
          Journal of Digital Information Management  � Volume 11   Number  3    �  June  2013                   213

Spanning Tree Method for Minimum Communication Costs In Grouped
Virtual MapReduce Cluster

Yang Yang, Xiang Long, Biaobiao Shi
Computer College, Beihang University
Beijing
{yangyang,long,shibiaobiao}@les.buaa.edu.cn

ABSTRACT: Today, MapReduce and virtual cluster are
sharp swords for this big data and cloud computing era.
To combine these two emerging technologies, it brings
feasible-scalability, easy-management, fast-deployment
and high-efficiency with the system. As every sword has
two sides, the I/O bottleneck of virtualization technologies
may seriously impacts on the performance of MapReduce
cluster which deals with I/O-intensive applications. In this
paper, we analyze the combination advantages and
disadvantages of virtualization technology of MapReduce
cluster. We also analyze the communication model for
both of them and build a communication costs model.
Then, we propose a novel algorithm of minimum-weight
spanning tree to construct a lower communication costs
virtual MapReduce cluster. With the help of constructing
minimum-weight spanning tree, we find out a method to
select local-master and group the cluster. Theoretical
simulation and experiment results demonstrate that our
method can greatly reduce communication costs. The
performance improvement is up to ~40.4% respectively

Categories and Subject Descriptors
I.3.7 [Three-Dimensional Graphics and Realism]: Virtual
Reality; H.5 [INFORMATION INTERFACES AND
PRESENTATION] Hypertext Navigation and Maps

General Terms: Cloud Computing, Virtual Clusters

Keywords: MapReduce, Virtual Machine, Spanning Tree,
Cloud Computing

Received: 27 January 2013, Revised 6 March 2013, Accepted
11 March 2013

1. Introduction

The interests in MapReduce program model resurgences
in 2006, social network and multimedia develop at fantastic
speed at that time. Unfortunately, the database, which is
a good weapon for the structure data, cannot handle these
huge numbers of unstructured and semi-structured data
produced by these new applications well. When Jeffrey
Dean [1] proposed MapReduce program model in
distributed system, it receives a lot of attentions. Because
of the remarkable features of MapReduce in simplicity,
fault tolerance, and scalability, it is by far the most
successful realization of dada intensive cloud computing
platform [2]. Amazon, the famous web services provider,
supplies Amazon EMR [3] which automatically spins up
a Hadoop implementation of the MapReduce framework
on Amazon EC2 instances which base on virtual machines
[4].

Virtual machine(VM) plays a key role in cloud computing
era. Virtualization technology “slices” a single physical
machine into multiple VMs and each assigns virtual cores
for their execution [5]. This technology is considered to
be a foundation technology of cloud computing [6].

When MapReduce runs in a virtual environment, VMs bring
the features of easy-deployed, highly-utilized and well-
isolated. However, two major problems emerge.

The performance degradation caused by particular I/O
framework of virtual machine system is a serious problem
in virtual machine system [7]. Unfortunately, the situation

Journal of Digital
Information Management



214                       Journal of Digital Information Management  �  Volume 11   Number  3    �  June  2013

becomes worse in virtual MapReduce cluster because of
the I/O-intensive applications running on.

The master/slaves architecture of MapReduce would limit
the performance with the increasing cluster scale. As
Figure 1 shows, the more slaves are, the more packets
send and receive. This relationship between the master
and the connected slaves’ number is nearly linear. It is
obvious that the master node would under the stress if
huge numbers of packets spring up in a short time.
Unfortunately, it is exactly the situation in synchronistical
MapReduce. Table 1 shows the results of network
communications when the master is overload. It shows
the communication speed has little effect but the packet
loss has increased sharply.

        Normal Tests               Overwhelmed Tests

   Avg.           Pkg.Loss.       Avg.       Pkg.Loss.
latency              Ratio       latency         Ratio

Inter-com       0.225          0%    0.227             0%

Intra-com 1.768      0%           1.772  74.52%

Table 1. The overwhelmed master effection

A favorable turn happens in the same corner. It was pointed
out [1]  that  locality  is  an  important  issue affecting
performance in a shared cluster environment, because of
the limited  network  bisection  bandwidth. To alleviate the
I/O bottleneck in virtual MapReduce cluster, we construct
a minimum-weight spanning tree to group the nodes with
their communication conditions and data locality.

The rest of the paper is organized as follows. Section 2
gives a preliminaries introduction of MapReduce overview,
I/O virtualization of Xen which is the most popular open-
source Virtual Machine Monitor(VMM) and related work
of spanning tree. Section 3 describes grouped virtual
Mapreduce cluster architecture. In Section 4, we build a
model and propose our algorithm in Section 5. We evaluate
our implementation both in a sampling simulation and real
experiments in Section 6. Section 7 discusses our
evaluation results and some related issues.

Figure 1.The linear relations between the
number of slaves and packet size

2. Preliminaries

Figure 2. Communication cost schematic for  I/O framework

2.1 MapReduce Overview
The data of MapReduce [1] is stored in <key, value>pairs
and the computation proceeds are in rounds. Each round
is split into map, shuffle and reduce consecutive phase.
The architecture of MapReduce is typical master/slaves.
The master node runs the services of NameNode and
JobTracker. They have capacity for DataNodes and
TaskTrackers management. Namenode is the centerpiece
of an HDFS file system. It keeps the directory tree of all
files in the file system, and tracks where across the cluster
the file data is kept. Datanode is stores data in the Hadoop
Filesystems.  The JobTracker is the service within Hadoop
that farms out MapReduce tasks to specific nodes in the
cluster and A TaskTracker is a node in the cluster that
accepts tasks.

The communications in MapReduce working flow have
two types:

• Master-to-slaves: At the beginning of the process, the
master node assigns tasks to slaves and pings slaves to
know the slaves status periodically during the working
process.

• Slave-to-master: Slaves send their locations and
intermediate file to the master

From this analysis, we know the most serious traffic jams
between the master and slaves would happen at the time
that intermediate data is produced and transferred after
map finished.

Many studies pay attentions data locality to reduce the
quality of transfer packets and improve network
communications. Studies [2] [8] make Hadoop’s reduce
task scheduler aware of partitions’ network locations and
sizes to reduce the communication costs and execution
time. [9] adjusts data locality dynamically according to
network state and clusters workload.

All of these studies consider the deployment of
MapReduce in physical cluster. [4] builds a model that
defines metrics to analyze the data allocation problem. It
also designs location-aware file block allocation strategy
in virtual nodes which achieves better data redundancy
and load balance to reduce I/O interference. Ibrahim et al.
[10] evaluates MapReduce on virtual machines in Hadoop
case.  But they just discussed the differences of

2500

2000

1500

1000

 500

      0

Master-in

Master-out

1                   2                 3                4                5

The number of slaves

P
ac

ke
t s

iz
e 

: B
yt

es

DomU Dom0

Frentend Backend

Dom0 DomU

Backend Frentend

CostL Cost
L

CostR



          Journal of Digital Information Management  � Volume 11   Number  3    �  June  2013                   215

MapReduce performance between   virtual machines and
physical machines. [11] explores the effect of I/O sched-
uling on performance of MapReduce running on VMs. [12]
proposes a MapReduce framework on virtual machine
which take full advantage of data locality, virtual machine
live migration and checkpoint.

However, none of researches have considered reducing
the communication costs produced by the overload master,
by off-loads the work the master with local-master and
take fully use of data locality of VMs in the same physical
machine is predictable idea.

2.2 Xen I/O Framework
At the beginning of Xen, the device driver is provided to
the domainUs by VMM [13]. The current version of Xen
employs the domain0, which conducts real I/O operations
on behalf of domainUs, to enhance the reliability and safety
of the system [7]. In this model, a virtual frontend driver in
a domainU communicates with a corresponding virtual
backend driver residing in the domain0 and forwards I/O
requests to physical device driver. The notifying between
the drivers is realized by event channel mechanism which
is similar with hardware interrupt in physical machine.
Figure 2 shows communication costs in Xen. Every
communication cost between domainU and domain0 in
the same physical machine is (Cost)_L , communication
cost between domainU and domain0 in different physical
machine is  (Cost)_R.

Besides the event channel, I/O ring is a shared memory
region used by frontend driver and backend driver. Each
time domainU sends/receives packets, it writes/reads to/
from the I/O ring. The procedure of I/O working flow shows
that every domainUs’ access with physical device should
be passed through domain0.

The recent study [11] on increasing the performance of
virtual MapReduce cluster is to  enhance domain0’s weight
and select physical machine as Master node. These two
strategies both reduce the waiting time of I/O.

However, none of research stands on the point that
reducing waiting time of I/O bottleneck by reducing data
size on virtualized environment.

2.3 Minimum-Weight Spanning Tree
Minimum-weight spanning tree [14] is  a algorithm for
computing minimum spanning trees. It defines least-weight
way of connecting all of vertices together with their edge
weight. The basic idea of Minimum-weight Spanning is
that the weight w(u, v) is used to specify the costs
connected u and v and an acyclic subset tree is found
that connects all of the vertices and the total weight is
minimized. This algorithm is used to design of computer
and communication networks, telephone networks etc.
It’s useful way to help us to find out the topology of
minimum Communication costs.

3. Architecture Of Virtual Mapreduce Cluster

Hadoop [16] is one of the most commonly-applied
MapReduce implementation. The basic architecture of
MapReduce consists of one master and many workers.
Figure 3 is the common virtualized Hadoop architecture
[4]. Figure 4 is two types of grouped virtualized Hadoop
architecture. The difference between Figure 4a) and Figure
4b) is the location of local-master.

Figure 3. Original virtual MapReduce architecture

Figure 4. Grouped virtual MapReduce architecture

The master of original virtualized Hadoop architecture has
responsibility for the management and file maintenance
of slaves which is made of DataNodes and TaskTrackers.
Both of Figure 4a) and Figure 4b) has a local-master which
is made of local-NameNode and local-JobTracker. The
local-master is a group master. The duty of local-masters
which have the ability of local-NameNode and local-
JobTracker are simplified original master. The local-
NameNode is the master of local DataNodes and the lo-
cal JobTracker is the master of local TaskTrackers. The
local-JobTracker only receives the local-TaskTrackers
heartbeats, updates and monitors task status. If
JobTracker find out that the local-JobTracker is dead or
local-JobTracker sends the group status report which
shows all the status of the grouped TaskTrackers are dead,

namenode jobtracker

..............

namenode tasktracker

namenode tasktracker

namenode tasktracker

namenode tasktracker

datanode tasktracker

datanode tasktracker

datanode tasktracker

datanode tasktracker

VMMVMM

namenode jobtracker

datanode tasktracker

datanode tasktracker

datanode tasktracker

datanode tasktracker

datanode tasktracker

datanode tasktracker

VMM VMM

....... .......

Main-VM local -Main - VM
namenode

local-
jobstracker



216                       Journal of Digital Information Management  �  Volume 11   Number  3    �  June  2013

JobTracker would put this group into waiting-for-restart
queue until the physical machine has been reboot and re-
added into cluster. The local-NameNode stores the infor-
mation of filename and block locations to take advantages
of data locality.The realized protocols are Local Client
Protocol and Local Data node Protocol communication
protocols. The Local Client Protocol defines local
namespace operations, including the operations of add-
ing, creating, deleting blocks and getting block locations.
The Local Data node Protocol defines the interface be-
tween local-NameNode and NameNode.

To minimum the communication costs, we build a minimum
spanning tree to group these slaves.

4. Model

We model a Group-Independent Spanning Tree (GIST) in
virtual Hadoop cluster as a graph G = (V, E), where V is the
set of nodes, and E is a set of edges on V. A tree in G is a
connected subgraph T = (V ’, E ’) containing no cycles. If
V’=V, then T is a spanning tree for the graph G. Given a
“weight” function w: E → Z, a spanning tree T * is a

∑e ∈ T *
 w

e 
≤ ∑e ∈ T w

e 
, ∀Tminimum weight spanning tree if

: T spanning tree of G. w
T
 denotes the weight of the tree T.

There are four types of communication costs in this
framework. As w

1
 represents inter-communication costs

between domainUs in the different physical machines, w
2

represents intra-communication costs between domainUs
in the same physical machine,w

3
 represents

communication costs between the domain0 and domainU
in the same physical machine and w

4
 represents

communication costs between the domain0 and domainU
in the different physical machine.

As section 2 analyses, Cost
L
 and Cost

R
 are used to

indicate the edge weight in T.

w
1
 = 2 ∗ Cost

L 
+ Cost

R

w
2
 = 2 ∗ Cost

L

w
3
 = Cost

L

w
4
 = Cost

L 
+ Cost

R

Figure 5 shows the experiments results of packets
transmission in these four weight.

The results show that Cost
R
 costs much more than Cost

L
.

And the Costs are increased with the packets size raise.
These results also verify (5) by experiments.

w
3
< w

2 
< w

4 
< w

1

Figure 6 shows the three graphs of virtual Hadoop cluster
in Xen. Figure 6a) is the original cluster with all of the
slaves connecting the master. Figure 6b) is the group-

independent virtual Hadoop cluster which the local-master
is a domainU and Figure 6c) is the grouped virtual Hadoop
cluster which the local-master is the domain0. We
construct GIST to find out the minimum communication
costs of virtual MapReduce clusters.

5. Algorithm

5.1 Algorithm Describtion
We modified the classical minimum-weight spanning tree
Prim algorithm [14] to construct our minimum-weight
spanning tree in virtual MapReduce cluster.

MSTP-IN-GROUPED-VMC (G, W,M)

1 FOR each u ∈ V [G]

2    DO key [u] ← ∞
3         π [u] ← NIL

4 key[m] ← 0
5 Q ← V [G]

6 WHILE Q ≠ ∅
7     DO u   Extract-Min(Q)

8           FOR each v ∈ Adj[m]

9  DO IF v ∈ Q and w(u, v) < key[v]

10        THEN  set v as local-master

11             FOR each u ∈ Adj[v]

12              DO IF u ∈ Q and w(u, v) < key[v]

13   π [u] ← u
14    key[v] ← w(u, v)

Lines 1-5 set the initial status of spanning tree. Q is the
min-priority queue which contains all the vertices. The
key of root vertex is set to 0 and key of the other vertices
are set to ∞. Every parents of vertex are set to NIL and all
of the vertices are contained by Q. Line 6 is entering the
loop after judging whether the min-priority is empty. Line
7 identifies a vertex u ∈ Q incident on a light edge crossing
the cut (V− Q, Q).

Lines 8-10 choose the local-master. After the local-master
set, group should be formed. Lines 11-14 select the
minimum edge to form minimum spanning tree and update
the key (key [v]) and the parents fields (π [u]) of every
vertex v adjacent to u but not in the tree.

5.2 Case study
Our grouped virtual MapReduce cluster has two different
structures as Figure 4 show: Domain0 exclude and
Domain0 included.

The tree starts from the master node which is the root of
V. According to (1)~(4), the vertex adjacent to the master
with w

3
 should be added. As Previous study [11] points

out that selecting physical machine as master gets better
performance, we put the master node in a separated
physical machine. That means no adjacent vertex with
and the adjacent vertex with w

2 
exists.

(1)

(2)

(3)

(4)

(5)



          Journal of Digital Information Management  � Volume 11   Number  3    �  June  2013                   217

Figure 8. Simulation results for communication costs

b) The connected graph of Grouped virtual

MapReduce cluster with domain0 excluded

a) The connected graph of Origi-

nal virtual MapReduce cluster
c) The connected graph of Grouped virtual

MapReduce cluster with domain0 included

c) The mininum-weight spanning tree of Original

virtual MapReduce cluster with domain0 included
b) The mininum-weight spanning tree of Original

virtual MapReduce cluster with domain0 excluded
a) The mininum-weight spanning tree

of Original virtual MapReduce cluster

0     100     200      300     400       500      600      700       800       900  1000

The Number of Vertices

6000

5000

4000

3000

2000

1000

    0

Group-domU

1 2

3

Group-dom0
456

o2:L1 = 0.089, R1 = 1.57; Orig

o2:L1=0.146,R1=2.703;Orig

To
ta

l c
om

m
un

ic
at

io
n 

co
st

 (m
s)

o1
o2

1
2
3

4
5
6

Figure 6. The connected graph of virtual MapReduce cluster

Figure 7. The minimum-weight spanning tree of virtual MapReduce cluster

In domain0 exclude situation, we choose a domainU as
new added vertex with w

1
. The first chosen vertex is set

as local-master. Then, scanning the adjacent vertices of
local-master, the minimum weight edge w

2 
is add to the

key [v], the vertices connected local-master with w
2 
edge

are added to π [v].

In domain0 include situation, the minimum weight vertex
adjacent to the master is domain0. The weight of the new
vertex edge is w

4
. The first chosen vertex is set as local-

master. Then, scanning the adjacent vertecies of local-
master, the minimum weight edge w

3 
is add to the key[v],

the vertices connected local-master with w
2 
edge are added

to π [v].

The spanning tree results of these cases show as Figure
7b) and Figure 7c). We would have performance analysis
in next section.
6. Evaluation

 Assume that every virtual MapReduce cluster is made of
n virtual machines (not including the number of domain0)
and have g groups with g local-master.

Under the situation of original MapReduce cluster as
Figure 8a) shows, the weight of tree T shows as:

w
T 

 = n ∗
 
 w

1ο

Under the situation of group-independent MapReduce
cluster as Figure 7b) shows, the weight of tree T shows:

w
T 

  = n ∗
 
 w

2 
+

 
 g ∗ (w

1 
−

 
 w

2
)

G1

w
T 

   = n ∗
 
 w

3 
+

 
 g ∗ w

4
G2

Under the situation of group-independent MapReduce
cluster as Figure 7c) shows, the weight of tree T shows:

(6)

(7)

(8)



218                       Journal of Digital Information Management  �  Volume 11   Number  3    �  June  2013

Figure 8 shows the communication costs simulation
results of the three structures of virtual MapReduce
cluster. Each line represents the weight of the T with
specific configuration. Table 2 shows the configuration of
simulation experiments results in Figure 8.

Line-ID o1 o2  1  2    3   4    5    6

Topo. T
o

T
o

T
g1

T
g1

T
g1

 T
g2

  T
g2

  T
g2

Cost
L

L2 L1 L1 L1  L2   L1   L2   L2

Cost
L

R2 L1 L1 L1  R2   L1   R2   R2

g - -      0.1n    0.5n 0.1    0.5n 0.1n 0.5n

Table 2. The parameter in the simulation

Variable Topo. in Table 2 means the architecture of three
types of virtual mapreduce cluster which discussed in
Section 2. In order to measure the value of Cost

L
 and

Cost
R
 affects, we have different combination of these

variables. The value of g in Table 2 means the ratio of
group/slaves which decide the number of computation
nodes in a group.

The structure types of O, g1 and g2 in Table 2 represent
the three structure of Original, Grouped with domain0 and
Grouped without domain0 virtual MapReduce cluster. The
value of L and R are getting from the experiment results
as Figure 5 show. The L1 and R1 are the value of  and
with the 0.5kB packets’ size and the L2 and R2 are that
with the 10kB packets’ size. From the Equation (9)~(11),
if the scale of the virtual MapReduce cluster n has been
specified, the weight of T is proportional to g, which is
less than 0.5 times of n (Because no one would specify
local-master in two vertices group). So we Specify g2 =
0.5 * n with the comparison group which g1 = 0.1∗ n.

The o1 and o2 lines costs much more than the others,
which mean the original structure of the virtual MapReduce
clusters are much higher than both of our grouped virtual
MapReduce cluster.

The circle including lines 4, 5 and 6 shows the weight
comparison in domain0 included structure. And the circle
including lines 1, 2 and 3 shows the weight comparison
in domain0 excluded structure. It obvious that the bigger
g induce higher communication costs since Line 2 is above
Line 1 and Line 6 is above Line 5. In Figure 8, the
phenomenon that Line 2 is above Line 1, Line 6 is above
Line 4 and Line o1 is above Line o2 help us conclude that
the larger value of <L, R> pairs are, the higher

Figure 10. Execution time of Hadoop get operations

From these two figures, the original MapReducce clusters
have the longest execution time. The virtual mapreduce
clusters exclude dom0 have a little better performance
than that of the virtual mapreduce cluster include dom0.
This is because domain0 is also the bottleneck in
virtualized system, too more workloads in domain0 may
cause the overload of domain0 and reduce the
performance.

The results tells that the performance improvements of
our grouped virtual mapreduce cluster is up to ~40.4% in
put operation and  36.3% in get operation. There is no

Orig

Group-ex

Group-in

4               6              8              10

70

60

50

40

30

20

10

 0

The Number of nodes

E
xc

ec
ut

io
n 

ti
m

e 
(s

)

w
T 

   = 2 ∗ n ∗
 
 Cost

L 
+

 
 g ∗ Cost

R
G2

w
T 

   = (n + g) ∗
 
 Cost

L 
+

 
 g ∗ Cost

R
G2

Taken these (1) ~ (4) and (6) ~ (8) together, we get new
equations (8) ~ (10):

w
T 

  = 2 ∗ n ∗
 
 Cost

L 
+

 
 n ∗ Cost

Rο

communication costs are. An easy-ignored detail, which
Line 4 is above Line 3, tells that the factor of <L, R> pairs
plays a decisive role in all of the impacts we have
discussed.

Simulation results are verified an ideal model. Figure 9
and Figure 10 shows the real experiments results. We
record the execution time of put and get operations in
Hadoop Distribute File System (HDFS) with fixed size.

The real tests we have are with the hardware configuration
of our test systems are physical machines which is
equipped with Intel Q9400 quad-core CPU, DDRII-800 2GB
memory. The software of Hadoop 0.20.2 cluster
configurations are 2000MB Hadoop heapsize, 3
replications of files, maximum of map or reduce number
on the same slot is 2 and speculative execution is on.
The virtual node configurations are 256M memory, 1 vcpu,
unpinned.

Figure 9. Execution time of Hadoop put operations

4               6                 8               10

The Number of nodes

Orig

Group-ex

Group-in

90
80
70

60
50

40
30
20

10

 0

E
xc

ec
ut

io
n 

ti
m

e 
(s

)

(9)

(10)

(11)



          Journal of Digital Information Management  � Volume 11   Number  3    �  June  2013                   219

explicit  between the number of nodes and performance
because that every physical machine has its fixed
bandwidth.

7. Conclusion and Future work

In this work, we propose a novel minimum-weight spanning
tree algorithm in grouped virtual MapReduce clusters which
fully take advantages of virtual machines’ data locality in
the same physical machine and reduce the communication
costs. The minimum-weight spanning tree algorithm help
us construct an efficient grouped virtual MapReduce
cluster which greatly reduce the I/O waiting time of file
read and write. The improvement would benefit the whole
performance of MapReduce applications.

The next step of us is that considering the node fault
costs which frequently happen. If any fault nodes happen,
it slows progress rate down seriously. Tasktracker failure
would cause re-computing and speculative execution and
Jobtracker failure would lead to system dump which is
disaster for mapreduce clusters. We would pay more
attentions on fault costs in future. We should
comprehensive take communication cost and node invalid
into consideration.

Refrences

[1] Jeffrey Dean, Sanjay Ghemawat. (2008). MapReduce:
simplified data processing on large clusters. Commun.
ACM 51, 1, 107-113, Jan.

[2] Ibrahim, S., Hai Jin, Lu Lu, Song Wu, Bingsheng He,
Li Qi, LEEN. (2010). Locality/Fairness-Aware Key
Partitioning for MapReduce in the Cloud, Cloud Computing
Technology and Science (CloudCom), 2010 IEEE Second
International Conference on , 17-24, Nov. 30-Dec. 3.

[3] http://aws.amazon.com/elasticmapreduce/.

[4] Yifeng Geng, Shimin Chen, YongWei Wu, Wu, R.,
Guangwen Yang, Weimin Zheng. (2011). Location-Aware
MapReduce in Virtual Cloud, Parallel Processing (ICPP),
International Conference on, p.275-284, 13-16 Sept.

[5] Cong Xu, Sahan Gamage, Pawan N. Rao, Ardalan
Kangarlou, Ramana Rao Kompella, Dongyan Xu. (2012).
vSlicer: latency-aware virtual machine scheduling via
differentiated-frequency CPU slicing. In: Proceedings of
the 21st international symposium on High-Performance
Parallel and Distributed Computing (HPDC ’12). ACM, New
York, NY, USA, 3-14.

[6] Jin, Hai. (2010). From Grid Computing to Cloud
Computing: Experiences on Virtualization Technology.
Future Generation Information Technology: Second
International Conference, Lecture Notes in Computer
Science,V. 6485/2010, 41, FGIT, Jeju Island, Korea,
December, 13-15, Proceedings.

[7] Yanyan Hu, Xiang Long, Jiong Zhang, Jun He, Li Xia.
(2010). I/O scheduling model of virtual machine based on
multi-core dynamic partitioning. In Proceedings of the 19th
ACM International Symposium on High Performance
Distributed Computing (HPDC ’10). ACM, New York, NY,
USA, 142-154.

[8] Hammoud, M., Rehman, M. S., Sakr, M. F. (2012).
Center-of-Gravity Reduce Task Scheduling to Lower
MapReduce Network Traffic. Cloud.

[9] Jiahui Jin, Junzhou Luo, Aibo Song, Fang Dong, Runqun
Xiong. (2011). BAR: An Efficient Data Locality Driven Task
Scheduling Algorithm for Cloud Computing, Cluster, Cloud
and Grid Computing (CCGrid), 11th IEEE/ACM International
Symposium on, 295-304, 23-26 May.

[10] Ibrahim, S., Jin, H., Lu, L., Qi, L., Wu, S., Shi,  N.
(2009). Evaluating MapReduce on Virtual Machines: The
Hadoop Case, Proc. Conf. Cloud Computing (CloudCom
2009), Springer LNCS, Dec, p.519-528.

[11] Jun Fang, Shoubao Yang, Wenyu Zhou, Hu Song.
(2010).  Evaluating I/O Scheduler in Virtual Machines for
Mapreduce application, Grid and Cooperative Computing
(GCC), 9th International Conference on, p.64-69, 1-5 Nov.

[12]  Shadi Ibrahim, Hai Jin, Bin Cheng, Haijun Cao, Song
Wu, Li Qi. (2009). CLOUDLET: towards mapreduce
implementation on virtual machines. In: Proceedings of
the 18th ACM international symposium on High performance
distributed computing (HPDC ’09). ACM, New York, NY,
USA, 65-66.

[13] Paul Barham, Boris Dragovic, Keir Fraser, Steven
Hand, Tim Harris, Alex Ho, Rolf Neugebauer, Ian Pratt,
Andrew Warfield. (2003). Xen and the art of virtualization.
In Proceedings of the nineteenth ACM symposium on
Operating systems principles (SOSP ’03). ACM, New
York, NY, USA, 164-177.

[14] Cormen, T. H., Leiserson, C. E., Rivest, R. L.  (1989).
Introduction to Algorithms, MIT Press. 561-579.

[16] http://hadoop.apache.org/common/.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
    /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


