
 Journal of Digital Information Management � Volume 10 Number 6 � December 2012 399

Journal of Digital

Information Management

Snippets and Component-Based Authoring Tools for Reusing and

Connecting Documents

Laurent Kirsch, Jean Botev, Steffen Rothkugel

Faculty of Science, Technology and Communication

University of Luxembourg

Luxembourg

{laurent.kirsch, jean.botev, steffen.rothkugel}@uni.lu

ABSTRACT: This paper presents the Snippet System, a

new operating system environment that aims at providing

enhanced document management facilities. For this, the

proposed system utilizes a novel document model based

on finer-grained entities, so-called Snippets. These

support Relations, which capture the context of individual

document excerpts. Snippets furthermore enable a flexible

reuse of documents, i.e., user-defined excerpts can be

included in several other documents with only selected

properties remaining synchronized between different

instances. Moreover, dedicated mechanisms allow for the

efficient retrieval of these instances and thus support the

user in keeping track of reused excerpts and synced

properties.

The Snippet System relies on a component-based

authoring tool architecture that enables different authoring

tools to collaborate for handling documents. This allows

for combining the contents created by various tools in a

single document, independently of the type of content

and tools involved, thus making possible the reuse of

documents and the definition of Relations across tool

boundaries.

Categories and Subject Descriptors:

I.7.1 [Document and Text Editing]; Document management;

I.7.5 [Document Capture] Document analysis

General Terms:

Document Processing, Text Analysis, Authoring Tools

Keywords: Applied computing, Document management and

text processing, Document management, Human-centered

computing, Authoring Tools

Received: 22 July 2012, Revised 26 September 2012, Accepted

29 September 2012

1. Introduction

Creating high quality documents is a labor-intensive and

time-consuming process. Often it is desirable to reuse

slightly adapted excerpts of existing documents for cre-

ating a new document. However, today’s operating sys

tems do not provide adequate support for this kind of re-

use, especially when different applications manage the

involved excerpts. For example, it is usually not possible

to insert an editable, synchronized instance of a vector

graphics object into a text document. A wide-spread so-

lution consists in including a non-editable, exported ver-

sion. The main drawback here is the lack of a connection

between the original object and its exported version, which

renders a synchronization between them impossible.

State-of-the-art operating systems do not provide native

support for capturing any kind of connections between

document excerpts, especially when they are managed

by different authoring tools [4] [5]. For example, it normally

is not possible to define a contextual link between a lecture

slide, a task from an exercise sheet and an exam question

which all treat the same problem. Such connections

between individual excerpts are, however, critical to both

authors and readers when dealing with a document [3].

While creating or adapting documents, authors can utilize

these links to conveniently access the context of a specific

excerpt also across different applications. These

connections serve the author as cognitive artifacts [18] or

augmentation [14], which allow for being transported back

to the original creation process of a given excerpt, thereby

alleviating some of the problems users experience when

returning to long-lasting tasks [7]. Readers, in turn, tend

to perceive not only linearly, but mostly laterally [21] by

using multiple, complementary sources. Such links - pre-

defined by the author - allow the reader to better grasp

the context of specific document excerpts, preventing also

possible wrong associations.

The aim of the presented Snippet System is to provide new

facilities for the creation and management of documents

and in particular to overcome said limitations of existing

400 Journal of Digital Information Management � Volume 10 Number 6 � December 2012

systems [12]. Most importantly, it allows for the fine-

granular reuse of documents, i.e., user-defined document

excerpts can be included in several other documents with

different instances being completely or partially

synchronized among each other. In the latter case

synchronization is limited to selected properties. For

example, when creating a new presentation, existing slides

can be reused, and leveraging partial synchronization, it

can be ensured that only specific attributes remain in-

sync among the new and the original instance of the slides.

However, users work with many documents and typically

cannot keep track of all reused excerpts and synchronized

properties themselves. Therefore, dedicated mechanisms

within the Snippet System allow for checking which

excerpts of a document have also been included in other

documents. These can furthermore be retrieved for

assessing the impact of intended modifications. Moreover,

for enabling easier access to the context of a document,

the Snippet System supports Relations, i.e., collections

of related document excerpts, which can be defined and

browsed at any moment while editing or reading a

document.

The two main architectural components of the Snippet

System - which set it apart from existing systems - are a

component-based architecture for authoring tools and a

novel model for the representation of documents. The

architecture specifically ensures that all tools support

Relations by allowing excerpts of their documents to be

connected with other related excerpts that can also be

managed by different tools. Furthermore, it also guarantees

that every tool is able to insert document excerpts

managed by other tools into its own documents. This

allows for combining the reduced feature sets of several

tools to create more complex compound documents, i.e.,

documents consisting of many smaller documents that

are handled by the same or separate tools.

For the representation of such documents, an appropriate

model which has been specifically designed for the

requirements of the Snippet System, is utilized. The

essence of this model is that each document is mapped

onto a persistent graph of interrelated entities, so-called

Snippets. An individual Snippet within the graph can

represent any structural element of the corresponding

document: an entire table or a single cell in case of a

spreadsheet, a node in case of a mind map, or a class,

method or property in case of a UML class diagram.

This finer granularity of Snippets immediately raises

scalability concerns. However, by examining the core

operations’ complexity, it is shown that the approach is

scalable. Actually, the fine-granular nature of Snippets

offers some advantages. Snippets can, for example, be

shared in several document graphs, thereby synchronizing

the data in these Snippets - and only these data - between

the involved documents.

While the Snippet System’s concepts extend even into

the application and user interface layers [10], this article

focuses on the underlying document model and

component-based tool architecture. The different Snippet

types and their relationships are presented in the following

section. Section 3 then introduces complete and partial

synchronization of documents or excerpts and explains

how different instances can be retrieved efficiently. The

concept of Relations is detailed in Section 4. The design

of the component-based tool architecture is presented in

Section 5, whereas its implementation is described in

Section 6. Finally, before summarizing the contributions,

indicating limitations and future work in Section 8, related

approaches are covered in Section 7 with a particular focus

on XML documents.

2. The Snippet Model

The UML diagram in Figure 1 depicts the Snippet model

with its various Snippet types and their relationships. Every

document’s Snippet graph contains a Document-Snippet.

It constitutes the root of the graph and stores meta-

information, such as the document’s name or authoring

information. Moreover, Document-Snippets are also used

for representing Relations, i.e., collections of related

document excerpts, which are discussed in Section 4.

Element-Snippets represent structural elements of a

document. In a presentation example, an Element-Snippet

may figure as an entire slide or an individual element on a

slide, such as a text box, a chart or a single bullet. The

mapping of a document’s content onto Element-Snippets

is created and adapted automatically by the authoring

tool in response to the user’s actions. Element-Snippets

are also used to insert a document into other documents

and therefore enable the Snippet model to natively support

the representation of compound documents.

While an Element-Snippet represents a structural element

of a document, up to two Data-Snippets store - if existing

- the actual data, whose format is arbitrary and defined by

the managing tool. For supporting partial synchronization,

the data is divided into two parts: a synchronized part

and a non-synchronized part, both stored in dedicated

Data-Snippets. The Element-Snippet itself establishes the

link between these Data-Snippets. Partial synchronization

is discussed in detail in Section 3.2.

Tools typically require the content of their documents to

be presented in a particular order. The head and next

relationships therefore allow for the Element-Snippets of

a document to be organized as an ordered tree.

Finally, the linked from and source document relationships

are intended for the efficient retrieval of all synchronized

document instances, discussed further in Section 3.3.

The most important concepts are illustrated by the concrete

example in Figure 2. For better clarity, elements of the

Snippet model that are not relevant to the following

discussion, such as Data-Snippets, are not depicted. The

 Journal of Digital Information Management � Volume 10 Number 6 � December 2012 401

given example involves two compound documents: a text

and a vector graphics object. Both documents contain

another text document with formulas.

Figure 1. The Snippet Model - Snippet Types and

Relationships

Each shape of the vector graphics object is considered to

be a structural element and is therefore represented by

an Element-Snippet. In case of the two text documents,

the entire content is represented by a single Element-

Snippet. In both the representation of the Vector Graphics

Object and the Text, there is also an Element-Snippet

which comprises the document containing the formulas.

These two intermediate Element-Snippets and their linked

Data-Snippets are used to store information on the exact

position and size of the formulas within the Vector

Graphics Object and the Text.

Figure 2 also shows that a reused excerpt, here the

formulas, is always represented like an individual

document, i.e., by a Snippet graph with a Document-

Snippet at its root. As a consequence of a reuse decision,

the Snippet structure of a document may need to be

adapted. The complexity of such a rearrangement

operation is O(n), where n is the number of Element-

Snippets that need to be added to the new Snippet graph

representing the reused excerpt.

3. Synchronization and Retrieval

The different mechanisms for document instance

synchronization are an important aspect of the Snippet

model. Furthermore, the efficient retrieval of such instances

is considered by a series of special relationships. As

reused document excerpts are equal to individual

documents in terms of representation, the following

discussion of the various approaches and their peculiarities

also covers the synchronization and retrieval of such

excerpts’ instances.

3.1 Complete Synchronization

Complete synchronization of document instances ensures

that any modification to the document propagates to all

involved instances which then remain entirely in-sync.

The two instances of the formulas in Figure 2 are

completely synchronized. Both the Vector Graphics Object

and the Text contain an Element-Snippet referencing the

corresponding Document-Snippet, which includes the

formulas in the two documents. Furthermore, as exactly

the same Snippet graph is referenced in both cases,

modifications to the formulas made either from within the

Vector Graphics Object or the Text automatically propagate

to the other document.

In general, when a new, completely-synchronized instance

of a document A shall be inserted into a document B, only

a new Element-Snippet referencing A’s Document-Snippet

needs to be created and inserted into B’s representation.

This operation is of complexity O(1).

3.2 Partial Synchronization

If only the modifications to selected properties of the

document shall propagate to all involved instances,

whereas other changes shall affect solely the edited

instance, partial synchronization can be utilized.

Figure 3 illustrates how instances can be partially

synchronized. Again elements of the Snippet model that

are not relevant for the discussion, such as some of the

Element- and Data-Snippets, are not depicted. The

documents are the same as for Figure 2, but in the current

example the two instances of the formulas are partially

synchronized. The font attributes evolve independently for

each instance, whereas all other properties remain in-

sync.

When a partially-synchronized instance is created, the

document’s Snippet graph is partly copied: the Document-

Snippet, all Element-Snippets and all non-synchronized

data parts are duplicated. However, each of the copied

Element-Snippets references the same synchronized data

part as its original counterpart. This ensures that the non-

synchronized data parts - in the given example the font

attributes - evolve independently for the newly created

instance, whereas the synchronized data parts remain

in-sync with other instances. Creating a partial copy is of

complexity O(n), where n is the number of Element-

Snippets used in the document’s Snippet graph.

3.3 Retrieval of Synchronized Instances

The Snippet System offers a high degree of flexibility with

respect to synchronizing documents or excerpts. From

the user’s point of view, keeping track of synchronized

instances therefore requires system support.

The Snippet model allows for efficiently retrieving all

402 Journal of Digital Information Management � Volume 10 Number 6 � December 2012

Figure 3. Two Compound Documents with Partially-

Synchronized Formulas (a) and Their Snippet Graphs (b)

Figure 2. Two Exemplary Compound Documents (a)

and Their Snippet Graphs (b)

instances of a given document (or reused excerpt) via

dedicated mechanisms, which are discussed based on

Figure 4. The given example contains the documents of

Figure 3 and an additional mind map with a completely-

synchronized instance of the vector graphics object. There

are furthermore two partially-synchronized versions of the

formulas. The Bold Formulas are included in a vector

graphics object, which itself is part of a mind map. The

Italic Formulas, in turn, have been inserted into a text

document.

Generally, there can be several partially-synchronized

instances of a document, each with its own completely-

synchronized instances comprised in other documents.

Therefore, retrieving all synchronized instances is

equivalent to accessing the Document-Snippets of partially-

synchronized instances and then searching all of the

documents which include them in their own representation.

The first step is efficient, because a Relation - managed

by the Snippet System - maintains a link between the

Document-Snippets of partially-synchronized instances.

The different Relation types are detailed in Section 4.

The second step, in turn, is efficient because the source

document linked from relationships are integrated into the

Snippet model (Figure 2). The source document relationship

links every single Element-Snippet to its document’s

Document-Snippet, whereas the linked from relationship

links a Document-Snippet to other Element-Snippets that

reference it. When completely-synchronized instances

need to be retrieved, for example for the Bold Formulas,

these two relationships are navigated recursively:

Navigating them once yields the Document-Snippets of

documents in which the Bold Formulas have been linked

directly. The recursive step ensures that the documents

in which they have been linked indirectly via other

intermediate documents - here the mind map - are also

retrieved.

The complexity of retrieving all synchronized instances of

a document is O (p*d*n), where p is the number of

partially-synchronized instances, d is the depth of the

 Journal of Digital Information Management � Volume 10 Number 6 � December 2012 403

Figure 4. Synchronized Instances of Formulas (a) and

Interrelationships in the Snippet Model (b)

document hierarchy and n is the number of documents

retrieved at each recursive step.

4. Relations

Relations are system- or user-defined collections of

documents or excerpts. System-defined Relations are not

editable by the user and maintain a link between partially-

synchronized instances of a document or reused excerpt,

which, as described in Section 3.3, is necessary for their

efficient retrieval.

User-defined Relations maintain a contextual link between

selected document excerpts. In Figure 5a parts of lecture

materials, all treating the same problem, are

interconnected. An example covered during the lecture, a

related exercise and a question of an exam are grouped

via the custom Same Problem Relation. It allows the

teacher to easily access related lecture materials while

editing, for instance, the lecture slide, and assess whether

related materials need to be adapted as well.

Figure 5b depicts the given Relation’s representation by

Snippets. A Document-Snippet constitutes the root of the

corresponding graph. This ensures that documents and

Relations are equal in terms of Snippet representations,

i.e., the same mechanisms of the Snippet model can be

utilized for structuring both documents and Relations. In

the current example, there are three Element-Snippets,

each referencing the Snippet graph of a related excerpt.

As for their reuse, excerpts need to be represented like

individual documents before they can be added to a

Relation.

The Data-Snippets attached to the intermediate Element-

Snippets are not depicted here for better clarity. They

store information on how each of the involved excerpts

shall be presented to the user when the Same Problem

Relation is accessed. The way a specific excerpt is

displayed can vary for different Relations, that is contexts,

it is part of.

5. Architecture

While the Snippet model allows for efficiently representing
compound documents, component-based authoring tools
that collaborate with each other are required for creating
and managing these documents. This section details how
the involved communication is supported by the tools’
architecture. Furthermore, it discusses how authoring tools

and their internal components are instantiated at run-time.

For efficiently supporting the complete and partial

synchronization of documents, the Snippet System adopts

a document-centric approach to the instantiation of

authoring tools. Instead of a single instance per tool with

open documents, the Snippet System runs as many

instances of a given tool as there are different, open

documents created with it. A single instance manages all

open, synchronized instances of one such document. This

simplifies communication channels between internal tool

components and is consistent with the document-centric

approach at the user interface level described in [10].

The UML diagram in Figure 6 depicts the internal

architecture of authoring tools: Every instance of the View

& UI component manages one document view and handles

user interaction for that view. Therefore, at run-time there

are as many instances per authoring tool instance as

there are open, synchronized instances of the involved

document. The View & UI component ensures in particular,

that its document view allows for embedding the document

views of other authoring tools. This is essential for

combining contents managed by different tools and, thus,

for supporting compound documents. Moreover, this

component enables the definition of Relations by allowing

excerpts of the document view’s content to be connected

to other excerpts. Inspectors that allow the user to see

and modify properties of the document are also an integral

part of this component.

404 Journal of Digital Information Management � Volume 10 Number 6 � December 2012

Figure 5. Relations Between Excerpts of Lecture Materials (a) and Representation in the Snippet Model

Figure 6. Authoring Tool and Service Architecture

 Journal of Digital Information Management � Volume 10 Number 6 � December 2012 405

The Model component manages Snippet structures and

ensures that the modifications to a document at the View

& UI level are made persistent. It also determines how

exactly document contents are mapped onto Element-

and Data-Snippets. The internal design of the Model

component is such that one of its instances handles one

partial document copy. Thus, at run-time there are as many

Model instances per authoring tool instance as there are

different, partially-synchronized versions of the managed

document.

The Mediator component, in turn, coordinates the

communication between View & UI and Model instances.

It ensures, for example, that modifications made to a

specific document instance are propagated to the right

Model instance and that all View & UI instances which

are affected by the change refresh their document view.

Figure 7. Two Compound Documents with Partially-Synchronized Formulas

(a) and the Tool Components Managing Them (b)

The Enclosing/Enclosed Document’s View and the Enclosed

Document’s Mediator interfaces allow different authoring

tool instances to communicate either at the level of their

Mediator or at the level of their View & UI components.

Information on a specific document instance is transferred

at the level of View & UI components, whereas all other

data is transmitted at the level of Mediator components.

On the one hand, all authoring tools provide these three

interfaces, which allows them to receive information by

other authoring tools. On the other hand, they also require

these interfaces from other tools for sending information

of their own to them. Communication at the level the of

View & UI components is bidirectional, because a

document view has to communicate with its enclosed

views as well as with its enclosing view, while

communication at the level of Mediator components is

currently unidirectional.

406 Journal of Digital Information Management � Volume 10 Number 6 � December 2012

Figure 8. Internal Design of the View & UI component

Authoring tools provide some functionalities that are non-

critical to their normal operation as Services, which are

separate components. This prevents the three major

components from getting bloated with rarely used functions

and allows for reducing their memory footprint. For

example, the export functionality provided by every

authoring tool, for converting the Snippet representation

of its documents into legacy file formats, such as. html or

.docx, is realized by Service components. A more detailed

description of authoring tools’ export functionality is given

in [11].

Services can be requested by any of the major tool

components, but also by other Services. For this, they

send a message to a Service Registry, which then

instantiates the requested Service component. Each

component provides an interface, depicted as Offered

Service Interface, which allows the requester to invoke it.

As mentioned previously, a Service may also need the

assistance from other Service components for offering its

functionality. Figure 7:

Figure 7 shows the two compound documents of Figure 3

with partially-synchronized formulas, as well as the tool

components that are needed to manage them. Each of

the two text documents, the Text, but also the Formulas 1,

is managed by its own instance of a Text Authoring Tool.

There is also an instance of a Graphics Authoring Tool to

manage the Vector Graphics Object. For the Formulas,

there are two open, synchronized instances and

consequently two View & UI components are instantiated.

Furthermore, there are two partially-synchronized versions

of the Formulas. Thus, two instances of the Model

component are required. Finally, the interconnections

between View & UI components and those between

Mediator components reflect the relationships between

the individual documents that the two compound

documents are composed of and allow the involved

authoring tools to communicate and collaborate. To

streamline the illustration the two communication

interfaces between View & UI components have been

combined.

6. Prototype

An emulation of the Snippet System has been developed

on top of Mac OS X frameworks. It serves as a proof of

concept and realizes all aspects described thus far, i.e.,

Relations, the fine-granular reuse of documents, the

retrieval of synchronized instances, but also the

component-based tool and Service architecture. The

Snippet model itself has been implemented using Apple’s

Core Data framework, which offers functionalities of object

databases.

A framework built on top of the Cocoa framework allows

for developing authoring tools consistent with the

architecture requirements. The framework ensures that

each of the major tool components, i.e., the View & UI,

the Model, and the Mediator component, is realized by a

single generic subcomponent, which encapsulates basic

functionalities that are required by all tools, and a set of

custom subcomponents that implement the tool-specific

behavior.

Figure 8 depicts the internal realization of the View & UI

component. Here, especially the Generic subcomponent

ensures that a document view is able to embed other

document views. It also guarantees that the facilities

provided to the user for defining Relations, or for reusing

and synchronizing excerpts, are similar across all

authoring tools, which enforces a consistent user

experience throughout the entire system. User interaction

facilities are detailed in [11].

The three other components are custom for every authoring

tool: the Custom Event Handling component allows a tool

to respond to mouse clicks, key strokes, but also

multitouch gestures. The Custom Data Rendering

component is responsible for correctly rendering a

 Journal of Digital Information Management � Volume 10 Number 6 � December 2012 407

 document’s content in the document view. Finally, there

may be a set of Inspector components which allow the

user to see and edit document properties - such as font

attributes in case of a text, or shape colors and sizes in

case of a vector graphics object - or to navigate between

slides in case of a presentation.

For better interchangeability of components, all

communication between the custom and generic

components is handled via dedicated interfaces.

Three prototypical authoring tools have been built on top

of the framework: a text editor, a presentation tool, and a

vector graphics tool. They allow for testing the Snippet

System’s most important concepts. More information on

the prototype and videos showing how some of the

concepts work in practice, can be found at http://

mocca.uni.lu/snippets/.

7. Related Work

Enabling the fine-granular reuse of documents and

connections between individual document excerpts has

been subject of research in various areas. Some of the

most important and closely related approaches and

methodologies with regards to the Snippet System are

described in the following.

7.1 XML

Compound XML documents are generally enabled by

namespaces. Furthermore, in combination with XLink,

XPointer and style sheets, XML allows for the reuse of

specific document excerpts, the complete and partial

synchronization of their different instances as well as for

contextual connections. However, when using XML the

efficiency of document access falls back to the efficiency

of the XML parsing.

1The Formulas are represented like a separate document (see Fig-

ure 3), and therefore they are also managed alike

For this, several different approaches exist, each with

specific advantages and disadvantages [13]. DOM-style

parsing needs the entire XML document to be loaded into

memory, which is a serious drawback for large files,

especially if only a small fraction of the data needs to be

accessed. SAX- or StAX-style parsing requires less

memory, but displays poor performance under random

access patterns. Finally, VTD-style parsing which is based

on integer arrays also has performance issues when a

document is updated frequently. This is due to the fact

that the arrays need to be reconstructed every time.

There are also approaches to enable the parallel parsing

of XML [16]. The core idea is to split the XML data into

chunks that are then parsed concurrently. The main issue

here is that the divisions between chunks must occur at

well-defined points in the XML grammar. Therefore, an

initial pre-parsing pass, analyzing the tree structure of

the given XML with the aim of subsequently decomposing

it according to the results, is required. Although this initial

pass can also be parallelized [15] [20], it nevertheless

introduces a certain overhead and thus still impairs

performance.

The validation of compound XML documents itself is a

non-trivial problem. DTD schemas do not support

namespaces and therefore cannot be used to validate

compound XML documents. XSD or Relax NG schemas

do support namespaces, but they usually cannot be

combined easily in order to define larger vocabularies.

Standalone language schemas typically do not have the

right level of modularity and abstraction which is needed

for their seamless integration [17]. The purpose of NVDL,

the Namespace-based Validation Dispatching Language,

is to establish a connection between individual schemas.

An NVDL schema enables the validator to use several

schemas for validating an XML document. Essentially,

NVDL in an initial step divides the compound XML

document into parts containing elements from a single

namespace. Every part is then validated using the

adequate schema.

When relying on a representation by Snippets, accessing

documents and specific parts is both more efficient and

natural. The reason is that, by definition, each Element-

Snippet in a given document’s Snippet graph represents

an individual structural element of the document. Different

content types and, thus, elements likely to be represented

in different namespaces, are separated by construction.

Therefore, any steps to determine a document’s structure

can be skipped. When used for representing XML

documents, Snippets have the potential to render their

parsing and validation more efficient.

7.2 OpenDoc

Developed by Apple for Mac OS, the discontinued

compound document system OpenDoc [1] [2] was a set

of shared libraries for the creation of component-based

software that was able to handle compound documents.

Its major drawback was the drastically increased memory

footprint when compared to equivalent standalone

applications. But also the fact that it was hard to develop

for the system and that OpenDoc was not integrated into

the operating system itself so that developers were not

able to rely on an existing installation, ultimately led to

its demise. Furthermore, OpenDoc did not rely on an

optimized document model, and therefore could provide

only limited support for synchronization and relationships

between documents. Partial synchronization and an

equivalent for Relations, for instance, were not supported.

Still, and despite its limited capabilities, OpenDoc

showcased some interesting concepts such as the

possibility to combine the functionality provided by several

tools to create more complex compound documents.

In order to overcome said issues caused by the lack of

integration into the underlying system, the Snippet

System’s most important concepts extend into the

operating system itself, which can therefore be tailored

for efficiently supporting Snippets and component-based

408 Journal of Digital Information Management � Volume 10 Number 6 � December 2012

authoring tools. For instance, memory management

strategies can be optimized for this scenario, thereby

reducing the memory footprint of individual tools.

Furthermore, as discussed in Section 5, non critical tool

functionalities are implemented as Services, which are

instantiated only when the corresponding functionalities

are needed. This further reduces the tools’ memory

footprint.

7.3 Object Linking and Embedding

OLE, Object Linking and Embedding (Brockschmidt 1995),

aims at allowing host applications to integrate data from

other applications, i.e., data that the application is usually

not able to create itself, into their documents. OLE is an

integral part of the Microsoft Windows operating systems.

Therefore, the OLE functionality can be incorporated into

any Windows application. The main issue is that the

synchronization of linked objects is not bidirectional. When

linking a document A from within another document B,

subsequent modifications to the original document A

propagate to the linked instance in B. However,

modifications to the instance linked in B do not propagate

to A. The link between both instances is however

maintained, despite the fact that they are no longer

synchronized. Therefore, if afterwards A is edited, the linked

instance in B is simply replaced by a new instance of A,

and all previous modifications which have never been

propagated to A are lost.

7.4 ArCoMo

The ArCoMo system [8] [9] allows users to create

annotations across multiple documents which may even

have been created with different applications. In order to

do so, ArCoMo uses so-called Artefacts and Anchor Points.

Anchor Points define excerpts of documents. Artefacts,

in turn, create a link between related Anchor Points and

store the annotation itself. The annotation is not limited

to text, but may also contain other data. However, ArCoMo

requires plugins to be developed from scratch for every

application that must support Anchor Points, whereas in

the Snippet System the generic subcomponents

discussed in Section 6 provide most of the functionality

required for defining Relations. Still, ArCoMo constitutes

an early approach for the interlinking of related document

excerpts.

8. Conclusion

This article introduced the Snippet System, an operating

system environment which provides new, improved ways

for managing documents. Most importantly, it allows for

their flexible reuse, i.e., selected excerpts can be included

in several other documents with different instances of such

an excerpt remaining completely or partially synchronized.

Dedicated mechanisms assist the user in keeping track

of reused excerpts and synced properties, by allowing for

the efficient retrieval of synchronized instances. Relations,

which capture the context of individual document excerpts,

additionally support the retrieval of related documents.

The Snippet System relies on a component-based tool

architecture as well as a novel document model. The

architecture enables many authoring tools to collaborate

for managing a single document, which is essential for

enabling the reuse of documents and the definition of

Relations across tool boundaries.

The document model, in turn, provides a fine-granular

document representation by means of persistent Snippet

graphs. An inherent advantage is that these graphs can

share some Snippets, thereby synchronizing only the

corresponding data between the documents represented

by the graphs involved. Additionally, this enables the

creation of dedicated Snippet graphs representing

Relations. A Relation’s graph interconnects subgraphs of

Snippets representing excerpts of documents, which are

shared with the graphs representing the original

documents.

An emulation of the Snippet System has been

implemented on top of existing Mac OS X frameworks. It

serves as a proof of concept and realizes all aspects

described in this article.

A current limitation is that the properties, which remain

in-sync between partially-synchronized instances of a

reused document excerpt, have to be the same for all

instances involved. Future work therefore is dedicated to

enabling groups, each syncing a different property set

between its instances. Furthermore, as discussed in

Section 7.1, it remains to be analyzed in more detail

whether a representation of XML documents by Snippets

renders their parsing and validation more efficient.

References

[1] Apple Computer Inc., Apple Computer Inc. Staff (1995).

OpenDoc Programmer’s Guide for the MAC OS. Boston,

MA: Addison-Wesley.

[2] Apple Inc. (1993). OpenDoc - Shaping Tomorrow’s

Software. White Paper.

[3] Blanc-Brude, T., Scapin, D. L. (2007). What do people

recall about their documents? Implications for desktop

search tools. In: Proc. of Intelligent User Interfaces (IUI

’07), p. 102–111. ACM Press.

[4] Boardman, R., Spence, R., Sasse, M. (2003). Too

many hierarchies ? The daily struggle for control of the

workspace. In: Proc. of HCI International 2003. Citeseer.

[5] Bondarenko, O., Janssen, R. (2005). Documents at

Hand: Learning from Paper to Improve Digital Technologies.

In: Proceedings of the SIGCHI Conference on Human

Factors in Computing Systems (CHI ’05), p. 121-130.

ACM.

[6] Brockschmidt, K. (1995). Inside OLE. Microsoft Press.

[7] Czerwinski, M., Horvitz, E., Wilhite, S. (2004). A diary

study of task switching and interruptions. In: Proc. of the

SIGCHI Conference on Human Factors in Computing

Systems (CHI 2004), p. 175-182. ACM.

 Journal of Digital Information Management � Volume 10 Number 6 � December 2012 409

[8] Hoff, C., Wehling, U., Rothkugel, S. (2008). ArCoMo -

An Artefact-Based, Collaborative Mobile Learning

Environment. In: Proc. of the 6th IEEE International

Conference on Pervasive Computing and Communications

(PerCom 2008), p. 383-388. IEEE Computer Society,.

[9] Hoff, C., Wehling, U., Rothkugel, S. (2009). From Paper-

and-Pen Annotations to Artefact-Based Mobile Learning.

Journal of Assisted Learning 25 (3) 219-237.

[10] Kirsch, L., Botev, J., Rothkugel, S. (2012a). An

Extensible Tool Set for Creating and Connecting Reusable

Learning Resources. In: Proc. of World Conference on

Educational Media, Hypermedia and Telecommunications

(EdMedia 2012), p. 1434-1442. AACE.

[11] Kirsch, L., Botev, J., Rothkugel, S. (2012b). The

Snippet System - Reusing and Connecting Documents.

In: Proc. of the 7th International Conference on Digital

Information Management (ICDIM 2012). IEEE.

[12] Kirsch, L., Esch, M., Rothkugel, S. (2011). The

Snippet System - Fine-Granular Management of

Documents and Their Relationships. In: Proceedings of

the 6th IASTED International Conference on Human-

Computer Interaction (HCI 2011), Acta Press.

[13] Lam, T., Ding, J., Liu, J.-C. (2008). XML Document

Parsing: Operational and Performance Characteristics.

Computer 41 (9) 30-37. IEEE.

[14] Landauer, T. K. (1996). The trouble with Computers:

Usefulness, Usability, and Productivity. MIT Press, Jun.

[15] Li, X., Wang, H., Liu, T., Li, W. (2009). Key Elements

Tracing Method for Parallel XML Parsing in Multi-Core

System. In: Proc. of the 2009 International Conference

on Parallel and Distributed Computing, Applications and

Technologies, p. 439-444. IEEE.

[16] Lu, W., Chiu, K., Pan, Y. (2006). A Parallel Approach

to XML Parsing. In: Proc. of the 7th IEEE/ACM International

Conference on Grid Computing, p. 223-230.

[17] Nalevka, P., Kosek, J. (2007). Advanced Approaches

to XML Document Validation. In: Proc. of Extreme Markup

Languages 2007. Mulberry Technologies, Inc.

[18] Norman, D. A. (1993). Things that make us smart:

Defending human attributes in the Age of the Machine.

Boston, MA: Addison-Wesley.

[19] Pan, Y., Lu, W., Zhang, Y., Chili, K. (2007). A Static

Load-Balancing Scheme for Parallel XML Parsing on

Multicore CPUs. In: Proc. of the Seventh IEEE International

Symposium on Cluster Computing and the Grid (CCGRID

2007), p. 351-362, IEEE.

[20] Pan, Y., Zhang, Y., Chiu, K. (2008). Simultaneous

Transducers for Data-Parallel XML Parsing. In: Proc. of

the IEEE International Symposium on Parallel and

Distributed Processing (IPDPS 2008), p. 1-12. IEEE.

[21] Waks, S. (1997). Lateral Thinking and Technology in

Education. Journal of Science Education and Technology,

6 (4) 245-255. Springer.

Author Biographies

Laurent Kirsch received his Master degree in computer science from the University of Luxembourg in

2010. Since November 2010 he is a doctoral candidate and assistant at the University of Luxembourg.

His research focuses on document engineering, interactive systems and personal information

management.

Jean Botev is currently a postdoctoral researcher at the Computer Science and Communications

research unit of the University of Luxembourg. He received his diploma degree in Computer Science

and Media Studies from the University of Trier (Germany) in 2007, followed by a PhD in Computer

Science from the University of Luxembourg in 2011. His research interests include complex networks,

self-organization and collaborative systems.

Steffen Rothkugel received a Ph.D. in computer science from the University of Trier, Germany, in 2001.

Since 2002 he is associate professor in the Computer Science and Communications research unit of

the University of Luxembourg, where he is heading a small team. His work and teaching revolve

primarily around the domains of system software and distributed systems. His current research focuses

on interactive distributed systems and document engineering.

