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ABSTRACT: The short-term forecast of the wind power

of a wind farm is of great significance for the security and

stability of a grid-connected generation system. An

accurate forecast may reduce the spinning reserve of a

grid while providing reliable references for operation

dispatch of a wind farm. In order to improve the accuracy

of short-term forecasts, introducing the phase-space

reconstruction technique of the chaos theory, this paper

was established forecasting models by reconstructing the

historical time-series data of the wind power of a single

unit based on the dynamical properties of chaos

sequences, choosing the best delay time with the mutual

information method, determining the best combination of

embedding dimensions with the Cao algorithm, as well

as utilizing the Elman recurrent neural network and others

like the BP. As comparative case analysis shows, the

forecasts of Elman model are more accurate than that of

the others, exhibiting a positive prospect of utilizing this

combined model of phase-space reconstruction and neural

network in wind power forecasting of a single unit.
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1. Introduction

The wind speed, with its random values, brings flexibility

to the power output of wind turbines, which, if connected

to a power grid in large quantities, may present serious

challenges to the security, stability and quality of the grid.

Short-term forecasts of the wind speed and the generated

power is an effective way to alleviate the negative impacts

of wind power on grid and raise the installment ratio of

wind power generators in high-voltage grids as well as

offering reliable references for optimization of wind farm

operation dispatch.

Generally, forecasts of generated power of wind farms can

be categorized into long-term forecasts, mid-term

forecasts, short-term forecasts and ultra-short-term

forecasts. The short-term forecast, the forecast of the

generated power 24 to 72 hours prior to its happening,

aims at facilitating the operation dispatch of a grid and

ensuring the power quality [1-3]. The current approaches

to forecasts of generated power of a wind farm mainly

include physical methods, duration, time series, the

Kalman filter method, neural networks, fuzzy logic, spacial

correlation and their combinations. The Chaos, a

reciprocating motion generated by the system of

deterministic kinetics with features of built-in randomness,

impossibility of long-term prediction and high sensitivity

to its initial value, is one of the major objects of non-linear

dynamical studies. The non-linear time series can be

extracted from the chaotic system and the internal laws

of the series can be reflected by the phase-space

reconstructed. Although the long-term prediction of the

chaotic time series is rather difficult, the accuracy of the

short term forecast is high.
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Statistics and calculations out of long-term researches

show that the time series of wind speed or wind power fall

into the same chaotic time series class [9- 11]. By

establishing models with the actual historical data of a

large wind power plant in China, this paper confirms their

chaotic properties, based on which neural networks of

Elman and BP are established with the approach of phase-

space reconstruction for the short-term forecast of single

units of wind farms.  Cases prove that, to some degree,

the Elaman model helps to improve the accuracy of the

forecast.

2. The Phase-space Reconstruction of the Chaotic

Dynamical System

The phase-space reconstruction, also known as the

dynamical reconstruction of the system, is the approach

to extracting the whole original system hidden in some

variable time series through a series of concrete algorithms.

For time series x (n) and n = 1, 2, 3, ... N, if the dimensions

embedded m and the delay time τ can be properly chosen

and determined, then the phase-space X (i) = {x (i),

x (i+τ ), ..., x (i + (m − 1)τ )}, i = 1, 2, 3,... M, can be

reconstructed. According to the phase-space theory

brought forward by Packard and Takens, if all the dynamical

information needed to determine the status of the system

are contained in the time series of any variable of the

system, when the time series of a  single variable are

embedded into a new coordinate system, the attractors

can be restored in that dimension embedded as long as

the number of the dimension embedded is large enough,

which  means the status track obtained keeps the primary

features of the original dimension track. In the

reconstruction of phase-space, the choice of delay time τ

and dimensions embedded m affects directly the quality

of the reconstruction, and thus the accuracy of the

forecast [4].

2.1 The Choice of Delay Time τ

The delay time chosen must be the best one in order to

make the phase space reconstructed a good showcase

of the dynamical features of the system. In the wind in

the forecast actual Motor Assembly state the best delay

time is to refactor the system to participate in a non-

related, as far as possible to point to the same as in the

embedded space is maintained between each component

of the dynamical of relationships, and that the information

on the attractor as much as possible. The delay time too

small, the track of the phase-space may squash to the

same position, making the information revelation not

remarkable, causing redundant errors. The delay time too

large, the changes of dynamical morphs at a certain

moment will be too dramatic, making simple geometric

patterns complex, distorting the dynamical signals,

causing uncorrelated errors. The current approaches to

the best delay time include mainly the autocorrelation

functions and the mutual functions.

The approach of autocorrelation functions, mainly used

to extract the linear correlation of time series, is mature

in determining the delay time. Essentially, it is a linear

concept suitable to decide the linear correlation. The

chaotic system, however, is a non-linear system.

Therefore, Fraser and Swinney suggested using the

mutual functions to determine the non-linear correlation

of a system. The informatics provides a measurement for

the non-linear correlation within and between the time

series.

For a time sequence {x
i 
, i = 1, 2, 3, ... n} with the given

delay time τ, the load time sequence will become {x
i + τ 

, i

= 1, 2, 3, ... n}. The probability of the appearance of x
k
 in

sequence {x
i 
, i = 1, 2, 3, ... n} is P (x

k
 ). The probability of the

appearance of x
k + τ

 in sequence {x
i + τ 

, i = 1, 2, 3, ... n} is P

(x
k + τ 

). The joint probability of the appearance of both  x
k

and x
k + τ 

 in the two sequences is P (x
k
 , x

k +τ 
), wherein

probability P (x
k
 ) and P (x

k + τ 
) can be obtained via the

frequency of their appearance in corresponding time

sequence and the joint probability P (x
k
 , x

k +τ 
) can be

obtained by counting the corresponding checkers on plane

(x
k
 , x

k +τ 
). Then the mutual functions will be:

I (τ ) = Σ P (x
k
 , x

k +τ 
) ln

N

k = 1

P (x
k
 , x

k +τ 

 )

P (x
k
 ) p (x

k +τ 

)
       (1)

The value of the delay time τ is determined by the first

minimum value of the mutual function.

2.2 The Determination of the Embedding Dimensions

Selection of embedding dimensions generally involves the

G-P method of saturated correlation dimension, the false

nearest neighbor algorithm and the Cao algorithm.

The false nearest neighbor (FNN) algorithm, once regarded

as one of the most effective ways, was later found to have

defects such as sensitivity to noise in the signal,

fluctuation, instead of tedious variation, of the number of

false nearest points subject to the impact of noise and

fluctuations. In addition, this method needs two parameters

set manually in practice, which brings it a strong

subjectivity. The calculation accuracy of the G-P method

was easily subject to influences of data length, noise and

other factors. An improved FNN algorithm (the Cao

method) brought forward by Cao Liangyue aims mainly at

overcoming the shortcoming of threshold settinging in the

FNN algorithm. This method has the following advantages:

the calculation needs only one parameter, the delay time

τ ; the embedding dimension can be obtained with a

relatively small amount of data; the capability of

distinguishing chaos time series and random time series;

the suitability for analysis of high-dimensional time series;

the relatively high efficiency in calculation.

For a time sequence {x
i 
, i = 1, 2, 3, ... N}, where n is the

length of the sequence, Reconstruct the d-dimension and

(d + l) dimension phase-space. X d +1 is  a phase point

with ordinal number i, X d (  j = 1, 2, 3, ... k} is the neareast
j

j
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neighbor point of X d, || • || is the Euclidean distance,

calculate a (i , d ) =

j

|| x (d +1) 
− 

 x (d +1) ||

|| x (d ) 
− 

 x (d ) ||

value of a (i , d ), then E (d ) =

i

i

j

j

, E (d ) is the mean

change  E
1
(d ) =

a (i , d )
n − dτ

n − dτ

Σ
i = 1

1 , thus the

E
 
(d + 1)

E
 
(d )

from m-dimension to (m +1)

dimension.

If a wind power time sequence is a chaotic time sequence,

then  E
1
(d ) will go towards saturation with the increase of

d. Therefore, a time sequence can be determined as to

whether it is a chaotic time sequence according to the

fact that whether  E
1
(d ) will go towards saturation with the

increase of d. Here (d + 1) is the best embedding dimension

wanted. The degree of fluctuation of  E
2
(m) can reflect the

degree of randomness and determinacy of the signals.

The bigger the amplitude of the noise, the smaller will the

fluctuation be, and the stronger the randomness of the

sequence. For a time sequence with noise pollutions, the

G-P method was not satisfactory. Considering the fact

that the wind power short-term load is inevitably affected

by noise pollution (sudden changes of wind speed, errors

in the data of SCADA records, etc.), this paper uses the

Cao method to select the best embedding dimension.

3. The Neural Network

3.1 Structures of the Neural Networks of BP and Elman

The BP (Back Propagation) network brought forward in

1986 by the science team headed by Rumelhart and

McCelland, is a multi-layer feed-forward network trained

by error back propagation algorithm and currently one of

the most widely used neural network models. By

continuously adjusting the weight values and threshold

values of the network via the back-propagation, BP neural

network minimizes the square sum of error. Figure 1 is a

topology of a BP neural network models. The Elman neural

network brought forward by Jeffrey L Elman in 1990 is a

recurrent neural network which has a better computing

power than a feed-forward neural network.  In addition to

units of the input layer, the hidden layer and the output

layer, a basic Elman neural network has a special access

layer, also known as the context unit, or the state layer.

The input layer unit only serves as a signal conveyor. The

output layer plays a role of linear weighted sum. The hidden

layer unit may involve linear or non-linear functions. The

unit of access layer receives feedback signals from the

hidden layer and memorizes the output value of the

neurons in hidden layer at a former moment. The output

of the neuron of the access layer, after delay and storage,

is input again into the hidden layer. This makes it sensitive

to historical data, and increases the network’s ability to

deal with dynamic information, which is helpful to the

modeling of the dynamic process. The structure of a

standard Elman network is shown in Figure 2.

The mathematical model of the Elman neural network is

as follows:

x (k) = f (w1 x
c 
(k) + w2u (k − 1))

x
c 
(k) = a x

c 
(k − 1) + x (k − 1)

y
 
(k) = g

 
(w3 x (k))

⎧
⎨
⎩

       (2)

 x
1

 x
2

 x
n

y
1

 y
2

y
n

.....
.....

input

layer

hidden

layer

output

layer

Wherein w1 and w 2 and w 3 are the respective link weight

matrix from the structural unit to the hidden layer, from

the input layer to the hidden layer and from the hidden

layer to the output layer. Function f and function g are the

non-linear vector functions composed of the excitation

functions of the output layer unit and the hidden layer.

x
c 

(k) stands for the output of the access layer unit and

the hidden layer unit. y
 
(k) stands for the output of the

output unit. 0 ≤ α <1 is the auto-link feedback gain factor.

3.2 Characteristics of the Elman Neural Network

Currently, most of the forecasts and research of generated

power of wind are based on a static feed-forward neural

network of the BP algorithm. To identify a dynamic system

using a static feed-forward network actually turns dynamic

time modeling into static space modeling, while selecting

the order of the model structure, especially when the

increase of the system orders or unknown orders, the

dramatic expanded network structure slows down the

convergence rate of network learning as well as causing

excessive network input knots, training difficulties,

sensitivity to exterior noises, etc. In contrast, the Elman

neural network is able to reflect more vividly and directly

the dynamic characteristics of the system, representing

the direction of development of neural network modeling,

identification and control. The Elman neural network is a

typical dynamic recurrent neural network. Based on the

BP network infrastructure, it gives the network the function

of mapping dynamic characteristics by storing internal

state, which allows the system to adapt to time variant

characteristics. The Elman neural network can learn either

the space-domain model or the time-domain mode, and

is also able to give non-linear and dynamic properties to

trained networks while avoiding the shortcomings of

traditional neural network, such as not being able to

change in real time the structure of a model or lacking

adaptability to sudden changes in the future. Compared

with feed-forward neural networks (like BP neural network),

the Elman neural network has links of feed-forward and

feed-back, overcoming the shortcomings of feed-forward

Figure 1. BP neural network model
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neural networks such as low speed in net convergence,

frequent subjection to  local minimum,  incapability of

dynamic learning, etc.

 x
1

y (k)

 x
n
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input

layer

hidden

layer

output

layer

 x
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 x
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Figure 2. Elman neural network model

4. The Forecasting Model of Wind Power

This paper establishes forecasting model by combining

phase-space reconstruction technology with neural

networks of Elman, BP and RBF. The steps are as follows:

Collect the historical data of a state variable (such as

amount of the wind turbine electricity generation) of the

forecast system and sort them out as required by time

sequences. Set the sorted time sequence to be: {x (t) , t =

1, 2, 3, ... N }

Determine the best delay time and the embedding

dimension m;

Use the best delay time and the embedding dimension to

carry out the phase-space reconstruction of the original

time series to obtain the new phase-space vector:

Y (t) = ( x (t), x (t + τ ), x (t + 2τ ), ... , x (t + (m − 1) τ )), wherein

t = 1, 2, 3, ... N −  (m − 1) τ ;

(4) Build the Elman neural network prediction model. The

neural network input dimension equals the embedding

dimension m. The time before each of the input data differs

with a point of τ . Take ( x (t), x (t + τ ), x (t + 2τ ), ... , x (t + (m

− 1) τ )) as the input of neural network. The middle layer is

a single layer. The amount of the neurons in the middle

layer can be determined by trial calculation or 2n + 1

(nstands for the number of neurons of the input layer).

The output layer contains a neuron and its output is

forecast value of the time point to be predicted, or x (t + (m

− 1) τ ));

(5) Train the network until it meets the requirements;

(6) Select test samples. If they meet the requirements,

go to step (7) to forecast. If a large error appears, return

to step (5) for re-training, or step (4) to re-design the

network structure;

(7) Select the time point of the forecast and apply the

established model to forecast.

5. Case Analysis

5.1 Forecast Evaluation Indicators

The most frequently used wind power forecast error

indicators are root mean square error and percentage error.

Root mean square error is defined as follows:

e
RMSE

 = (P
t
′
 
− P

t 
)

N

Σ
t = 1

e
RMSE 

stands respectively for the root mean square error

of the power forecast of a wind farm.P
t
′ and P

t 
 stand re-

spectively for the predicted value and the acutual value of

the power. N stands for the number of predicted values.

5.2 Wind Power Forecast Experiment

Select the former 4641 data out of the 4921 active data

collected from a generating unit in a wind farm from 0:00,

Feb. 1st to 23:00, March 31 as training samples, and the

latter 280 data as test samples to predict the wind power

generated in 48 hours. Figure 3 presents the time series

of wind power during the period, from which it can be

easily found that the wind power sequence shows a strong

non-linear with no apparent pattern of changes.

Figure 4. Compute delay time using mutual function

Figure 3. The wind power time series

The calculating result of the best delay time of the wind

power time series of this period using the mutual functions

is shown in Table 1. As it can be seen in Figure 4, the

obtained best delay time is τ = 9.

N

       (3)2

access

layer
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Figure 5. Compute optimal embedding information using Cao

method

τ    Autocorrelation  τ Autocorrelation

0 6.6868 10          2.4603

1 2.9372 11          2.4267

2 2.7145 12          2.4042

3 2.6089 13          2.3744

4 2.5451 14          2.3962

5 2.502 15          2.3792

6 2.4796 16           2.355

7 2.4607 17          2.3474

8 2.4361 18          2.3392

9 2.4339 19          2.3516

Table.1 Rresults of Mutualinformation Method

For the same time series data, the best embedding

dimension obtained by using the Cao method is shown in

Figure 5. The value of the embedding dimension of time

Figure 6. Power prediction curve of the chaos-

Elman neural network

series can be obtained as the value of E
1
(m) goes towards

1 with the increase of embedding dimensions. As can be

seen in the figure: the calculation result of the optimal

embedding dimension is 10, i.e. M = 10.

Based on the analysis above, the number of input nodes

of the neural network is determined as the value of the

embedding dimension, i.e., 10. Conduct the single-step

forecast and predict the power within the future 48 hours,

or 192 points, and the forecast results are shown in Figure

6. With a line graph, Figure 7 shows more vividly the

comparison of the values obtained via the four forecasting

methods. As can be seen in Figure 7, the error of the

prediction based on chaos-Elma neural network is

relatively small while its forecast accuracy and stability

is remarkably better than those based on chaos-BP.

Prediction algorithms            Root mean square error/ %

Chaos-Elman                                            17. 62

Chaos-BP                                             18. 37

Table 2. Comparison of the root mean square error

of various chaos-based predictions

Figure 7. Comparisons of calculation results of

various prediction algorithms

5.3 Analysis of Lab Conclusions

Concluded here are a number of phenomena and problems

are found in trainings of various networks and prediction

models and their combinations, which may serve as basis

for future researches.

Comparison of the training results between chaos-Elman

and chaos-BP shows that, under the circumstance of the

same amount of data, the same training time intervals

and training frequencies, the network models of chaos-

BP can go into the training of higher-precision earlier, but

the time taken for training and prediction is at leat 5 times

longer than that of chaos-Elman. On occasions of abrupt

changes (sudden increase/decrease in wind speed/

power), the relative prediction error of the chaos-Elman

network is much smaller than that of chaos-BP. This also

indicates that compared with feed-forward neural networks,
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the Elman neural network has more adaptability to abrupt

changes as well as a stronger capability in dynamic

learning.

6. Conclusions

(1) As neural network technology is still in development

and new models and algorithms are being brought forward,

there is much to explore in the selection of the most

effective model and algorithm.

(2) In the system of prediction, for the strong randomness

and non-linear of data, the size of the deviation in the

selection of the prediction reference point will directly affect

the predicted results. The selection of prediction reference

point in this paper is based on the Euclidean distance.

The prediction accuracy is relatively high with low

embedding dimension factors but not ideal with high

embedding dimension factors. In future studies, therefore,

approaches capable of presenting better the correlation

of the evolution tracks of phase points could be considered.
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