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ABSTRACT: Data Mining is a new filed in data processing
research. Support Vector Machine (SVM) is one of the
new methods using in data mining, which has gained great
applicable success. However, there are still plenty of
limitations in SVM. For example, SVM won’t work if its
training set contains uncertain information. In order to
solve the problem presented above, this paper discusses
the constraining programming of fuzzy chance and the
characteristic of fuzzy classification as well as its
expression methods. The algorithm for classifying Support
Vector Machine is also included in this paper.
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1. Introduction

With the advent of the information age, humankind is faced
with more and more information processing problems such
as data storage, organization and searches. These
problems gradually increase in complexity in the hierarchy.
Their scales of space activities are growing. It is faster in
time scale and more extensive and far-reaching in
consequences and implications. Data mining is a new
field in data processing. It is a process that digs out various

models, summary and export values from the known data
sets. Data mining is an interdisciplinary that involves
database technology, machine learning, statistics, neural
networks, knowledge engineering, and high-performance
calculation and so on. It has been widely applied in
industry, agriculture, business, economics, health and
many other industries.

Support Vector Machine (SVM) is one of the new methods
using in data mining. It was proposed by Vapnik et al [1]
[2] [3]. Using SVM, the problem of classification and
regression can be deal with better. SVM has been a
research focus in machine learning and was applied in
many fields successfully. But there are many limitations
in SVM. For example, when the training sets of SVM
contain uncertain information, SVM will be incapable. In
2002, Chunfu Lin and Shengde Wang, the professors of
Taiwan University put forward Fuzzy Support Vector
Machine (FSVM) method with Shigeo Abe and Takuya
Inoue, the professors of Kobe University. They made some
improvements to SVM, but did not build FSVM on
algorithm level. Their work lacks of the research on SVM
that contains uncertain information.

To solve the problem of SVM containing uncertain
information (fuzzy parameters) in common conditions, we
discuss the constraining programming of fuzzy chance
and the characteristic of fuzzy classification as well as
its expression methods. The algorithm for classifying
Support Vector Machine is also included in this paper.

2. Preliminary Knowledge

The research of this paper is carried on in the given
possible space which is mentioned in [6].
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2. 1 Fuzzy Chance-constrained Programming
Definition 2.1 Suppose A is a fuzzy subset in universe of
discourse U. If U = R (set of real number) and A is a regular
closed convex fuzzy set, A is called fuzzy number, written
a.

Definition 2.2 Suppose a is a fuzzy number. If a ’s
membership function:
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 are called triangular fuzzy num-

ber a ’s center, left and right endpoints. Center is the main
location of triangular fuzzy number. Real number a can be
expressed as a special triangular fuzzy number a = (a, a,
a).

Definition 2.3 Suppose f : R × R → R is a binary function
in real number field. a, b are fuzzy numbers. The
membership function of fuzzy number c = f (a, b) can be
defined as:
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Proof: The conclusion can be directly deduced from
Definition 2.3.
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Definition 2.4 Programming

⎧

⎩
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min f

s.t. Pos{ f (x, ξ ) ≤ f }≥ β

Pos{ g
j 
(x, ξ ′) ≤ 0, j = 1, 2,..., p} ≥ α

is called fuzzy chance-constrained programming [8]. In
the programming, x is decision variable. ξ, ξ ′ are fuzzy
parameter vectors. f (x, ξ ) is objective function. g

j 
(x, ξ ′) ≤

0,  j = 1, 2,..., p is constraint conditions. α , β (0 < α, β  ≤ 1) are
the given confidence levels of constraint condition and
objective function. Pos {•} is the possibility measure of
fuzzy event {•}.

Common fuzzy chance-constrained programming is

⎧

⎩
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min f (x)

s.t. Pos{ h (x) ξ ) + c ≤ 0} f } ≥ λ

(1)
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(2 - 1)

f (x) is the function of decision variable x. It is an objective
function that does not contain fuzzy parameters. h (x) is
the function of decision variable x. ξ is fuzzy number. c is
real number. h (x) ξ + c ≤ 0 is the constraint condition.
(0 < λ ≤ 1) is the given confidence level.

In [8], a solution of fuzzy chance-constrained programming
under normal circumstances was put forward. It converts
fuzzy chance-constrained programming to clearly
equivalent programming. But it does not available to the
fuzzy chance-constrained programming described as (2-
2). In this paper, we provide a new solution of fuzzy chance-
constrained programming described as (2-2).

Theorem 2.3 If ξ in fuzzy chance-constrained programming
equation (2-1) is triangular fuzzy number i.e. ξ = (r
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clearly equivalent programming of equation (2-1) is:
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It is an ordinary programming that equals to fuzzy chance-
constrained programming described as (2-1).
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(1 − λ) [r
1
h+ (x) − r

3
h− (x)] + λr

2
h (x) + c ≤ 0

From the calculation of triangular fuzzy number, h (x)ξ + c
is still a triangular fuzzy number. Set

h+ (x) =
⎧

⎩
⎨
h(x), h(x) ≥ 0
0, h(x) < 0

,

h− (x) =
⎧

⎩
⎨− h(x), h(x) < 0

0, h(x) ≥ 0 .

~
~

~

~

~ ~

~ ~

~

~ ~

~

~ ~

~

~

~~



          Journal of Digital Information Management  Volume 11   Number  5     October  2013                   329

Then h+ (x), h− (x) are nonnegative and h (x) = h+ (x) − h− (x).
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From Theorem 2.2, the clear equivalent class of Pos {h
(x)ξ + c} ≥ λ (0 < λ ≤ 1) is
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Because fuzzy chance-constrained programming equation
(2-1) and ordinary programming equation (2-2) have the
same objective function, and their constraint conditions
are equal, fuzzy chance-constrained programming
equation (2-1) is equal to ordinary programming equation
(2-2).

2.2 Characteristics of Fuzzy Classification
First, we give the definition of classification.

Definition 2.5 Find a rule for training set S = {(x
1
, y

1
),...,(x

l 
,

y
l 
)} (x

j 
∈ Rn , y

j 
is fuzzy number that means its fuzzy catego-

ries j = 1,..., l ) of fuzzy number according to the output of
given training points to deduce the corresponding fuzzy
number y (means fuzzy categories of x) of any mode x.
We call this problem fuzzy classification.

The integral fuzzy information studied in this paper has
three fuzzy characteristics: fuzzy positive class (sample
points’ positive degree of membership are more than
negative one), fuzzy negative class (sample points’
negative degree of membership are more than positive
one) and center class (sample points’ positive degree of
membership and negative one are equal).

Suppose sample points’ positive or negative degrees of
membership are δ  +or δ  −, δ +, δ  −     ∈     [0.5, 1]. For conve-
nience, we use δ  ∈     [− 1, − 0.5] ∪ [0.5, 1], make δ  + = δ , δ  − =
−δ . So, three fuzzy characteristics can be described by
a special triangular fuzzy number as follow:
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(1) Example of fuzzy positive class: sample points’
positive degree of membership is 0.9, and its negative
degree of membership is 0.1. This fuzzy characteristic
can be described by triangular fuzzy number a = (0.58, 0.8,
1.02). In this equation, 0.8 is the center of a.

(2) Example of fuzzy negative class: sample points’

~

negative degree of membership is 0.8, and its positive
degree of membership is 0.2. This fuzzy characteristic
can be described by triangular fuzzy number b = (−1.1, −
0.6, −0.1). In this equation, 0.6 is the center of b.

(3) Example of center class: sample points’ positive
degree of membership is 0.5, and its negative degree of
membership is 0.5. This fuzzy characteristic can be
described by triangular fuzzy number c = (−2, − 0, 2). In this
equation, 0 is the center of c.

3. FSVM

Suppose the training set is S = {(x
1
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1
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)} (3-1). x
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∈ Rn , y
j
 is a triangular fuzzy number as equation (2-3), j =
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j 
, y

j 
) (j = 1,..., l) is fuzzy training points. S is a fuzzy

training set.

Definition 3.1 In equation (2-3), if δ ∈ (0.5, 1], the correspon-
ding fuzzy training points are fuzzy positive points. If δ ∈
[− 1, − 0.5), the corresponding fuzzy training points are
fuzzy negative points.

For simplicity, we do not consider the situation of δ = 0.5 or
δ = − 0.5. Because the triangular fuzzy number y = (−2, 0, 2)
does not provide positive or negative class information in
this situation.

To facilitate our research, we reorder the fuzzy training
points in the set. Put the fuzzy positive class points in
front, and negative ones on back. Thus, we get the fuzzy
training set:
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In equation (3-2), (x
t 
, y

t 
) are fuzzy positive class points t =

1,..., p. (x
i
, y

i 
) are fuzzy negative class points i = p + 1,..., l.

Definition 3.2 Suppose the fuzzy training set is described
as equation (3-2), for the given confidence level λ (0 < λ ≤
1), if it has w ∈ Rn, b ∈ R to make:

Pos {y
j 
 ((w. (x

j
) + b) ≥ 1}≥ λ,  j = 1,..., l, (3 - 3)

We call training set (3-2) fuzzy linear separable in the
confidence level λ. Now, we also call the question of fuzzy
classification fuzzy linear separable under confidence level.

As we all know, the basic condition of fuzzy linear
separable is the inputs of fuzzy positive class points and
negative ones are separated by possibility λ (0 < λ ≤ 1). If
the outputs of fuzzy training points are all 1 or −1, the
fuzzy training set will degenerate to ordinary training set.
Now, the linear separable of fuzzy training set becomes
the linear separable of ordinary one.

The fuzzy linear separable of fuzzy training set is the
extension of ordinary sets’ linear separable. In fuzzy
training set, if only we choose an appropriate confidence
level, the fuzzy training set is still linear separable, although
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some training points with smaller membership are
misclassified in the set.

For example, this is shown as Figure 1:

Suppose there are three fuzzy training points. Every point’s
input is one-dimensional. The outputs of fuzzy training
points (x

2
, y

2
) and (x

3
, y

3
) are determinate y

2 
= 1

 
and y

3 
= −1.

The membership degree of the first fuzzy training point
that belongs to negative class is δ1

−. Suppose δ1
− = 0.51,

0.6, 0.7.

x
3
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= 1 x
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Figure 1. The shown of fuzzy linear separable

(i) When δ1
− = 0.51, according to equation (2-3), the

corresponding triangular fuzzy number y
1 
= (−1.94, −0.02,

1.9). So, the fuzzy training set is:
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Choose λ = 0.72. If use separating hyper-plane x = 0, (w. x
1
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+ b = 2. So
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3
) + b) ≥ 1} = 1 > 0.7

And
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3
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3
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So, fuzzy training set S is linear separable under confidence
level λ = 0.72.

(ii) When δ1
− = 0.6, the corresponding triangular fuzzy

number y
1 
= (−1.53, − 0.2, 1.13).

Choose λ = 0.47, similarly, fuzzy training set is linear
separable under confidence level λ = 0.47.

(iii) When δ1
− = 0.7, the corresponding triangular fuzzy

number y
1 
= (−1.26, − 0.4, 0.46).

Choose λ = 0.08, similarly, fuzzy training set S is linear
separable under confidence level λ = 0.08.

The problem of fuzzy classification has three types: fuzzy
linear separable (all the fuzzy training points meet the
condition of definition 3.2); approximate fuzzy linear
separable (most of the fuzzy training points meet the
condition of definition 3.2); fuzzy nonlinear (most of the
fuzzy training points do not meet the condition of definition
3.2).

Theorem 3.1 Under confidence level λ (0 < λ ≤ 1), the clear
equivalence class of equation (3-3) is:
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Definition 3.3 Consider the fuzzy linear separable problem
given by fuzzy training set equation (3-3). We call two
parallel hyper-planes (w. x
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Obviously, the pair of supporting hyper-planes about fuzzy
training set (3-3) is unique.
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. We call it

4. Fuzzy Linear Separable FSVMS

Now we consider the linear separable problem of fuzzy
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training set described as equation (3-2). Under confidence
level λ (0 < λ ≤ 1), the problem of fuzzy classification
transform into fuzzy chance-constraint programming
question with decision variable (w, b)T:

⎧

⎩
⎨
s.t Pos {y

j 
((w. x

j
) + b) ≥ 1} ≥ λ , j = 1,..., l

min     || w || 21
2 (4 - 1)

In equation (4-1), y
j
 ( j = 1,..., l ) is the triangular fuzzy

number of training set described as equation (3-2). Pos{•}is
possibility measure of fuzzy event{•}.

Theorem 4.1 Under confidence level λ (0 < λ ≤ 1), the clear
equivalent programming of uncertain chance-constraint
programming described as equation (4-1) is the following
quadratic programming:
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Proof: From the conclusion of Theorem 3.1, we can draw
this conclusion.

In [1], we know the optimal solution of programming (4-2)
exists. Now, we will solve the dual programming of
quadratic programming described as equation (4-2).
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w =   (4 - 6)

Substitute equation (4-6) into Lagrange function described
as equation (4-4), and use equation (4-5), we can get the
dual programming of quadratic programming described
as equation (4-2):

⎧

⎩
⎨ β

t 
((1 − λ) r

t3
+ λr

t2
) +

β
t
 ≥ 0, t = 1,..., p

(A + 2B + C )1
2

−(Σ
t = 1

β
t 
+ Σ

l

i = p + 1

α
i )

s.t.Σ
p

t = 1

α
i
 ≥ i = p +1,..., l

α
i 
((1 − λ) r

i1
+ λr

i2
) = 0Σ

l

i = p + 1

max
β , α

In equation (4-7):

A =Σ
p

t = 1
Σ

p

s = 1

β
t 
β

s 
((1 − λ) r

t3
+ λr

t2
) ((1 − λ) r

s3
+ λr

s2
) (x

t
   x

s 
).

B =Σ
p

t = 1
Σ

l

i = p + 1
β

t 
α

i 
((1 − λ) r

t3
+ λr

t2
) ((1 − λ) r

i1
+ λr

i2
) (x

t
   x

i 
).

C = Σ Σ
l

i = p + 1

α
i 
α

q
((1 − λ) r

i1
+ λr

i2
) ((1 − λ) r

q1
+ λr

i2
) (x

i
   x

q
).

q = p + 1

l

β
 
 = (β1,...βp 

)T,  α = (α
p + 1

,...α
l 
)T , (β, α) T are decision variable

Convert the objective function of quadratic programming
described as equation (4-7) to minimum; we can get
equation (4-3).

The programming described as equation (4-3) is a convex
quadratic programming. We solve its optimal solution
(β , α  ) T = (β1 ,...βp 

,
 
α

p + 1 ,...αl 
  )T. Set:

w* =
*β
t 
 ((1 − λ) r

t3
+ λr

t2
) x

t
 +Σ

p

t = 1

α
i 
 ((1 − λ) r

i1
+ λr

i2
) x

iΣ
l

i = p + 1

*

b* = ((1 − λ) r
s3

+ λr
s2

) − ( *β
t 
 ((1 − λ) r

t3
+ λr

t2
) (x

t 
   x

s 
) +Σ

p

t = 1

.

α
i 
 ((1 − λ) r

i1
+ λr

i2
) (x

i 
   x

s 
))Σ

l
*

i = p + 1

.

s ∈{s | β
s  

> 0}. or

* ** ** *

b* = ((1 − λ) r
qi

+ λr
q2

) − ( *β
t 
 ((1 − λ) r

t3 
+ λr

t2
) (x

t 
   x

q 
) +Σ

p

t = 1

.

α
i 
 ((1 − λ) r

i1
+ λr

i2
) (x

i 
   x

q 
))Σ

l
*

i = p + 1

.

  (4 - 7)

~w, b

w, b

w, b

*

Get
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q ∈{q | α
q 
  > 0}. or*

And set g (x) = (w*  x) + b*. We can prove the optimal
classification function (the method mentioned in [1]) is:

.

 f (x) = sgn (g(x)) = sgn ((w*  x) + b* ), x ∈ Rn.   (4 - 8)

The optimal separating hyper-plane is (w*  x) + b* = 0

The membership function of optimal classification function
is

.

µ (u) =

ϕ 
+
 (u), 0 < u ≤ ϕ 

+  
 (1)

ϕ− (u), ϕ −   (1) ≤ u < 0

1, u > ϕ 
+  

(1)  u < ϕ −  (1)

−1

−1

−1 −1

⎧
⎨
⎩

  (4 - 9)

In equation (4-9), ϕ
+ 

(u) is the regression function (mon-
otone increasing function about u) getting from ε −  support
vector regression. The construction method of ε − support
vector regression is:

(a) construct the training set of regression

{(0, 0.5), (g (x
1
), δ +

 
), ...,(g (x

p
), δ  +

 
)1 p   (4 - 10)

(b) use the training set as equation (4-10), choose
appropriate ε > 0, penalty parameter C > 0, choose linear
kernel as kernel function, construct ε − support vector
regression.

Similarly, ϕ−(u) is the regression function (monotone
decreasing function about u) getting from ε − support vector
regression. The construction method of ε − support vector
regression is:

(b) construct the training set of regression

{(0, 0.5), (g (x
p + 1

), δ  −     
 
 ), ...,(g (x

l 
), δ  − 

 
)p + 1   (4 - 11)

l

(c) use the training set as equation (4-11), choose the
same ε and C with above, choose linear kernel as kernel
function, construct ε − support vector regression.

ϕ 
+ 

 (1) is the value of function ϕ 
+ 

(u) ’s inverse function at
1. ϕ −   (1) is the value of function ϕ−(u)’s inverse function at
1.

Given an input x of test point, substitute it into equation
(4-8) and (4-9), we can get  f ( x ) = 1 (or −1) and its degree
of membership µ (g ( x )). Convert them to triangular fuzzy
number y. It is the output of test points that can reflect the
fuzzy classification of test points (x, y). This classification
shows the test point’s membership of positive and negative
class.

Through above discussion, we can get the algorithm for
classifying Support Vector Machines. This algorithm is
fuzzy linear separable.

(1) Given the training set of fuzzy linear separable question
as equation (3-2), choose an appropriate confidence level
λ (0 < λ ≤ 1) to construct quadratic programming as equation
(4-3).

~
~

(2) Solve quadratic programming as equation (4-3), get
the optimal solution (β  , α   ) T = (β

1 
,...β

p 
,
 
α

p + 1 
,...α

l 
  )T** * * * *

(3) Computing

w* =
*β
t 
 ((1 − λ) r

t3
+ λr

t2
) x

t
 +Σ

t = 1

α
i 
 ((1 − λ) r

i1
+ λr

i2
) x

iΣ
i = p + 1

*
p

choose β *, s positive component β * or α *’s positive com-
ponent α* . Accordingly, compute

l

;

s

q

b* = ((1 − λ) r
s3

+ λr
s2

) − ( *β
t 
 ((1 − λ) r

t3
+ λr

t2
) (x

t 
   x

s 
) +Σ

p

t = 1

.

α
i 
 ((1 − λ) r

i1
+ λr

i2
) (x

i 
   x

s 
))Σ

l
*

i = p + 1

.

b* = ((1 − λ) r
qi

+ λr
q2

) − ( *β
t 
 ((1 − λ) r

t3
+ λr

t2
) (x

t 
   x

q 
) +Σ

p

t = 1

.

α
i 
 ((1 − λ) r

i1
+ λr

i2
) (x

i 
   x

q 
))Σ

l
*

i = p + 1

.

or

(4) Construct optimal separating hyper-plane (w* .  x) + b*

= 0. Accordingly, get the optimal classification function as
equation (4-8).

(5) Use the training set as equation (4-10) and (4-11)
separately, construct ε − support vector regression (choose
appropriate ε, penalty parameter C, choose linear kernel
as kernel function). Get regression function ϕ +

 
(u) and

ϕ −
 
(u). Accordingly, construct the membership function of

optimal classification function as equation (4-9).

Normally, there is only a little β
t
  and α

i
  are not zero in the

optimal solution (β
1 

,...β
p 

,
 
α

p + 1 
,...α

l 
)T of quadratic

programming as equation (4-3). The corresponding fuzzy
training points’ input  x

t
 and x

i
 are called uncertain support

vectors. So, the optimal classification function can be
expressed as:

* **

f (x) = sgn {(
*β
t 
 ((1 − λ) r

t3
+ λr

t2
) (x

t 
   x

 
) +Σ

(FSV)+

.

α
i 
 ((1 − λ) r

i1
+ λr

i2
) (x

i 
   x)) + b* }Σ * .

(FSV)
−

In this equation, (FSV )+ is the set composed by all the
uncertain support vectors in fuzzy positive class points.
(FSV )− is the set composed by all the uncertain support
vectors in fuzzy negative class points.

If the outputs of fuzzy training points are all 1 or −1, the
fuzzy training set will degenerate to ordinary training set.
Now, the linear separable of fuzzy training set becomes
the linear separable of ordinary one.

5. Numerical Experimentation

The uncertain Support Vector Classification Machine is
built on the basis of classic SVM and fuzzy mathematics.

−1

−1

* *

*
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To explain the rationality of our algorithm, we give specific
data to do numerical experimentation.

Suppose the input of 6 training points and their
membership degrees of positive (or negative) class are:

x
1
 = (2, 2)T, its membership degree of positive class is 1

(its membership degree of negative class is 0);

x
2
 = (1.7, 2)T, its membership degree of positive class is

0.95 (its membership degree of negative class is 0.05);

x
3
 = (1.5, 1)T, its membership degree of positive class is

0.8 (its membership degree of negative class is 0.2);

x
4
 = (0, 0)T, its membership degree of negative class is 1

(its membership degree of positive class is 0);

x
5
 = (0.8, 0.5)T, its membership degree of negative class is

0.85 (its membership degree of positive class is 0.15);

x
6
 = (1, 0.5)T, its membership degree of negative class is

0.8 (its membership degree of positive class is 0.2).

According to the fuzzy characteristics and their
expressions in fuzzy classification mentioned in 2.2,
convert the membership degrees to triangular fuzzy
numbers; get the following fuzzy training set:

S = {(x
1
, y

1
), (x

2
, y

2
), (x

3
, y

3
), (x

4
, y

4
), (x

5
, y

5
), (x

6
, y

6
)}~ ~~~~~

The outputs of training points are triangular fuzzy numbers.

y
1 
= 1 = (1, 1, 1), y

2
= (0.755, 0.9, 1),

y
3 
= (0.1, 0.6, 1.1), y

4 
= −1 = (−1, −1, −1)

y
5 
= (−1.05, − 0.7, − 0.34),

y
6 
= (−1.1, − 0.6, − 0.1),

~ ~

~ ~

~

~

Choose confidence level λ = 0.8, we can verify the fuzzy
linear separable of training set S from Definition 3.14. So:

The optimal separating hyper-plane is 2 [x]
1
 + [2x]

2
 − 4 = 0

Shown as Figure 2:

2.5

2

1.5

1

0.5

0

− 0.5
0           0.5           1            1.5          2

Figure 3.Numerical experimental (1)

The optimal classification function is:

We construct the membership function of optimal

 f (x) = sgn (g(x)) = sgn (2 [x]
1
 + [2x]

2
 − 4)

classification function:

Use S
1 
= {(0, 0.5), (4, 1), (3.4, 0.95), (1, 0.8)} as fuzzy training

set, choose ε = 0.1, C = 10 and the linear kernel, construct
support vector regression, we can get regression
functionϕ−(u) = 0.11u + 0.6.

The membership function of optimal classification function
is

µ (g (x )) =
0.10 g (x) + 0.6, 0 < g (x) ≤ 4
− 0.11 g (x) + 0.6, − 3.64 ≤ g (x) ≤ 0
1, g (x) > 4  g (x) < − 3.64

⎧
⎨
⎩

Suppose there are test points input x
7
 = (1, 2)T, x

8
 = (1, 0)T

Put them into f (x) and µ (g (x)), we get f (x
7
) = 1 (fuzzy

positive class), its membership degree of positive class
is 0.8 and negative is 0.2, so y

7 
= (0.1, 0.6, 1.1)

 
(triangular

fuzzy number); f (x
8
) = −1 (fuzzy negative class), its

membership degree of negative class is 0.82 and positive
is 0.18, so y

8 
= (− 1.08, − 0.64, − 0.2) (triangular fuzzy number).

Compare Fuzzy Support Vector Machine with classic
support vector machine. First, suppose fuzzy training set
is:

~

~

Then the output of training points ((1.5, 1), 1) will change:
1 = (1, 1, 1) → (0.1, 0.6, 1.1) → (−1.1, −0.6, − 0.1) → (−1, −1, −1)
= −1

S 
1 
= {(0, 0),  −1) ((0.8, 0.5), −1), ((1, 0.5), −1), ((2, 2), 1), ((1.7, 2),

1), ((1.5, 1), 1)}

So the other fuzzy training sets are:

S 
2 
= {((0, 0),  −1) ((0.8, 0.5), −1), ((1, 0.5), −1), ((2, 2), 1), ((1.7, 2),

1), ((1.5, 1), 1), (−1.4, 0.6, 2.6))}

S 
3 
= {((0, 0),  −1) ((0.8, 0.5), −1), ((1, 0.5), −1), ((2, 2), 1), ((1.7, 2),

1), ((1.5, 1), 1), (−1.4, 0.6, 2.6))}

S 
4 
= {((0, 0),  −1) ((0.8, 0.5), −1), ((1, 0.5), −1), ((2, 2), 1), ((1.7, 2),

1), ((1.5, 1), −1)}

Choose λ = 0.8, we can verify that fuzzy training sets S 
1
,

S
2 
, S 

3
, S 

4
 are fuzzy linear separable according Definition

3.14. So, on the basis of the algorithm we propose in this
paper, we arrive at the optimal separating hyper-plane are
4 straight lines:

l
1
: [x

1
] + [x

2
] = 2; l

2
: [x

1
] + [x

2
] = 2.4;

l
3
: 0.385 [x

1
] + 1.923 [x

2
] = 1.4;

l
4
: 0.385 [x

1
] + 1.923 [x

2
] = 1.76;

Shown as Figure 3, the output of fuzzy training points
change:

(1, 1, 1) → (0.1, 0.6, 1.1) → (−1.1, −0.6, − 0.1) → (−1, −1, −1) and
the straight line move as: l

1
→  l

2
→ l

3
→ l

4
. This change

shows that the fuzzy training points’ membership degrees
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of negative class are increased and positive one
decreased. From this, it can be seen that the result
coincides with intuitive judgments.
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