
 Journal of Digital Information Management Volume 12 Number 5 October 2014 311

A Process-aware Security Task Scheduling Algorithm

Tao Zhang1, Yuanyuan Ma1, Cheng Zhou1,Tao Li2

1China Electric Power Research Institute (Nanjing)
NARI Road.No.8, 210003 Nanjing, China
2School of Computer Science, Florida International University
11200 SW 8th Street Miami, FL 33199, U.S.A
zhoucheng3@epri.sgcc.com.cn

ABSTRACT: In this paper, a process-aware security task-
scheduling algorithm is proposed as IOAware. The
algorithm evaluates the performance of hardware in
computing nodes, and estimates properties of a task while
it is being executed. In subsequent assignments, the
algorithm assigns tasks based on the performance of
the TaskTracker and the task properties. To verify the
theoretical feasibility of the proposed IOAware scheduling
algorithm, a schedule model is proposed to implement
the method. After applying the scheduling module in a
Hadoop cluster with multiple experiments, the results show
that, compared with the performances of the FIFO,
computing capacity-scheduling, and fair-scheduling
algorithms in terms of four aspects: response time,
localization ratio of the data, system throughput, and
system resources, IOAware scheduling algorithm can
reach up to the disk IO effect of the Shared computing
nodes, effectively reduce the execution time of the tasks
and improve the throughput of the cluster.

Subject Categories and Descriptors
I.1.2 [Computing Methodologies]: Analysis of Algorithms;
E.4 [Coding and Information Theory]

General Terms: Computing, Task Scheduling, Process Aware

Keywords: Hadoop, Security Task Scheduling, Process Aware

Received: 3 June 2014, Revised 19 July 2014, Accepted 25 July
2014

1. Introduction

Data must be read in the same order that compute nodes
execute a Map task. However, a non-local task must be
first localized, which consumes some network resources
and local disk bandwidth [1]. Thus, we can effectively
reduce the network bandwidth of a data node and the
disk IO operations by reducing the migration of data during
the MapReduce task. For the task itself, data localization
is not needed if the data are exactly local. Obviously, this
step will still need a certain amount of time if there are a
lot of data. So we should improve the Map task’s
localization rate to reduce the single execution time [2].

This paper proposes a process-aware security task-
scheduling algorithm called IOAware. In this algorithm,
the total IO requests for the parallel execution of tasks in
the compute node do not exceed the maximum disk IO
load, because different IO request tasks are allocated to
each compute node.

Every single CPU is used to execute these tasks, to improve
the throughput rate of the system and reduce the average
execution time..

2. IOAware

If the MapReduce task is executed on a heterogeneous
cluster, it is vulnerable to restrictions in the compute node
resources, and can create a competitive relationship with
other tasks running in the compute node [3]. The most
important competitive relationship is between the CPU

Journal of Digital
Information Management

312 Journal of Digital Information Management Volume 12 Number 5 October 2014

use, network bandwidth utilization, and disk IO. In the
Yahoo recommended configuration, each CPU core can
support a Map task. So under normal circumstances there
is no competition for CPU resources between different
Map tasks. But there is competition between disk IO and
network IO, and the CPU use, which is complementary
[4]. If a Map task becomes limited by he IO, then it must
stop the CPU calculations and wait for the operation to
be completed. Therefore, in heterogeneous clusters, we
must identify characteristics of nodes in the cluster and
the task itself. In this paper, we considered the following
four points for MapReduce tasks and clusters:

(1) The Hadoop cluster is heterogeneous, and the hardware
configurations are not identical. However, its X86
architecture does not support ARM or GPU computing.

(2) The Map or Reduce tasks are single responsibilities,
and not support the completion of multiple computing
processes.

(3) Each compute node’s information can be given by its
configuration information, which is obtained using a
heartbeat on the management node.

(4) Speculative execution on heterogeneous clusters can
easily degrade the performance, so speculative execution
is not possible.

2.1 Assessment of Properties of the Compute Nodes
There are more Map tasks in a job than Reduce tasks.
Therefore, it is more reasonable to analyze the Map task
when analyzing the properties of distributed computing
nodes. Because the Map operations within a job are very
similar, it is effective to take samples of how a Map task
is reading data. The executions of each task contain a lot
of information [5].

Analyzed from the perspective of Map tasks, the amount
of RW-Data is the sum of the input and output:

Data = input + output

We define:

R
disk

 =
Data

F
cpu

 × T
exec

× λ

Then using equation (2) to quantitatively estimate the disk
performance of the computing nodes. We can use this
estimate to determine the relative disk rates and the lit-
eracy rates of the disk using reference values from some
basis nodes.

In Equation (2),T
exe

 is the execution time of the Map task,
and F

cpu
 is the rate of a single-core CPU. λ refers to the

parallel factor; more simultaneously running tasks are
represented by a larger value. However the disk IO speed
is limited, so its value must be constrained within a certain
range. There may be many parallel Map tasks on the same
TaskTracker. More tasks increase the frequency of disk

IO calls making an obstruction more likely, which affects
the execution of tasks.

When a fully loaded disk processes data, the execution
time is inversely proportional to the rates of reading and
writing the data in each computing node, when compared
to IO type of tasks with the same data [6]. The execution
time should reduce as the disk literacy rate increases.

TaskTracker communicates with JobTracker using a
heartbeat on Hadoop, and reports information about the
current node, including the computing node memory, the
amount of CPU, the total CPU frequency, memory
restrictions of the configured Map and Reduce computing
slots, and the action resource status.

F
cpu

 =
F

total

N
cpu

where F
total

 is the total CPU frequency reported by a
heartbeat, and N

cpu
 is total size of the CPU. This must

then be normalized. We can then estimate the disk IO
speed and execute the corresponding scheduling tasks
according to the IO load of tasks in the task allocation.

2.2 Jobs Classification
Hadoop jobs can be divided into two types: CPU-bound
and IO-bound. When these jobs are being executed, there
are larges differences in their resource requirements for
the computing nodes. The jobs can be roughly classified
according to their properties. When executing Map-Shuffle,
we can estimate the workload of the Map task using the
ratio of MID (Map input data) to MOD (Map output data).
Assuming that the ratio is ρ, we can calculate the value
using the following equation:

MOD = ρ × MID

Because the data are returned from Map’s Shuffle process,
SID (Shuffle input data) during the Shuffle satisfies can
be considered as follow:

SID = MOD

Shuffle reorganizes the output files in the Map process
using division, which is determined based on the number
of Reduce tasks. So SOD (Shuffle output data) is a
parameter concerning the division factor.

We assume that the load ratio (ρ) of each Map task is
equal, because of the similarities among the properties of
Map tasks from the same job. We assume that there are
n Map tasks on the TaskTracker at the same time, that
the Map task’s execution time is the MTCT (Map task
completed time), and that the literacy rate of the disk IO
is the DIOR (disk IO rate).

When the Map tasks are being executed, we need disk
operations for inputting the data slice, outputting the
intermediate data, and inputting and outputting the Shuffle
data. During the execution process, we assume that n

 (1)

 (2)

 (4)

 (5)

(3)

 Journal of Digital Information Management Volume 12 Number 5 October 2014 313

tasks are simultaneously running on the TaskTracker, and
that they share disk IO. We assume that the product of n
and the sum of MID, MOD, SID, and SOD is the total
amount of data required by these tasks. Then, this amount
divided by the tasks execution time is the average
utilization rate of the disk. The task is CPU-bound if the
average utilization rate of that disk is less than the average
rate of the local disk. That is,

n × (MID + MOD + SID + SOD)

MTCT
n × ((1 + 2ρ) MID + SOD

MTCT
< DIOR

=

Disk IO is used more frequently during the execution of
an IO-bound task. Additionally, because the disk IO usage
and CPU usage are complementary, disk IO can encounter
bottlenecks if the disk file read rate of the Map tasks is
relatively high. This reduces the CPU utilization. There
are two kinds of IO-bound tasks, which are dependent on
the obstruction. In the first, the disk IO encounters its
read and write bottleneck during the Map stage, i.e.,

n × (MID + MOD)

MTCT =
n × (1 + ρ) MID

MTCT
≥ DIOR

In the second, the IO operation is less than the literacy
speed and the IO is blocked during the Shuffle stage.

Equation (7) suggests that the Map task generated a large
amount of disk IO operations before the Shuffle. There
are n Map tasks competing for the disk, which obstruct
the Map tasks and make them abandon their CPU time
slices. Therefore, it takes more time to perform tasks. In
the second case, Map tasks before the Shuffle process
generate a large number of IO disk operations. When there
are n Map tasks running in parallel, the IO disk encounters
its bottleneck, leading to an obstruction. That is,

n × (MID + MOD + SID + SOD)

MTCT
=

n × ((1 + 2ρ) MID + SOD)

MTCT
≥ DIOR

2.3 Task Obstruction
Map tasks are locally executed on the computing node.
Some factors influence its execution time, including CPU,
memory, and disk rate [7-8]. To make a quantitative
comparison, we define the comparative factor as follow:

R =
Data

α Proc + β Disk

where α and β are rate factors, which respectively
represent the proportion of CPU and disk affecting the
implementation time in the task execution process, and
α + β = 1. is the proportion of CPU after normalization. is
the proportion of the disk estimate rate after normalization.
We can use this equation to make a prediction based on
the execution information of the completed Map tasks,

and deduce the execution time of the current Map task in
the computing node.

Thus, we can calculate the expected execution time of a
Map task. Assuming that the task has been executed for
T

real
, and progressed by Progress

real
. If the execution speed

of the task is more than the threshold level, the compute
node makes frequent calls to the disk IO. This results in
the task becoming blocked, and seriously effects the
execution of the task. The judgment method is shown as
follow:

Figure 1. Flow diagram for the IOA dispatcher task

Rate
expect

=
1

T
expect

Rate
real

=
Progress

real

T
real

Rate
except

− Rate
real

Rate
real

× 100% > Threshold⎩

⎧
⎨

When a TaskTracker proposes assigning tasks, the
JobTracker assigns tasks using scheduling algorithms.
The scheduling algorithm in this article is determined by
the running conditions of the machine when tasks are
being allocated from the schedule. When the JobTracker
receives “heartbeat” packages, it updates the execution
information of the appropriate jobs. It then assigns new
tasks to the compute nodes as appropriate. The flow
diagram of the algorithm is shown in Figure 4. The specific

Distribution

The beginning

Whether

Do the IO tasks
Looking for CPU type
of localization tasks,
reduce the requirement
of disk IO to the
greatest extent.

Given the task of the
CPU type, or unknown

types of assignment

On the basis of the unfinished
job queue for distribution,
give priority to the IO types
of task, is to test the unknown
types of tasks. Finally
consider CPU types of tasks.

 (6)

 (7)

 (8)

 (9)

 (10)

314 Journal of Digital Information Management Volume 12 Number 5 October 2014

strategies for assigning tasks are as follows.

Step 1: First, determine if there are seriously blocked IO-
bound tasks, based on the processes of the tasks
performed on the machine. If there have been serious
obstructions, then execute the second step. If not, then
carry out the third step.

Step 2: Because IO-bound tasks have been blocked, then
there are reading and writing tasks that require serial read-
write floppy disk operations. This prolongs the
implementation of these tasks. However, the TaskTracker
can calculate the slots, and can also add new tasks. To
allow the TaskTracker to be as effective as possible and
minimize the impact of the execution process of an
existing task, we select data retention from the CPU-bound
queue on the local DataNode, select less input and output
data, and allocate tasks with high CPU utilization. If we
cannot find this type of task, then we discard the wheel
scheduling, and wait for the next dispatch to the
TaskTracker.

Step 3: When the TaskTracker disk is used too often and
a task block does not appear, we must consider the
current overall situation of the tasks to be performed on
the machine. If there are more TaskTracker IO-bound tasks
than CPU-bound tasks, we implement Step four, otherwise
we move to Step 5.

Step 4: If there is no blocking of IO-bound tasks, we can
add some CPU-bound tasks to increase the CPU
utilization. On the premise of not exceeding the disk IO
bottleneck, these new tasks can be performed without
significant impact; therefore, we chose from the CPU-bound
task queue that uses local data. If there is no CPU-bound
task, then we schedule a task from the unknown type
wait queue that uses localized data. If we do not find a
localized task, the schedule waits for the next task.

Step 5: If the machine is more IO-bound than CPU-bound,
the task blocking has not occurred under normal
circumstances. So, demanding tasks on the disk are given
priority. We first select data from the IO-bound task queue
with localization, then the localized wait queue, then from
the unknown, and finally by considering the localization
of selected tasks from the CPU-bound queue. If we cannot
select an appropriate task, we relax the localization data
requirements. We consider tasks that are within the same
rack. If there are still no appropriate tasks, we consider
the tasks across a rack.

3. Experiments and Analysis

To test the performance of the scheduling algorithm in
heterogeneous clusters, we used computers that had been
procured at different times. Their hardware configurations
are given in Table 1.

These computers were connected through the lab net-
work, which has a network bandwidth of 100 M. To imple

Name Global Settings Map CPU Frequency
 Slot (Frequency of
 core* The
 number of core)

Master 2 Cores, 2G Memory / /

Slave1 1 Core, 512M Memory 2 2.80GHz*1

Slave2 2 Cores, 1G Memory 2 2.93GHz*2

Slave3 2 Cores, 1G Memory 2 2.93GHz*2

Slave4 4 Cores, 2G Memory 4 2.33GHz*4

Table 1. Hardware configuration for experimental cluster

Figure 2. Experimental network

ment the computing cluster configuration, we used a vir-
tual machine and an entity matching deployment sce-
nario. JobTracker and NameNode used entities, and
TaskTracker and DataNode used VMware virtual ma-
chines, with the networks configured in bridge mode. All
of these machines were running the Ubuntu 10.10 oper-
ating system. Hadoop uses Java, so JDK Ubuntu was
installed in this test system. This was to ensure that in
follow-up experiments, all the users in the system with
the same username and password could build the envi-
ronment. The entire test network is shown in Figure 2.

 Map Task Reduce Task Input Data

WordCount 39 1 2.5GB

Grep 36 1 5MB

TeraSort 16 1 1GB

Table 2. Jobs used in the experiments

To verify the scheduling model proposed in this paper, we
used Hadoop security task scheduling for three test cases:
WordCount, Grep, and TeraSort. Details for these three
jobs are given in Table 2.

WordCount is a statistical count of identical words in the
input data. We used the national level six library as the
word generator source, which contains a total of 2.5 G of
data and is stored in HDFS.

Grep is used to learn regular expressions, search jobs,
and enter data using regular expressions in a user
submitted search expression. This job contains two

Slave 1 Slave 3Slave 2

Browser

Master

Slave 4

 Journal of Digital Information Management Volume 12 Number 5 October 2014 315

For massive data, the sort operation can typically be used
to measure the processing power of a distributed data
processing framework. Terasort sorts Hadoop jobs. In
2008, it took Hadoop 209 s to successfully order 1 TB of
the data, which won the first prize of good grades. Each
Map task has a relatively large amount of data, so it cannot
be saved in memory. The intermediate data can be saved
to the local cache. The job has certain requirements for
disk read and write IO speed.

We must specify a compute node according to the
experimental reference coordinates of the whole cluster.
Therefore, we selected the Slave2 reference coordinates,
and used disk speed test tools on the local disk. After
testing, the average read and write speed of the disk IO
was 39 MB/S. The numerical value and machine name
were used for parameter configuration in the IOAware
scheduling algorithm in the configuration file.

3.1 Parameters
The scheduling algorithm for IOAware determines whether
a machine performing certain tasks appears to be blocking
an important parameter using a threshold level (Threshold).
The threshold scheduling algorithm for IOAware uses the
current task execution time to judge if the threshold has
been exceeded, which indicates that the machine is
blocked. The threshold is an unknown quantity, so we
constantly changed it over the course of our experiments.
This meant that we did not affect the performance of the
IOAware scheduling algorithm. We based its values on
many tests of the machines in the cluster.

Because the IOAware scheduling algorithm needs
hardware information for the entire cluster, JobTracker and
TaskTracker must be reset each time the configuration

Figure 3. Comparison of the effect of different
threshold levels on the response time

In this experiment, we had to set a reasonable threshold
interval. We set the initial value of the threshold to 0.1,
and increased it to 1 in steps of 0.1. When the cluster
was stabilized, we submitted the job 10 times, and
recorded the average response time. The results of the
experiment are shown in Figure 3. A threshold value of
0.6 minimized the average response time of the job.

WordCount Grep TeraSort

FIFO 711 sec 123 sec 294 sec

Capacity 710 sec 122 sec 300 sec

FairShare 712 sec 124 sec 301 sec

IOAware 706 sec 122 sec 296 sec

Table 3. Response times for an example job

 Map Input Map Shuffle MTCT
 Output Output

WordCount 64 MB 49 MB 49 MB 36 sec

Grep 142 KB 5 KB 5 KB 5 sec

TeraSort 64 MB 64 MB 64 MB 8 sec

Table 4. Parameters of the example
job using IOAware scheduling

3.2 Response Time
After obtaining an optimal threshold, we set the threshold
of the configuration file to 0.6. We then carried out
experiments to verify the validity of the IOAware security
task scheduling algorithm. We submitted three example
jobs 10 times, and recorded the average response time of
the job. So that we could compare our results with other
scheduling algorithms, in this experimental queue we did
not set the computing power, we used the default job
queue, we used 100% computing power for fair scheduling,
the algorithm used the same configuration, there was no
extra set up of multiple job waiting queues, and it used a
separate job queue. The average response time of three-
sample jobs are shown in Table 3.

The results show that the average response times for the
three jobs were basically the same. The times taken by
IOAware, FIFO, the capacity scheduling algorithm, and
the fair scheduling algorithm were within a few seconds of
each other. This is partly because the IOAware scheduling
algorithm for the data localization ratio is higher than the
other two, which reduces the time slices for downloading
data, and reduces disk IO operations.

The IOAware scheduling algorithm uses the demand for

730

725

720

715

710

705

700
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

operations: Grep-Sort and Grep-Search. Grep-Search
implements the regular expression searches. When the
job finishes, the Grep-Search result is submitted to Grep-
Sort, which sorts the data and returns it to the user. The
experiment uses a randomly generated 5 MB of data.

file is modified. After the daemon is restarted, several
assignment submissions must be made to the scheduling
algorithms, using “heartbeat” messages to collect
configuration information for the whole cluster. Because
there were only four test cluster machines, WordCount
jobs were sufficient.

316 Journal of Digital Information Management Volume 12 Number 5 October 2014

Figure 4. Data localization rate of example jobs

Figure 5. Total execution time

reduce the number of compute nodes. Therefore, we can
enhance the localization rate of the data to effectively
reduce the execution time of a task. We executed the
example jobs X times to obtain averages.

As can be seen from Figure 4, the localization rate of the
FIFO and capability scheduling algorithms was more than
80%. There were only four compute nodes in the
experimental cluster, and two data backups. Therefore, it
was likely that we would obtain input data from a
TaskTracker that was performing tasks. However, the
proportion of obtaining local data cannot be on behalf of
these two algorithms’ consideration for data localization
when scheduling tasks. However the data localization rate
of the fair scheduling algorithm was very high. For
WordCount and TeraSort, the localization rate of the fair
and IOAware scheduling algorithms were approximately
1% different, whereas for Grep, the data localization rate
of the fair scheduling algorithm was more than that of
IOAware.

We must consider the pressure that reading and writing

WordCount

Grep
TeraSort

FIFO Capacity FairShare IOAware

98

96

94

92

90

88

86

84

82

80

78

The Total Execution Time

1140

1135

1130

1125

1120

1115

1110

1105
FIFO Capacity FairShare IOAware

reading and writing data and the execution of tasks to
determine a task’s properties. Table 4 shows the results
using IOAware to assign tasks according to the specific
parameters in real time.

X is calculated according to Equation (X). WordCount
requires CPU-bound tasks jobs. The jobs are initialized
into the execution queue, then the system determines
that they are CPU-bound tasks and moves them from the
unknown type jobs queue to the job queue for CPU-bound
jobs. Grep uses complex input pattern matching
expressions, so it is a CPU-bound job. When the
dispatcher recognizes that it is a CPU-bound task, it
transfers it to the CPU-bound waiting queue. TeraSort
requires a great deal of reading and writing to disk. The
IOAware scheduling algorithm uses Equation (X) to
determine that the TeraSort tasks are IO-bound, and
transfers them to the IO-bound job queue.

3.3 Data Localization
Task input data localization can effectively reduce network
bandwidth consumption, and disk IO operations can

 Journal of Digital Information Management Volume 12 Number 5 October 2014 317

Figure 6. FIFO scheduling algorithm, CPU utilization

Figure 7. Capacity-scheduling algorithm, CPU utilization

318 Journal of Digital Information Management Volume 12 Number 5 October 2014

Figure 8. Fair-scheduling algorithm, CPU utilization

Figure 9. IOAware scheduling algorithm, CPU utilization

 Journal of Digital Information Management Volume 12 Number 5 October 2014 319

data puts on the compute nodes’ disk, when the IOAware
scheduling algorithm is in the process of security task
scheduling. We must improve the data localization rate
as much as possible, which can effectively reduce the
required network bandwidth and the pressure on the local
disk’s reading and writing. Therefore, the IOAware
scheduling algorithm’s data localization rate is higher than
that of the FIFO and capability scheduling algorithms.

3.4 System throughput and resource utilization
System throughput can effectively indicate the total
number of jobs that the system can perform over a period
of time. To compare the speed of clusters performing tasks
under the IOAware scheduling algorithm, we
simultaneously submitted three examples to the cluster.
The total execution time is shown in Figure 5.

From the figure, we can see that the IOAware scheduling
algorithm effectively improved the throughput of the
system. Under FIFO scheduling, the total execution time
for the three operations was 1,123 seconds. Using the
computing capacity scheduling algorithm, the total
execution time for the three jobs was 1,135 seconds. The
fair scheduling algorithm shares the resources among
multiple queues, so the total execution time for the job is
related to the order of the job submission and the job
waiting queue, if we take multiple queue submissions for
jobs. For example, if CPU-bound and IO-bound jobs are
submitted to the same queue, the total execution time for
these operations can be very small. However, if these two
types of tasks compete for the same IO resources, the
total execution time increases. In this experiment, the
fair scheduling algorithm only used a separate queue, and
the total execution time was 1,125 seconds, whereas the
IOAware scheduling algorithm had a total execution time
of 1115 seconds.

When these three example jobs were executed at the
same time, the IOAware scheduling algorithm reasonably
planned their execution order. The IOAware scheduling
algorithm improved the proportion of the tasks’ data
localization, thus reducing the frequency of reading and
writing to the disk. The IOAware scheduling algorithm can
run different types of tasks on the same TaskTracker node
so that the disk bandwidth is shared, which can effectively
reduce the execution time of the task.

During the execution of the task, we monitored the cluster
resource utilization using Ganglia. The FIFO algorithm
uses the jobs’ submission times to schedule tasks. When
we submit WordCount, Grep, and then TeraSort, the CPU
utilization peaks when the TaskTracker performs CPU-
bound tasks, whereas when the TaskTracker performs
IO-bound tasks, the CPU utilization is relatively low. This
is because different jobs have different CPU requirements.
Figure 6 contains information regarding CPU resource
utilization using the FIFO scheduling algorithm.

However, the ability-scheduling algorithm did not assign
multiple queues in this experiment. It assigned a default

queue, that used 100% of the computing capacity of the
cluster. The queue used a FIFO algorithm for its internal
scheduling method. Therefore, the CPU utilizations of the
capacity-scheduling and FIFO algorithms are basically
the same. The CPU utilization depends on the task being
executed, it was sometimes more than 80% and some-
times less than 15%. Figure 7 shows the CPU resource
utilization for the computing capacity-scheduling algorithm.

The fair-scheduling algorithm supports multiple queues.
Therefore, to reasonably use the system resources, we
combine the different attributes of the tasks. In this
experiment, WordCount and Grep were combined into the
same queue, and TeraSort was in a different queue. The
CPU utilization is shown in Figure 8.

IOAware considers the amount of data being read from
and written to the disk when scheduling tasks. However,
in general, too much reading and writing to disk reduces
the CPU utilization, and less increases the CPU utilization.
Therefore, controlling the frequency of reading and writing
to disk within a certain range can effectively improve the
overall CPU utilization. Because the IOAware scheduling
algorithm combines IO-bound and CPU-bound tasks, and
allows them to run on the same node, the peak period of
CPU utilization is no longer than the FIFO or capacity-
scheduling algorithms. Additionally, the vibration amplitude
in the CPU utilization graph is no larger than the other
two scheduling algorithms. The CPU utilization using the
IOAware scheduling algorithm is shown in Figure 9.

4. Conclusion

In this paper, we proposed the IOAware scheduling
algorithm. The algorithm analyzes Shuffle, reading and
writing processes when tasks are being implemented. It
determines properties of the tasks according to their
demand for disk IO, and classifies them as either CPU-
bound or IO-bound. It combines different types of tasks,
reducing multiple simultaneous disk IO operations and
the possibility of blocking the disk. When considering a
task’s properties, scheduling algorithms use improvements
to the localization rate of the input data as an important
indicator. Increasing the data localization rate can reduce
the data transmission among multiple data nodes in the
cluster, and the local machine’s disk operations. This can
effectively reduce the execution time of tasks.

We validated the proposed IOAware scheduling algorithm
using some experiments. Compared with the
performances of the FIFO, computing capacity-
scheduling, and fair-scheduling algorithms in terms of four
aspects: response time, localization ratio of the data,
system throughput, and system resources, our
experiments showed that, the IOAware scheduling
algorithm can improve the localization rate of data, reducing
the amount of data downloaded and the frequency of
reading and writing disk. It can also effectively improve
the system throughput, combine CPU and IO resources
on the compute nodes, so that the disk utilization is

320 Journal of Digital Information Management Volume 12 Number 5 October 2014

controlled within a reasonable range. Then, the CPU and
disk utilization will be reasonable.

References

[1] Rasooli A., Down D., (2011). An adaptive scheduling
algorithm for dynamic heterogeneous Hadoop systems.
In: Proceedings of the 2011 Conference of the Center for
Advanced Studies on Collaborative Research. IBM Corp,
p. 30-4.

[2] Qian-mu Li, Jun Hou, Yong Qi. (2013).A classification
matching and conflict resolution method on meteorological
disaster monitoring information. Disaster Advances, 6 (1)
415-421.

[3] Fair Scheduler Guide. http://hadoop.apache.org/
common/docs/current/fair_scheduler.html

[4] Moseley B., Dasgupta A., Kumar R., et al. (2011).On

scheduling in map-reduce and flow-shops. In: Proceedings
of the 23rd ACM symposium on Parallelism in algorithms
and architectures. ACM, p. 289-298.

[5] Yang Xia, Lei Wang, Qiang Zhao, et al. (2011). Research
on Job Scheduling Algorithm in Hadoop. Journal of
Computational Information Systems, 7(16)5769-5775.

[6] Matthew L. M.,Brent N. C., David E. C. (2004). The
ganglia distributed monitoring system: design,
implementation, and experience. Parallel Computing, 30
(7) 817-840.

[7] Zhong, M., Shen, K., Joel, S. (2008). Replication degree
customization for high availability. ACM SIGOPS Operating
Systems Review, 42 (4) 55-68.

[8] Pike, R., Dorward, S.,Griesemer ,R., Quinlan S. (2005).
Interpreting the Data: Parallel Analysis with Sawzall.
Scientific Programming Journal, 13 (4) 227-298.

