we establish  ( · n) as a lower bound on maximum blocking
under both suspension-oblivious and suspension-aware analysis (Theorem 8).

We further show that any “reasonable” distributed locking protocol that does not artificially
delay requests (formalized as “weakly work-conserving” in Section 2) causes at most (  ·
n) blocking (Theorem 10); any “reasonable” protocol is hence asymptotically optimal in the
co-hosted case.

In contrast to the co-hosted case, we show that, under disjoint task allocation, distributed
locking protocols exist that ensure blocking bounds analogous to the shared-memory case:
we establish lower bounds of (n) and (m) under suspension-aware and suspension-oblivi-
ous analysis, respectively, and show these bounds to be asymptotically tight by constructing
two new distributed
real-time semaphore protocols that ensure O(n) and O(m) maximum blocking under suspen-
sion-aware and suspension-oblivious analysis, respectively (Theorems 12 and 14).

The remainder of the paper is organized as follows. Section 2 provides essential definitions
and a detailed review of the needed background. Section 3 establishes a lower bound on
blocking with the construction of a task set that exhibits pathological blocking under co-
hosted task allocation, and argues that prior constructions apply in the case of disjoint task
allocation. Section 4 considers the co-hosted case and shows that any “reasonable” distrib-
uted locking protocol without artificial delays ensures maximum blocking within at most a
constant factor of the established lower bound. Section 5 pertains to the case of disjoint task
allocation and introduces two new protocols that establish the asymptotic tightness of the
lower bounds under suspension-oblivious and suspension-aware analysis. Finally, Section 6
concludes with a discussion of the impact of communication delays.

4. Background and Definitions

In this section, we establish required definitions and review key prior results. In short, the
results presented in this paper apply to sets of sporadic real-time tasks with arbitrary dead-
lines that are provisioned on a multiprocessor platform comprised of non-uniform processor
clusters. Shared resources are accessible only from select synchronization processors and
may be accessed from other processors using remote procedure calls (RPCs). These assump-
tions are formalized as follows; a summary of our notation is subsequently given at the end
of the section in Table 1.

4.1. System Model
We consider the problem of scheduling a set of n sporadic real-time tasks T = {T

1
, . . . , T

2
} on a

set of m processors. A sporadic task T
i
 is characterized by its minimum inter-arrival separa-

tion (or period) pi, its per-job worst-case execution time e
i
, and its relative deadline d

i
, where

. Each task releases a potentially infinite sequence of jobs, where two consecutive

jobs of a task Ti are released at least pi time units apart.

We let Ji denote an arbitrary job of task Ti. A job is pending from its release until it completes,
and while it is pending, it is either ready and may be scheduled on a processor, or suspended
and not available for scheduling. A job Ji released at time ta has its absolute deadline at time
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ta + di. Both tasks and jobs are sequential: each job can be scheduled on at most one proces-
sor at a time, and a newly released job cannot be processed until the task’s previous job has
been completed.

A task’s maximum response time ri describes the maximum time that any Ji remains pending. A

task Ti is schedulable if it can be shown that ri  di; the set of all tasks t is schedulable if each
Ti   t is schedulable. We define F to be the ratio of the maximum response time and the

minimum period; formally  .

The set of m processors consists of K pairwise disjoint clusters (or sets) of processors, where
2  K   m. We let Cj denote the jth cluster, and let mj denote the number of processors in Cj,

where . A common special case is a partitioned system, where K = m and mj = 1 for each

Cj. However, in general, clusters do not necessarily have a uniform size. We preclude the
special case of K = 1 and m1 = m because distributed locking protocols are relevant only if
there are at least two clusters (i. e., the case of K = 1 and m1 = m corresponds to a globally
scheduled shared-memory platform, which is already covered by prior work [11, 15, 16, 18]).

For notational convenience, we assume that clusters are indexed in order of non-decreasing
cluster size:  . In particular, m1 denotes the (or one of the) smallest cluster(s)
in the system (with ties broken arbitrarily). Since K  2, we have m1  m/2. This fact is exploited
by the lower-bound argument in Section 3.

Each task Ti is statically assigned to one of the K clusters; we let C(Ti) denote Ti ’s assigned
cluster. Each cluster is scheduled independently according to a work-conserving job-level fixed-
priority (JLFP) scheduling policy [21]. Two common JLFP policies are fixed-priority (FP) schedul-
ing, where each task is assigned a fixed priority and jobs are prioritized in order of decreasing
task priority, and earliest-deadline first (EDF) scheduling, where jobs are prioritized in order of
decreasing absolute deadlines (with ties broken arbitrarily).

In general, a JLFP scheduler assigns each pending job a fixed priority and, at any point in time,
schedules the mj highest-priority ready jobs (or agents, see below) in each cluster C

j
. Jobs

may freely migrate among processors belonging to the same cluster (i. e., global JLFP scheduling
is used within each cluster), but jobs may not migrate across cluster boundaries. Note that this
model includes the partitioned scheduling of shared-memory systems (each processor forms a
singleton cluster). Each cluster may use a different JLFP policy. Our results apply to any JLFP
policy.

Next, we discuss how resources may be shared in the assumed system architecture.

4.2. Distributed Real-Time Semaphore Protocols
In many real-time systems, tasks may have to share serially reusable resources (e. g., co-
processors, I/O ports, shared data structures, etc.). This paper is concerned with systems in
which mutually exclusive access to such resources is governed by a distributed (binary)
semaphore protocol. In a distributed semaphore protocol, each resource can be accessed only
from a (set of) designated processor(s); critical sections must hence be executed remotely if
tasks use resources that are not local to their assigned processor.

We next formalize the assumed resource model and review a distributed semaphore protocol.

4.2.1. Resource Model

The tasks in  are assumed to share nr resources (besides the processors). Each shared

resource lq (where ) is local to exactly one of the K clusters (but can be accessed from
any cluster using RPC invocations). We let C(lq) denote the cluster to which lq is local. Cluster
C(lq) is also called the synchronization cluster for lq.
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To allow tasks to use non-local resources, access to each shared resource is mediated by one
or more resource agents. To use a shared resource lq, a job Ji invokes an agent on cluster

C(lq) to carry out the request on Ji’s behalf using a synchronous RPC. After issuing an RPC, Ji
suspends until notified by the invoked agent that the request has been carried out. A locking
protocol such as the DPCP (reviewed in Section 2.2.2) determines how concurrent requests
are serialized.

We let Ni,q denote the maximum number of times that any Ji uses lq, and let Li,q denote the
corresponding per-request maximum critical section length, that is, the maximum time that
the agent handling Ji ’s RPC requires exclusive access to lq as part of carrying out any single
operation invoked by Ji. For notational convenience, we require Li,q = 0 if Ni,q = 0 and define

.

Jobs invoke at most one agent at any time, and agents do not invoke other agents as part of
handling a resource request (i. e., resource requests are not nested). An agent is active while
it is processing requests, and inactive otherwise. While active, an agent is either ready (and
can be scheduled) or suspended (and is not available for execution). Active agents are typically
ready, but may suspend temporarily when serving a request that involves synchronous I/O
operations.

Following Rajkumar et al. [44, 45], we assume that jobs can invoke agents without significant
delay. That is, we assume that the overhead of cluster-to-cluster communication is negligible,
in the sense that any practical system overheads can be incorporated into task parameters
using standard overhead accounting techniques (e. g., see [11, Ch. 7]). If a distributed locking
protocol is implemented on top of a platform with dedicated point-to-point links, or if the
maximum communication delay across a shared network can be bounded by a constant (e. g.,
when communicating over a time-triggered network [34]), this assumption is appropriate, as
any constant invocation cost can be accounted for using standard overhead accounting
techniques. Further, such communication delays do not affect the blocking analysis per se (i.
e., they do not affect the contention for shared resources) and thus can be ignored when
deriving asymptotic bounds. We revisit the issue of non-negligible communication delays in
Section 6.

Finally, in a real system, there likely exist resources in each cluster that are shared only
among local tasks. Such local resources can be readily handled using shared-memory protocols
(or uniprocessor protocols) and are not the subject of this paper. We hence assume that each
resource lq is accessed by tasks from at least two different clusters.

Given our resource model, a locking protocol is required to determine how agents are prioritized,
how conflicting requests are ordered, and when jobs may invoke agents. We next review the
classic protocol for this purpose, namely the DPCP.

4.2.2. The Distributed Priority Ceiling Protocol
As the first (distributed) real-time semaphore protocol for multiprocessors, the DPCP [44, 45]
can be considered to be the prototypical distributed semaphore protocol for partitioned fixed-
priority (P-FP) scheduling, a special case of the clustered JLFP scheduling assumed in this
paper. We briefly review the DPCP as a concrete example of the considered class of protocols.

The DPCP fundamentally requires mj = 1 for each cluster (or, rather, partition) Cj. Each resource
lq is statically assigned to a specific processor and may not be directly used on other processors.
Rather, tasks residing on other processors must indirectly access the resource by issuing
RPCs to resource agents. To this end, the DPCP provides one resource agent Aq,i for each
resource lq and each task i. To ensure a timely completion of critical sections, resource agents
are subject to priority boosting, which means that they have priorities higher than any regular
task (and thus cannot be preempted by regular jobs). Nonetheless, under the DPCP, resource
agents acting on behalf of higher-priority tasks may still preempt agents acting on behalf of
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lower-priority tasks. That is, an agent Aq,h may preempt another agent Ar, l if h has a higher
priority than l. After a job has invoked an agent, it suspends until its request has been
carried out.

On each processor, conflicting accesses are mediated using the PCP [44, 48]. The PCP assigns
each resource a priority ceiling, which is the priority of the highest-priority task (or agent)
accessing the resource, and, at runtime, maintains a system ceiling, which is the maximum
priority ceiling of any currently locked resource. A job (or agent) is permitted to lock a resource
only if its priority exceeds the current system ceiling. Waiting jobs/agents are ordered by
effective scheduling priority, and priority inheritance [44, 48] is applied to prevent unbounded
“priority inversion” (Section 2.3).

From an optimality point of view, not all of the details of the DPCP are relevant. Therefore, we
abstract from the specifics of the DPCP in our analysis to consider a larger class of “DPCP-like”
protocols, as defined next.

4.2.3 Simplified Protocol Assumptions
Specifically, in this paper, we focus on the class of distributed real-time locking protocols that
ensure progress by means of two properties adopted from the DPCP [44, 48].

A1 Agents are priority-boosted: agents always have a higher priority than regular jobs.

A2 The distributed locking protocol is weakly work-conserving: a resource request  for a
resource lq is unsatisfied at time t (i. e.,  has been issued but is not yet being processed) only
if some resource (but not necessarily lq) is currently unavailable (i. e., some agent is currently
processing a request for any resource).

Assumption A1 is necessary to expedite request completion since excessive delays cannot
generally be avoided if jobs can preempt agents. Assumption A2 rules out pathological proto-
cols that “artificially” delay requests. We consider this form of work conservation to be “weak”
because it does not require the requested resource to be unavailable; a request for an avail-
able resource may also be delayed if some other resource is currently in use. Notably, the
DPCP is only weakly work-conserving (and not work-conserving w.r.t. each resource) since
requests for available resources may remain temporarily unsatisfied due to ceiling blocking
[44, 48].

Assumptions A1 and A2 together ensure that any delay in the processing of resource re-
quests can be attributed exclusively to other resource requests.

Another simplification pertains to the use of agents. Under the DPCP, jobs do not require
agents to access resources local to their assigned processor since jobs can directly partici-
pate in the PCP. In a sense, this can be seen as jobs taking on the role of their agent on their
local processor. To simplify the discussion in this paper, we assume herein that resources are
accessed only via agents (i. e., jobs invoke agents even for resources that happen to be local
to their assigned processors). This does not change the algorithmic properties of the DPCP.

Finally, we assume that there is only a single local agent for each resource. As seen in the
DPCP [44,45], it can make sense to use more than one agent per resource; however, in the
following, we abstract from such protocol specifics and let a single agent Aq represent all
agent activity corresponding to a resource lq.

A key assumption in our system model is that both tasks and resources are statically as-
signed to clusters, which gives rise to two allocation scenarios, as we discuss next.

4.2.4. Co-Hosted and Disjoint Task Allocation
Processor clusters that host resource agents are called synchronization clusters. Conversely,
processor clusters that host sporadic real-time tasks are called application clusters.
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In this paper, we establish asymptotically tight lower and upper blocking bounds on maxi-
mum blocking in two separate scenarios, which we refer to as “co-hosted” and “disjoint” task
allocation, respectively. Under co-hosted task allocation, the set of application clusters over-
laps with the set of synchronization clusters, that is, there exists a cluster that hosts both
tasks and agents. In contrast, under disjoint task allocation, clusters may host either agents
or tasks, but not both. The significance of these two allocation strategies is that they give
rise to two distinct lower bounds on worst-case blocking, as will become apparent in Section
3.

Next, we give a precise definition of what actually constitutes “blocking.”

4.3. Priority Inversion Blocking
The sharing of resources subject to mutual exclusion constraints inevitably causes some
delays because conflicting concurrent requests must be serialized. Such delays are problem-
atic in a real-time system if they lead to an increase in worst-case response times (i. e., if they
affect some ri). Conversely, delays that do not affect ri are not considered to constitute “block-
ing” in real-time systems. This is captured by the concept of priority inversion [44, 48], which,
intuitively, exists if a job that should be scheduled according to its base priority is not sched-
uled, either because it is suspended (while waiting to gain access to a shared resource) or
because a job or agent with elevated effective priority prevents it from being scheduled. To
avoid confusion with other interpretations of the term “blocking” (e. g., in an OS context,
“blocking” often is used synonymously with suspending), the term priority inversion blocking
(pi-blocking) denotes any resource-sharing-related delay that affects worst-case response
times [16]. We let bi denote a bound on the maximum pi-blocking incurred by any job of task
Ti.

4.3.1. Suspension-Oblivious vs. Suspension-Aware Analysis
Prior work has shown that there exist in fact two kinds of priority inversion [16], depending
on how suspensions are accounted for by the employed schedulability analysis. The differ-
ence arises because many published schedulability tests simply assume the absence of self-
suspensions, which are notoriously difficult to analyze (e. g., see [46]), and thus ignore a
major source of pi-blocking. Such suspension-oblivious (s-oblivious) schedulability tests can
still be employed to analyze task systems that exhibit self-suspensions, but require pi-block-
ing to be accounted for pessimistically by inflating each execution requirement ei by bi prior to
applying the schedulability test. This results in sound, but likely pessimistic results: over-
approximating all pi-blocking as additional processor demand is safe because converting
execution time to suspensions does not increase the response time of any task (under pre-
emptive JLFP scheduling), but is also likely pessimistic as the processor load is lower in prac-
tice than assumed during analysis.

As an example of an s-oblivious schedulability test, consider Liu and Layland’s classic
uniprocessor EDF utilization bound for implicit-deadline tasks: a set of independent sporadic

tasks t is schedulable under EDF on a uniprocessor if and only if  [37].  This test is s-
oblivious because tasks are assumed to be independent (i. e., there are no shared resources)
and because jobs are assumed to always be ready (i. e., there are no self-suspensions).
However, even if these assumptions are violated (i. e., if bi > 0 for some Ti), Liu and Layland’s
utilization bound can still be used after inflating all execution costs ei by the maximum pi-
blocking bounds bi [11, 16, 18]. That is, in the presence of locking-related self-suspensions,
a set of resource-sharing, implicit-deadline sporadic tasks t is schedulable under EDF on a

uniprocessor if .

While s-oblivious schedulability analysis may at first sight appear too pessimistic to be useful,
it is still relevant because some of the pessimism can actually be “reused” to obtain less
pessimistic pi-blocking bounds [11, 16, 18], and because many published multiprocessor
schedulability tests (e. g., [3–5, 7–9, 30]) do not account for self-suspensions explicitly.

In contrast, suspension-aware (s-aware) schedulability analysis explicitly accounts for all ef-
fects of pi-blocking. For instance, response-time analysis (RTA) for (uniprocessor) FP schedul-
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ing [1, 35] is a good example of effective s-aware schedulability analysis, and can be applied
to partitioned scheduling as follows. Let br

i denote a bound on maximum remote pi-blocking (i.
e., pi-blocking caused by tasks or agents assigned to remote clusters), and let bl

i denote a
bound on maximum local pi-blocking (i. e., pi-blocking caused by tasks or agents assigned to
cluster C(Ti)), where . Then, assuming constrained deadlines (i. e., di = pi), a task Ti’ss
maximum response time ri is bounded by the smallest positive solution to the recursion [1, 35]

(1)

where hp(Ti) denotes the set of tasks assigned to processor C(Ti) with higher priorities than Ti.
Equation (1) is an s-aware schedulability test because  explicitly accounted for..

This difference—explicit vs. implicit suspension accounting—has a profound impact on the ex-
act nature of pi-blocking, as we review next.

4.3.2. S-Oblivious and S-Aware PI-Blocking
From the point of view of schedulability analysis, a priority inversion exists if a job is delayed (i.
e., not scheduled) and this delay cannot be attributed to the execution of a higher-priority
job.5 Prior work [11, 16, 18] has shown that, since s-oblivious schedulability analysis over-
approximates a task’s processor demand, the definition of “priority inversion” depends on the
type of analysis.

Definition 1. Under s-oblivious schedulability analysis, a job Ji of a task Ti assigned to cluster
Cj = C(Ti) incurs s-oblivious pi-blocking at time t if Ji is pending but not scheduled and fewer
than mj higher-priority jobs of tasks assigned to Cj are pending [16].

Definition 2. Under s-aware schedulability analysis, a job Ji of a task Ti assigned to cluster Cj
= C(Ti) incurs s-aware pi-blocking at time t if Ji is pending but not scheduled and fewer than mj
higher-priority ready jobs of tasks assigned to Cj are scheduled [16].

Note that there cannot be fewer pending higher-priority jobs than there are scheduled higher
priority jobs (i. e., a scheduled job is necessarily also pending). Hence, if a job Ji incurs s-
oblivious pi-blocking at a time t, then it incurs also s-aware pi-blocking at time t. However, the
converse does not hold: if Ji incurs s-aware pi-blocking time t, then it may be the case that it
does not incur s-oblivious pi-blocking at time t. More precisely, Ji incurs s-aware pi-blocking, but
not s-oblivious pi-blocking, at time t if there are at least mj higher-priority jobs pending, but
fewer than mj of them are scheduled at time t.

In other words, if Definition 1 is satisfied, then Definition 2 is satisfied as well. Therefore, an
upper bound on s-aware pi-blocking (Definition 2) implies an upper bound on s-oblivious pi
blocking (Definition 1), as previously pointed out in [16]. Conversely, a lower bound on s-
oblivious pi-blocking (Definition 1) also implies a lower bound on s-aware pi-blocking (Defini-
tion 2). We use this relationship in Section 3.

From a practical point of view, the difference between s-oblivious and s-aware pi-blocking
suggests that it is useful to design locking protocols specifically for a particular type of analy-
sis. From an optimality point of view, which we review next, the difference between s-oblivious
and s-aware pi-blocking is fundamental because—in shared-memory systems—the two types
of analysis have been shown to yield two different lower bounds on the amount of pi-blocking
that is unavoidable under any locking protocol [11, 16].

5 Regular interference due to the scheduling of higher-priority jobs is accounted for by any sound schedulability
test. A priority inversion exists if additional delay is incurred
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4.3.3. PI-Blocking Complexity
As discussed in Section 1, blocking optimality is concerned with finding the smallest possible
bound on worst-case blocking. To enable systematic study of this question, maximum pi-block-
ing, formally , has been proposed as a metric of blocking complexity in prior work [11,
16, 18].

Concrete bounds on pi-blocking must necessarily depend on each Li,q—long requests will cause
long priority inversions under any protocol. Similarly, bounds for any reasonable protocol grow
linearly with the maximum number of requests per job. Thus, when deriving asymptotic bounds,

we consider, for each  and each Li,q to be constants and assume n = m. All other

parameters are considered variable (or dependent on m and n).

Under these assumptions, it was shown [11, 16, 18] that, in the case of shared-memory
lockingprotocols, the lower bound on unavoidable pi-blocking depends on whether s-oblivi-
ous or s-aware schedulability analysis is employed. More specifically, it was shown that there
exist pathological task sets such that maximum pi-blocking is linear in the number of proces-
sors m (and independent of the number of tasks n) under s-oblivious analysis, but linear in n
(and independent of m) under s-aware analysis [11, 16, 18]. Further, it was shown that
these bounds are asymptotically tight with the construction of shared-memory semaphore
protocols that ensure for any task set maximum pi-blocking that is within a constant factor of
the established lower bounds. In other words, in the case of shared-memory semaphore

protocols, the real-time mutual exclusion problem can be solved such that 

under s-oblivious schedulability analysis, and such that  under s-aware
schedulability analysis [11, 16, 18].

We can now precisely state the contribution of this paper: in the following sections, we

establish upper and lower bounds on  under s-oblivious and s-aware schedulability
analysis for distributed (i. e., DPCP-like) real-time locking protocols, thereby complementing
the earlier results on shared-memory (i. e., MPCP-like) real-time locking protocols [11, 16,
18]. For ease of reference, the notation used in this paper is summarized in Table 1.

Lower Bounds on Maximum PI-Blocking
We start by establishing a lower bound on maximum s-oblivious and s-aware pi-blocking in
thecase of co-hosted task allocation. To establish a general lower bound, it is sufficient to
constructan example task set that demonstrates that the claimed amount of pi-blocking (ei-
ther s-aware ors-oblivious) is always possible under any locking protocol compliant with As-
sumptions A1 and A2.To this end, we establish the existence of pathological task sets in

Table 1. Summary of notation
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Figure 1. Example schedule of the task set tseq (n, m1, R) as specified in Table 2 for K = 2, m
1
 = 2, m

2
 = 2, n =

5, and R = 3. There are five tasks T
1
, . . . , T

5
 assigned to K = 2 clusters sharing one resource l

1
, which is

local  to cluster C
1
. Agent A

1
 is hence assigned to cluster C

1
. The small digit in each critical section signi-

fies the task on behalf of which the agent is executing the request. Deadlines have been omitted from the
schedule for the sake of clarity. By construction, the scheduling policy employed to schedule jobs is irrel-
evant (for simplicity, assume FP scheduling, where lower-indexed tasks have higher priority than higher-
indexed tasks). The response-time of T

1
 is r

2
 = n · R = 5 · 3 = 15 since it has the lowest priority in its as-

signed cluster C
1
, and because agent A

1
 is continuously occupying a processor.

which some task always incurs  - blocking due to priority boosting (Assumption A1),
regardless of whether s-oblivious or s-aware schedulability analysis is used. This family of
task sets is defined as follows.

Definition 3. For a given smallest cluster size m1, a given number of tasks n (where ),

and an arbitrary positive integer parameter  denote a set
of n periodic tasks, with parameters as given in Table 2, that share one resource l1 local to

cluster .

The task set T seq(n, m1, R) depends on the smallest cluster size m1 because, by construction,
the maximum pi-blocking will be incurred by tasks in cluster C1. Note in Table 2 that the maxi-
mum critical section lengths (w.r.t.  l1 ) depend on m1, which is required to accommodate the
special case of m1 = 1. We first consider the case of m1 > 1.

Table 2. Parameters of the tasks in , where a = 1 and b = 2 if m
1
 > 1, and a = 1/ 2 and b = 1 if m

1
  =

1. Tasks T
1
 , . . . , T

m1
 are assigned to the first cluster C

1
 ; all other tasks are assigned in a round-robin fashion

to clusters other than C
1
 . Recall that .
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In the following, we assume a synchronous periodic arrival sequence, that is, each task Ti
releases a job at time zero and periodically every pi time units thereafter. We consider peri-
odic tasks (and not sporadic tasks) in this section because it simplifies the example, and
since periodic tasks are a special case of sporadic tasks and thus sufficient to establish a
lower bound.

For simplicity and without loss of generality, we further assume that each job of tasks 
immediately accesses resource l

1
 as soon as it is allocated a processor (i. e., at the very

beginning of the job). This results in a pathological schedule in which tasks Tm1+1, . . . , Tn are
serialized. Figure 1 depicts an example schedule for K = 2, m1 = 2, m2 = 2, n = 5, and R = 3.

We begin by observing that the agent servicing requests for l
1
, denoted A1 in the following,

continuously occupies one of the processors in cluster C1.

Lemma 4. If m1 > 1, then only m1 -1 processors of cluster C1 service jobs of tasks T1, . . . , Tm1.

Proof. By construction, the agent A1 servicing requests for resource l1 is located in cluster C1.
By Assumption A1, when servicing requests, agent A1 preempts any job of T1, . . . , Tm1. By
Assumption A2, and since there exists only a single shared resource, agent A1 becomes active
as soon as a request for l

1
 is issued. Thus, a processor in C1 is unavailable for servicing jobs

of tasks T1, . . . , Tm1 whenever A1 is servicing requests issued by jobs of tasks Tm1+1, . . . , Tn.

Consider an interval [ta, ta + n), where ta = x · n and x  . Assuming a synchronous, periodic
arrival sequence, tasks Tm1+1, . . . , Tn each release a job at time ta. Upon being scheduled,
each such job immediately accesses resource l1 and suspends until its request is serviced. As
a result, regardless of the JLFP policy used to schedule jobs, A1 is active during [ta, ta + n) for
the cumulative duration of all requests issued by jobs of tasks Tm1+1, . . . , Tn released at time
ta. Assuming each request requires the maximum time to service, agent A1 is thus active for
aduration of  time units during the interval [ta, ta +n), regardless of how the employed locking
protocol serializes requests for l1. Hence, only m1 - 1 processors are available to service jobs
of T1, . . . , Tm1 during the interval [ta, ta +n). Since such intervals are contiguous (as ta = x·n
and x Î ), one processor in C1 is continuously unavailable to jobs of T1, . . . , Tm1 under any
JLFP scheduling policy and any distributed locking protocol satisfying assumptions A1 and A2.

This in turn implies that the execution of one of the jobs of tasks T1, . . . , Tm1 is delayed.

Lemma 5. If m1 > 1, then max {ri | 1  i  m1 } = R · n.
Proof. Consider an interval [t1, t1 + R·n), where ta = x·R·n and x  . Assuming a synchronous,
periodic arrival sequence, tasks T1, . . . , Tm1 each release a job at time ta. Regardless of the
(work? conserving) JLFP policy employed to assign priorities to jobs, one of these m1 jobs will
have lower priority than the other m1 - 1 ready pending jobs in cluster C1. Recall that we
assume that priorities are unique (i. e., any ties in priorities are subject to arbitrary but consis-
tent tie-breaking). Let Jl denote this lowest-priority job. By Lemma 4, there are only m1 - 1
processors available  to service jobs. Thus Jl will only be scheduled after one of the other jobs
has finished execution. Since each task assigned to cluster C1 has a worst-case execution time

of , in the worst  case, job Jl is not scheduled until time , and then requires

another  time units of processor service to complete. Hence, max {ri | 1 = i = m1} = 2ei

= R · n.

So far we have considered only the case of m1 > 1. By construction, the same maximum re-
sponse-time bound arises also in the case of m1 = 1.

Lemma 6. If m1 = 1, then max {ri | 1  i  m1} = R · n.
Proof. If m1 = 1, then there is only one task assigned to cluster C1. The single processor in C1
is available to jobs of T1 only when A1 is inactive. Recall from Table 2 that the maximum critical
section lengths of tasks Tm1+1, . . . , Tn are halved if m1 = 1. Analogously to Lemma 4, it can
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thus be shown that, in the worst case, the single processor in C1 is available to T1 for only n2
time units out of each interval (x · n, x · n + n), where x  .

Consider an interval (ta, ta + R · n), where ta = x · R · n and x  . Assuming a synchronous

arrival sequence, task T1 releases a J1 at time ta. In the worst case, J1 requires  time

units to complete. Assuming maximum interference by A1 (i. e., if the processor is unavailable
to J1 for n2 time units every n time units), J1 will accumulate e1 time units of processor service

only by time .

Since there are m1 processors and m1 pending jobs in cluster C1, all pending jobs should be
immediately scheduled under any work-conserving scheduling policy. However, since the priority-
boosted agent occupies one of the processors, this is not the case, which implies that one job
incurs s-oblivious pi-blocking (under any work-conserving JLFP policy).

Lemma 7. Under s-oblivious schedulability analysis, .

Proof. By construction, there are at most m1 pending jobs in cluster C1 at any time. Hence any
delay of a pending job constitutes s-oblivious pi-blocking (recall Definition 1): bi = ri - ei for

each , regardless of the employed JLFP scheduling policy. Since  for each

, we have . By Lemmas 5 and 6,

, and thus 

Since the agent A1 and tasks T1, . . . , Tm1 share a cluster in , and because the
soblivious pi-blocking implies s-aware pi-blocking, we obtain the following lower bound on
maximum pi-blocking under co-hosted task allocation.

Theorem 8. Under JLFP scheduling, using either s-aware or s-oblivious schedulability analysis,
there exists a task set such that, under co-hosted task allocation,  underany
weakly work-conserving distributed multiprocessor real-time semaphore protocol that employs
priority-boosted agents (i. e., under protocols matching Assumptions A1 and A2).

Proof. By Lemma 7, there exists a task set  such that, under s-oblivious
schedulability analysis, any JLFP policy, and any distributed multiprocessor semaphore protocol

satisfying Assumptions A1 and A2,  for any . Recall from Section

2.1 that , and hence  in the case of . Since R can be freely

chosen, we have  under s-oblivious schedulability analysis. Recall from
Section 2.3 that s-oblivious pi-blocking implies s-aware pi-blocking (i. e., Definition 2 holds if
Definition 1 is satisfied). The established lower bound on s-oblivious pi-blocking therefore also

applies to s-aware pi-blocking [16], and thus  under either s-aware or s-oblivious
schedulability analysis.

Compared to a shared-memory system, where the shared-memory mutual exclusion problem
can be solved with (n) maximum s-aware pi-blocking in the general case [11, 16], Theorem
8 shows that maximum pi-blocking under distributed locking protocols is asymptotically worse
by a factor of . Maximum s-oblivious pi-blocking is also asymptotically worse—the equivalent
shared-memory mutual exclusion problem can be solved with (m) maximum s-oblivious piblocking
[11, 16, 18] (recall that we assume n  m). Note that, , the ratio of the maximum response
time and the minimum period, can in general be arbitrarily large and is independent of either
m or n. This suggests that, from a schedulability point of view, the mutual exclusion problem is
fundamentally more difficult in a distributed environment.
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The observed discrepancy, however, is entirely due to the effects of preemptions caused by
priority-boosted agents. While it is not possible to avoid priority boosting entirely (otherwise
excessive pi-blocking could result when agents are preempted by jobs with large execution
costs), such troublesome preemptions can be easily ruled out by disallowing the co-hosting
of agents and tasks in the same cluster. And in fact, when using such a disjoint task allocation
approach, the asymptotic lower bounds on maximum pi-blocking under distributed locking
protocols are identical to those previously established for shared-memory semaphore protocols.
The matching lower bounds can be trivially established with the setup previously used in
[16]; we omit the details here and summarize the correspondence with the following theorem.

Theorem 9. There exist task sets such that, under JLFP scheduling, disjoint task allocation,
and any distributed real-time semaphore protocol satisfying Assumptions A1 and A2, max{bi}
= (n) under s-aware schedulability analysis and max{bi} =  (m) under s-oblivious
schedulability analysis.

Having established lower bounds on s-oblivious and s-aware pi-blocking under both co-hosted
and disjoint task allocation, we next explore the question of asymptotic optimality—how to
construct protocols that ensure upper bounds on maximum pi-blocking that are within a
constant factor of the established lower bounds? We begin with the co-hosted case in Section
4, and consider the disjoint case in Section 5 thereafter.

As a final remark, we note that the task set  as given in Table 2 contains tasks with
relative deadlines larger than periods (i. e., di > pi for i > m1). This is purely a matter of
convenience; asymptotically equivalent bounds can be derived with implicit-deadline tasks.

5. Asymptotic Optimality under Co-Hosted Task Allocation

Theorem 8 shows that there exist pathological scenarios in which the choice of real-time
locking protocol is seemingly irrelevant: regardless of the specifics of the employed locking
protocol, worst-case pi-blocking is asymptotically worse than in a comparable shared-memory
system simply because resources are inaccessible from some processors. Curiously, from an
asymptotic point of view, protocol-specific rules are indeed immaterial: any distributed real-
time locking protocol that does not starve requests is asymptotically optimal in the case of
co-hosted task allocation.

Theorem 10. Under any JLFP scheduler, any weakly-work-conserving, distributed real-time
semaphore protocol that employs priority boosting (i. e., any protocol matching Assumptions
A1 and A2) ensures O(  · n) maximum pi-blocking, regardless of whether s-aware or s-
oblivious schedulability analysis is employed.

Proof. Recall from Definition 2 that a pending job Jb incurs s-aware pi-blocking if Jb is not
scheduled and not all processors in its assigned cluster are occupied by higher-priority jobs.
This happens either when (i) Jb is suspended while waiting for a resource request to be
completed, or when (ii) Jb is preempted by a priority-boosted agent that executes on behalf
of another job.

Concerning (i), the completion of Jb’s own requests can only be delayed by other requests (and not
by the execution of other jobs) since agents are priority-boosted, and since the employed distributed
locking protocol is weakly work-conserving (i. e., whenever one of Jb’s requests is delayed, at least
one other request is being processed by some agent).

Concerning (ii), agents only become active when invoked by other jobs.

Hence the total duration of all requests (issued by jobs of any task) that are executed while
Jb is pending provides a trivial upper bound on the maximum cumulative agent activity, and
hence also on the maximum total duration of pi-blocking incurred by Jb.
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To this end, consider for any task Tx the maximum number of jobs of Tx that execute while Jb

is pending, which is bounded by .6 Since there are n tasks in total, this implies that at

most   jobs (in total across all tasks) are executed while Jb is pending.

Since  for each Ti (i. e., since each job issues at most a constant number of
requests), it follows that , regardless of any protocol-specific rules.

Recall from Section 2.3 that s-oblivious pi-blocking implies s-aware pi-blocking (i. e., if Definition
1 is satisfied, then Definition 2 holds, too). Hence, an upper bound on s-aware pi-blocking
implicitly also upper-bounds s-oblivious pi-blocking, and thus ) under either-
oblivious or s-aware schedulability analysis.

As a corollary, Theorem 10 implies that the DPCP, which orders requests according to task
priority, is asymptotically optimal in the co-hosted setting. However, it also shows that requests
may be processed in arbitrary order (e. g., in FIFO order, or even in random order) without
losing asymptotic optimality (as long as at least one request at a time is satisfied and agents
are priority-boosted), which is surprising as the queue order is crucial in the shared-memory
case [16].

As already noted in the previous section, by prohibiting the co-hosting of resources and
tasks— that is, somewhat counter-intuitively, by making the system less similar to a shared-
memory system (in which tasks and critical sections are necessarily co-hosted, i. e., executed
on the same set of processors)—it is indeed possible to ensure maximum s-aware pi-blocking
that is asymptotically no worse than under a shared-memory locking protocol. We establish
this fact next by introducing two new protocols that realize O(n) and O(m) maximum pi-
blocking under s-aware and s-oblivious schedulability analysis, respectively, in the case of
disjoint task allocation. As one might expect, the choice of queue order is significant in this
case.

6. Asymptotic Optimality under Disjoint Task Allocation

Prior work [11, 15, 16, 18] has established shared-memory protocols that yield upper bounds
on maximum s-aware and s-oblivious pi-blocking of O(n) and O(m), respectively. These
protocols, namely the FIFO Multiprocessor Locking Protocol (FMLP+) for s-aware analysis [11,
15] and the family of O(m) Locking Protocols (the OMLP family) for s-oblivious analysis [11,
16, 18], rely on specific queue structures with strong progress guarantees to obtain the
desired bounds. In the following, we show how the key ideas underlying the FMLP+ and the
OMLP family can be adopted to the problem of designing asymptotically optimal locking
protocols for the distributed case studied in this paper. We begin with the slightly simpler s-
aware case.

6.1. Asymptotically Optimal Maximum S-Aware PI-Blocking
Inspired by the FMLP+ [11], the Distributed FIFO Locking Protocol (DFLP) relies on simple
FIFO queues to avoid starvation. Notably, the DFLP ensures O(n) maximum s-aware pi-blocking
under disjoint task allocation and transparently supports arbitrary, non-uniform cluster sizes
(i. e., unlike the DPCP, the DFLP supports distributed systems consisting of multiprocessor
nodes with mj > 1 for some Cj and allows mj  mh for any j  h). We first describe the structure
and rules of the DFLP, and then establish its asymptotic optimality.

6.1.1. Rules
Under the DFLP, conflicting requests for each serially-reusable resource lq are ordered with a
per-resource FIFO queue FQq. Requests for lq are served by an agent Aq assigned to lq’s
cluster C(lq). Resource requests are processed according to the following rules.

6 See e. g. [11, Ch. 4] for a formal proof of this well-known bound.



dline.info/jisr            51

Jo
ur

na
l 

of
 I

nf
or

m
at

io
n 

Se
cu

ri
ty

 R
es

ea
rc

h 
 V

ol
um

e 
15

 N
um

be
r 

2 
Ju

ne
  

20
24

1. When Ji issues a request R for resource lq, Ji suspends and R is appended to FQq. Ji’s request
is processed by agent Aq when R becomes the head of FQq.

2. When R is complete, it is removed from FQq and Ji is resumed.

3. Active agents are scheduled preemptively in the order in which their current requests were
issued (i. e., an agent processing an earlier-issued request has higher priority than one serv-
ing a later-issued request). Any ties can be broken arbitrarily (e. g., in favor of agents serving
requests of lower-indexed tasks).

4. Agents have statically higher priority than jobs (i. e., agents are subject to priority-boost-
ing).

We next show that these simple rules yield asymptotic optimality.

6.1.2. Blocking Complexity
The co-hosted case is trivial since the DFLP uses priority boosting (Rule 4) and because it is
weakly work-conserving (requests are satisfied as soon as the requested resource is avail-
able—see Rule 1); Theorem 10 hence applies.

To show asymptotic optimality in the disjoint case, we first establish a per-request bound on
the number of interfering requests that derives from FIFO-ordering both requests and agents.

Lemma 11. Let  denote a request issued by a job Ji for a resource –lq and let TX denote a

task other than . Under the DFLP, jobs of TX delay the completion of  with at
most one request.

Proof. Ji’s request  cannot be delayed by later-issued requests since FQq is FIFO-ordered
and because agents are scheduled in FIFO order according to the issue time of the currently-
served request. Since  is not delayed by later-issued requests (and clearly not by earlier-
completed requests), all requests that delay the completion of  are incomplete at the time
that  is issued. Since tasks and jobs are sequential, and since jobs request at most one
resource at a time, there exists at most one incomplete request per task at any time.

An O(n) bound on maximum s-aware pi-blocking follows immediately since each of the other n - 1
tasks delays Ji at most once each time Ji requests a resource, and since agents cannot preempt
jobs in the disjoint setting.

Theorem 12. Under the DFLP with disjoint task allocation, max{bi} = O(n)

Proof. Let Ji denote an arbitrary job. Since, by assumption, no agents execute on Ji’s cluster, Ji
incurs pi-blocking only when suspended while waiting for a request to complete. By Lemma 11,
each other task delays each of  requests for at most the duration of one request, that is,

per request, Ji incurs no more than n · Lmax s-aware pi-blocking. Since Ji issues at most 

requests, and since by assumption  and Lmax = O(1), we have bi —n · Lmax ·Pq Ni,q =
O(n). J

The DFLP is thus asymptotically optimal with regard to maximum s-aware pi-blocking, under both
co-hosted (Theorem 10) and disjoint task allocation (Theorem 12). In contrast, the DPCP does not
generally guarantee O(n) s-aware pi-blocking in the disjoint case since it orders conflicting re-
quests by task priority and is thus prone to starvation issues (this can be shown similarly to the
lower bound on priority queues established in [11, 16]).

This concludes the case of s-aware analysis. Next, we consider the s-oblivious case.

6.2. Asymptotically Optimal Maximum S-Oblivious PI-Blocking
In this section, we define and analyze the Distributed O(m) Locking Protocol (D-OMLP), which
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augments the OMLP family with support for distributed systems.

In order to prove optimality under s-oblivious analysis, a protocol must ensure an upper
bound of O(m) s-oblivious pi-blocking. Since there are n   m tasks in total, if each task is
allowed to submit a request concurrently, excessive contention could arise at each agent: if
an agent is faced with n concurrent requests, it is not possible to ensure O(m) maximum s-
oblivious pi-blocking regardless of the order in which requests are processed. Thus, it is
necessary to limit contention early within each application cluster (where job priorities can
be taken into account) to only allow a subset of high-priority jobs to invoke agents at the
same time. In the interest of practicality,  such “contention limiting” should not require coor-
dination across clusters, but rather must be of) two protocols of the OMLP family.

The first technique is to introduce contention tokens, which are virtual, cluster-local resources
that a job must acquire prior to invoking an agent. This technique was previously used in the
shared-memory OMLP variant for partitioned JLFP scheduling [16]. By limiting the number of
contention tokens to m in total (i. e., by assigning exactly mj such tokens to each cluster Cj),
each agent is faced with at most m concurrent requests.

This in turn creates the problem of managing access to contention tokens. However, since
contention tokens are a cluster-local resource, this reduces to a shared-memory problem
and prior results on optimal shared-memory real-time synchronization can be reused. In
fact, as there may be multiple contention tokens in each cluster (if mj > 1), of which a job may
use any one, this reduces to a k-exclusion problem (where k denotes the number of tokens
per cluster in this case). Several asymptotically optimal solutions for the k-exclusion problem
under s-oblivious analysis have been developed [18, 25, 50], including a variant of the OMLP
[18]; the contention tokens can thus be readily managed within each cluster using any of
the available k-exclusion protocols [18, 25, 50]. These considerations lead to the following
protocol definition.

6.2.1. Rules

Under the D-OMLP, there are mj contention tokens in each cluster Cj, for a total of 

such tokens. As in the DFLP, there is one agent Aq and a FIFO queue FQq for each resource lq.
Jobs may access shared resources according to the following rules. In the following, let Ji
denote a job that must access resource lq.

1. Before Ji may invoke agent Aq, it must first acquire a contention token local to cluster C(Ti)
according to the rules of an asymptotically optimal k-exclusion protocol.

2. Once Ji holds a contention token, it immediately issues its request  by invoking Aq and
suspends.  is appended to FQq and processed by Aq when it becomes the head of FQq.

3. When  is complete, it is removed from FQq. Ji is resumed and immediately relinquishes its
contention token.

4. Active, ready agents are scheduled preemptively in order of non-decreasing request
enqueueing times (i. e., while processing , agent Aq’s priority is the point in time at which 
was enqueued in FQq). Any ties in the times that requests were enqueued can be broken
arbitrarily.

5. Agents have a statically higher priority than jobs (i. e., agents are subject to priority-
boosting).

As shown next, the contention tokens in combination with FIFO-ordering requests and agents
yield an asymptotically optimal maximum s-oblivious pi-blocking bound.

5.2.2. Blocking Complexity
As with the DFLP, the co-hosted case is trivial since Theorem 10 applies to the D-OMLP.
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In the disjoint case, we first establish a bound on the maximum token-hold time, since jobs
can incur s-oblivious pi-blocking both due to Rule 1 (i. e., when no contention tokens are
available) and due to Rules 2 and 4 (i. e., when  is preceded by other requests in FQq or if Aq
is preempted while processing ).

Lemma 13. A job Ji holds a contention token for at most m · Lmax time units per request.

Proof. By Rules 1 and 3, a job Ji holds a contention token while it waits for its request  to be

completed. Analogously to Lemma 11, since FQq is FIFO-ordered and since agents are
scheduled in FIFO order w.r.t. the time that requests are enqueued (Rule 4), the completion
of  can only be delayed due to the execution of requests that were incomplete at the time that

 was enqueued in FQq. By Rule 1, only jobs holding a contention token may issue requests to

agents. Since there are only  contention tokens in total, there exist at most m - 1

incomplete requests at the time that  is enqueued in FQq. Hence,  is completed and Ji
relinquishes its contention token after at most m · Lmax time units.

By leveraging a k-exclusion protocols that is asymptotically optimal under s-oblivious analysis
(Rule 1), Lemma 13 immediately yields an O(m) bound on maximum s-oblivious pi-blocking.

Theorem 14. Under the D-OMLP with disjoint task allocation, max{bi} = O(m).

Proof. Let H denote the maximum token-hold time. By Lemma 13, the maximum token-hold
time is H = m · Lmax = O(m). Further, H represents the “maximum critical section length” w.r.t.
the contention token k-exclusion problem. By Rule 1, an asymptotically optimal k-exclusion
protocol is employed to manage access to contention tokens within each cluster. Applied to a

cluster with mj processors, the k-exclusion problem can be solved such  that jobs incur s-

oblivious pi-blocking for the duration of at most  critical section lengths per request [18,

25, 50]. Under the D-OMLP, there are k = mj contention tokens in each cluster Cj. Hence, in

the disjoint setting, a task assigned to cluster Cj incurs   -oblivious pi-blocking.

The D-OMLP is thus asymptotically optimal under s-oblivious schedulability analysis, and hence
a natural extension of the OMLP family to the distributed real-time locking problem.

7. Conclusion

In this paper, we studied blocking optimality in distributed real-time locking protocols. We
identified two different task and resource allocation strategies, namely co-hosted and disjoint
task allocation, that give rise to different answers to this question. In the co-hosted case,

under both s-aware and s-oblivious analysis,  maximum pi-blocking is unavoidable in
the general case, whereas in the disjoint case, (n) maximum s-aware and (m) maximum
s-oblivious pi-blocking are the fundamental lower bounds. The significance of these bounds
is that the lower bound on maximum pi-blocking in the case of co-hosted task allocation is
asymptotically worse than in an equivalent shared-memory scenario. In contrast, disjoint
task allocation yields the same lower bounds already known from the analysis of shared-
memory synchronization.

We further showed that the established lower bounds are asymptotically tight. In the cohosted
case, any distributed locking protocol satisfying Assumptions A1 and A2 is asymptotically optimal
(Theorem 10). To prove asymptotic tightness in the disjoint case, we introduced two new distributed
real-time semaphore protocols. Specifically, the DFLP is asymptotically optimal under s-aware
analysis, and the D-OMLP is asymptotically optimal under s-oblivious analysis, both w.r.t. the
maximum pi-blocking metric.
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Pi-blocking is generally undesirable, and hence protocols that guarantee lower asymptotic pi-blocking
bounds are intuitively preferable. Our results are the first formal characterization of the fundamental
limits on pi-blocking in a distributed setting and serve to structure the design space of distributed
real-time locking protocols. However, one should also note that a lower asymptotic pi-blocking
bound does not necessarily imply better overall schedulability.

For one, while disjoint task allocation permits lower bounds on pi-blocking, it also requires dedicating
some cluster(s) to agents, which, depending on constant factors such as the level of contention
and critical section lengths, may decrease the overall utilization of the system. Whether disjoint
task allocation is beneficial is thus a workload-specific question that must be answered individually
for each task set.

Further, asymptotic optimality does not imply that an asymptotically optimal protocol is always
preferable to a non-optimal one. Rather, blocking bounds of asymptotically similar locking protocols
can still differ significantly in absolute terms. Whether a particular locking protocol is suitable for a
particular task set depends on both the task set’s specific requirements and a protocol’s constant
factors, which asymptotic analysis does not reflect. In particular, this is the case under co-hosted
task allocation, where all distributed locking protocols (in the  considered class of protocols) differ
only in terms of constant factors. Fine-grained (i. e., non-asymptotic) bounds on maximum pi-
blocking suitable for schedulability analysis are thus required for practical use and to enable a
detailed comparison. Such bounds should not only reflect a detailed analysis of protocol rules, but
also exploit task-set-specific properties such as per-task bounds on request lengths and request
frequencies. For the DFLP and the DPCP, we have recently developed such bounds [14]; the same
techniques could also be applied to analyze the D-OMLP.

As noted in Section 2.2, we have made the assumption that jobs can invoke agents with “negligible”
overheads (i. e., with overheads that can be accounted for using known overhead accounting
techniques [11]). This is a reasonable assumption in platforms with point-to-point links, in systems
with networks employing TDMA or time-triggered [34] arbitration policies, or if distributed semaphore
protocols are implemented on top of a (large) shared-memory platform (e. g., see [14] for such a
case). However, the assumption may be more problematic in systems that require explicit message
routing across a shared, dynamically arbitrated network. Assuming there exists an upper bound
i,q on the message delay between a task Ti and each agent Aq, such delays can be incorporated
by simply increasing Ti’s self-suspension time by 2i,q for each agent invocation (under the D-
OMLP, the maximum token-hold time is increased by 2i,q as well). If i,q can be considered constant
(i. e., if i,q = O(1) from an asymptotic analysis point of view), then the asymptotic upper and
lower bounds established in this paper remain unaffected. If, however, i,q depends on m or n, or
on other non-constant factors, then additional analysis is required, which may be an interesting
direction for future work.

In another opportunity for future work, it will also be interesting to explore how to accommo-
date nested requests, that is, how to allow complex requests that require agents to invoke
other agents. Ward and Anderson have recently shown that arbitrarily deep nesting can be
supported in sharedmemory locking protocols without loss of asymptotic optimality [49]; how-
ever, it remains to be seen how their techniques can be extended to distributed real-time
semaphore protocols.
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