
 Journal of Digital Information Management � Volume 12 Number 6 � December 2014 407

An Approach for Generating an XML Data Warehouse Schema using Model
Transformation Language

Zoubir Ouaret, Rachid Chalal1, Omar Boussaid2,
1High National School of Computer Science, Algeria
2ERIC, Univ. of Lyon 2, France
z_ouaret@esi.dz, omar.boussaid@univ-lyon2.fr, r_chalal,@esi.dz

Journal of Digital
Information Management

ABSTRACT: Traditionally, the multidimensional schema
of the data warehouse is derived from data sources that
are mainly the company’s internal data, well-known and
structured, by identifying facts, dimensions and numeric
measurements through a manual analysis of the
operational schemas. With the proliferation of new
platforms of communication in today’s information
societies, there has been growing numbers of web-based
applications such as online social networks that generate
huge amounts of XML data on the web. Therefore, it is
increasingly important to develop an appropriate
warehousing approach for such ever-growing XML data
sources. However, XML documents have a complex
hierarchical structure. Moreover, designing and building
DWs is tedious, timeconsuming, error-prone and expensive
process. In this paper, we describe an approach for
automatically generating and building the star schema for
data warehouse from XML schema. This approach is
extensively based on standards (UML, XML, QVT, and
XSLT). First, we model the structure of XML (XML Schema)
using the Unified Modeling Language, which is the standard
language for object oriented analysis and design. Then,
we provide an algorithm that automatically selects the
multidimensional concepts. After that, a representation in
an XML schema language as the XML data warehouse
schema description is derived automatically from UML star
schema. Furthermore, we choose Query/Views/
Transformation (QVT), which is also OMG standard
transformation language for defining and formalizing
transformations between models. Finally, a prototype tool
is implemented for testing and evaluating our approach

and its transformations.

Subject Categories and Descriptors
H.2.7 [Database Administration]: Data warehouse and
repository; D.3.3 [Language Constructs and Features] Data
types and structures

General Terms : Data warehouse Design, XML, XML Schema

Keywords: XML Data Warehouses, Web Data Sources, UML;
QVT, Transformation Language, Automation.

Received: 16 June, 2014, Revised 29 July 2014, Accepted 8
August 2014

1. Introduction

In the past decade, with the proliferation of new platforms
of communication in today’s information societies, the
world of computing has been changed; there has been
growing numbers of web-based applications such as online
social networks that generate huge amount of XML data
in the web. Companies therefore have an increased need
to explore an effective means to manage and integrate
such ever-growing XML data as data sources in data
warehouses for further analysis and decision-making.
From a historical point of view, Bill Inmon is known as the
“Father of Data Warehousing”, introducing in 1990 the
accepted definition of a data warehouse which was defined
as ‘subject oriented’, integrated, time-varying, non-volatile
collections of data. As XML data sources are the new

408 Journal of Digital Information Management � Volume 12 Number 6 � December 2014

data formats, classical data warehouse approaches have
to be revisited in the new context of XML data warehousing
which provide flexibility interesting in the context of web
and semi-structured data sources. Thus, many design
methods have been proposed in this context.

Several works such as [4], [28], [16], [2], [22] introduced
semiautomated approaches for designing XML data
warehouses. However, these approaches present some
limitations and drawbacks: they do not provide
mechanisms for automatically discovering a fact and its
own measures; they only focus on how to automatically
identify dimensions. Moreover, they do not express
transformations with standard language among DW design
steps (data sources model to multidimensional (MD) model
and (MD) model to implementation model, UML model to
XML model …), and therefore, there is a need for models
transformations language as QVT language and to
standardize and unify methodologies related to design
XML DWs, which has been endorsed by the OMG.
Automating Data Warehouse Conceptual and logical
Schema Design using standard transformation language
can provide real value to BI development projects, and
increase their chance of success with DW schema quality
while reducing cost, risk and manual effort.

Obviously, the development of DWs is particularly complex
and requires an appropriate life-cycle (Conceptual design:
requirement analysis and data source identification;
Logical design and Physical design), that has many
phases to be accomplished: accessing and collecting XML
data sources, extracting the XML structure and schema
if it not provided, preprocessing or cleaning step (duplicates
removal, merge/purge, name & address matching, field
value standardization), modeling schemas using UML
models or graph models, extracting multidimensional
elements such as fact, measure and dimension, creating
a logical multidimensional model (star/snowflake schema),
and translating the logical representation into an XML
Schema, which viewed as an XML data warehouse schema
description, supported by a native XML database, which
allows to store XML data sources in native form according
to this description. Most researches focus on the
intermediate logical design phases which are the most
important step in the DW design process, while few provide
approaches including both “conceptual design” and “logical
design” levels. However, transformations and rules from
these approaches are not expressed by standard
transformation languages. The first motivation for this paper
stems from this context. In addition, building a data
warehouse is often a complex combination of process
and technology that requires a manual effort and significant
user intervention. To overcome these complexities, usually,
amplified in quasi-manual approach, researchers have
proposed multiple approaches for semiautomated design
of XML data warehouses. So far, no fully automatic
approaches have emerged, unfortunately. The second
motivation stems from this context to increase the level
of automation and make easier the job of DW/BI
designers.

Based on this twofold observation, in this paper, we
propose a QVTbased approach for the automatic
generation of XML DW schema from the XML schema
describing XML sources using UML since we consider it
well supported and familiar to large user groups. This
approach firstly proposes the transformation of the W3C
XML Schema describing a global schema of data sources
such as DPLB. xsd into a UML class diagram, and
secondly shows how to use a set of rules to extract
important multidimensional elements. Our focus is not
only on automating XML Data Warehouses design, but
also on providing a set of rules based on the QVT
transformation language to specify the transformation from
XSD to UML, UML to UML Star and UML Star to XSD
Star. Our approach is open since transformation algorithm
is adaptable by changing transformation rules. In addition
our approach provides a high degree of automation that
enables designers to quickly and easily design and
building conceptual and logical schema of XML DW also
and to reduce deployment costs.

Finally, a prototype tool is implemented for testing and
evaluating our approach and its transformations. An open,
flexible tool that facilitates the design of XML data
warehouse called “XUML Star Tool”. The proposed
approach is fully automatic and does not require any
technical expertise in multi-dimensional data modeling.
The rest of the paper is organized as follows. Section 2
introduces related work on XML data warehousing systems
and comparative analysis of approaches according the
design and generation process. Section 3, presents a
rule-based approach for generating an XML Data
Warehouse Schema using QVT transformation language.
In Section 4 describes an automatic tool that we have
developed to support the proposed approach, and Section
5 provides conclusions and discusses future work.

2. State of the Research

In the last few years, several techniques and approaches
for the conceptual, logical and physical design of DW
systems from XML data sources have been proposed with
various degrees of automation. In this section, we present
a brief discussion about some of the most well-known
approaches.

Conceptual semi automatic XML data warehouse design
was first introduced by [4]. Starting from a DTD, the design
process is carried out as follows: After simplifying DTD,
creating DTD graph, then building the attribute tree for
each selected fact, finally defining measures and
dimensions. However, this approach starts with a single
DTD. Starting from multiple DTDs, [16] present a step-by-
step approach for building an XML data warehouse. The
main idea of this approach is the use of the existing star
model to XML data sources context. A new semi-automatic
approach is presented by [28] in the context of the web
data, they use XML schema for designing a logical schema
of XML DW. In this approach, a design process is carried
out by pre-processing the XML schema to remove complex

 Journal of Digital Information Management � Volume 12 Number 6 � December 2014 409

and redundant specifications of relationship and creating
a schema graph, then navigating its arcs to generate an
appropriate MD schema. Another proposal to semi-
automatically build XML data warehouses is presented
by [26]. It describes a Graph-semantic - based approach
for the creation of DW logical schema.

Furthermore, based on the UML at the conceptual level,
an interesting approach is presented by [6] that present
a framework for integrating XML data and relational data
sources. The construction of a UML snowflake diagram
presupposes that the designer has detail knowledge about
the field. In addition, they focus on finding the
multidimensional structures directly in the XML data
sources. Further, a conceptual approach named “xFACT”
for the construction of XML repository is presented in [12],
in which every fact is described in a single XML document
and XML virtual views for representing dimensions. Another
interesting approach is presented in [25] that introduces
a global document warehouses (GxFact) using the xFACT
approach [12].

Proposals for XML Data Warehouses at physical level,
which consider storages and implementations of
multidimensional schemas and the optimization
techniques (such as indexing, MV) also exist, but they
are quasi-manual approaches. The most interesting
proposal is [24] in which the authors define a methodology
that consists in four well-defined steps: cleaning,
summarization, intermediating XML documents, updating/
linking existing documents and creating fact tables..
Another interesting approach on physical level is also
presented by [17] that build XML warehouses, in which
each fact and dimensions are stored as XML documents,
they produce XML warehouse from a single repository of
XML documents for facts and one repository of XML
documents for each dimension. Materialized views-based
approach to create an XML data warehouse by frequent
query patterns discovered from user historical queries is
presented by Zhang in [30]. Thus, the design process
can be applied in a completely automated fashion by
analyzing the user’s query logs. Moreover, based on
materialized views, an approach named “DAWAX” for
designing and managing the XML documents warehouse
at the physical levels is presented in by [1], in which XML
documents are filtered according to the user requirements
before storing them in a repository “XML warehouse”.

Obviously, the final users’ requirements are very important
in the DW design. One of the most relevant proposals
combining user analysis objectives and XML data sources
was presented by [2], it is mixed approach for warehousing
complex data at a logical level, named “X-warehousing”.
Another approach presented by [9] has extended the “X-
warehousing” approach to a physical, they present an
XML-based data warehousing and online analysis
approach named “X-WACoDa”. Another semi automatic
approach is introduced in [22] that take into account both
user requirements and data sources for implementing
OLAP Systems. However, a primary focus of this approach

is for the analysis of document-centric, whereas an
“Xwarehousing” approach [2] that focus on data-centric.
A similar approach that focuses on analyzing XML text-
rich documents was presented by [19] that introduce an
approach to semi-automatically build a conceptual MD
schema from document-centric XML document.

Recently, other semi automatic approaches [21] and [3]
have been developed. For proposal in [21] aimed at creating
MD logical schemas using attribute tree. The author in
[3] has adopted ROLAP techniques for generating a DW
logical schema from XML schema through semi-
automated process. With regard to the Models
transformation techniques, there are only a few
approaches [8], [10], [31] and [15] on the development of
DWs. Unfortunately, these approaches focus only on
RDBMS as data sources and didn’t consider the XML
data sources.

Moreover, for more detailed information related to XML
data warehousing, including data integration and
multidimensional modeling. The interested reader can refer
to [20], [23] and our recent previous work Ouaret et al in
[14]. Perez et al in [20] present a classification of
approaches on combining Data Warehouse (DW) and Web
data. They focus on particularly in the building DWs for
XML data, including the design of multidimensional
databases for XML data sources and the extension of
traditional OLAP techniques to analyze online XML data.
They also study approaches that use of XML technology
as an integration tool in distributed DW systems, including
the use of XML for Exchanging multidimensional data and
metadata and to integrate distributed DW. Another
interesting study on this area is presented by Ravat et al
in [24]. They give a detailed discussion of the different
approaches for an XML data warehouse by outlining
differences that can then be used to find the appropriate
model such as XML data warehouse or XML document
warehouse approaches and integration or warehousing
architectures.

Our previous study in [14] is on the one hand based on
these works, but using appropriate criteria (Abstraction
level, models, type of schema, categories, paradigm,
automation, storage, query language) identified from
techniques used in these approaches, we have presented
a more homogenous comparative study that would permit
a better comprehension of the field of XML data
warehousing. Our scope in this paper is how to generate
the schema of DW from the XML data sources in automatic
fashion using the transformation rules expressed in QVT
transformation language

Finally, results presented along this section are
summarized in Table I, columns correspond to criteria (C:
Conceptual, L: Logical, P: Physical) and rows correspond
to each of the above-described approaches

3. Proposed XML Data Warehousing Approach

410 Journal of Digital Information Management � Volume 12 Number 6 � December 2014

As we have previously presented in the introduction
section, the aim of this paper is to automate the design of
XML data warehouse schema using open industries
standards (i.e. UML and QVT language), which facilitates
its implementation and extension. In dimensional modeling,
there are two important elements: facts (measures), which
are usually numeric values that could be aggregated and
dimensions (context), which are business descriptors that
specify the facts. Our rules based-approach to
automatically build the logical schema for a data mart is
described in this section. As a starting point we assume
that XML data sources (XML documents) are conformed
to XML schema W3C XSD. For example, a database for
bibliographic data of computer science (DBLP) contains
a large XML document available at DBLP’s website is
conformed to DBLP.xsd to describe the content and
structure of such large XML documents. The design
process consists of the following 4 steps:

1. Generating UML class Diagram

2. Reducing UML class diagram

3. Creating the Star schema

• Extract measures

• Find candidate fact class

• For each fact, select dimensions

4. Generating the XML data warehouse schema with XSD

3.1 Automation Degree-Based Comparison
As described above, many approaches to XML DWs
systems, including preprocessing, conceptual and logical
modeling, outputting in a Native or Relational), have been
proposed, with various degrees of automation. Our
approach is fully automatic and does not require any
manual intervention and expertise of DW system from
the user. To compare and evaluate XML DW approaches
from the automation degree, we propose a new formula in
which the degree of automation is determined as Aut = Σ
S

a
/ Σ S

t
, where ΣS

a
 is the number of automatic steps and

Σ S
t
 is the total number of all steps. The results are shown

in the following table II. As we can see, we provide a high
degree of automation (L:Low, M: Medium, H: high, F: Fully
automatic). Due to few works develop a tool based on
their proposals; we are not able to compare all approaches

3.1.1 Generating UML class diagrams
Generating UML class diagrams from XML schema is
based on the idea that every XML document sources is
an instance of XML schema and every XML schema can
be graphically modeled using UML class diagram
notations. So, here, taking as an input XML schema
describing XML data sources (XML documents), XML
schema is automatically transformed to UML Class
diagram (Table III). UML Classes emerge from complex
types and Data type properties emerge from attributes
and from simple types. In the first, the XML-Schema is
analyzed using XSOM that allows applications to easily
parse XML Schema documents.

3.1.2 The basic concepts of QVT

Approaches Abstraction Processes
level (automation)

C L P

9

9

9

9

9

9

Golfarelli [4]

Pokorný [16]

Jensen [6]

Neimi [13]

Hümmer [5]

Vrdoljak [28]

Pederson [18]

Park [17]

Rajugan [25]

Trujillo [27]

Yu li [26]

Baril [1]

Nassis [12]

Rusu [24]

Boussaid [2]

Mahbouni [9]

Ravat [22]

Zhang [30]

Parimala [21]

Pujolle [19]

Dasgupta [3]

Sarkar [26]

Our approach

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

semi automatic

semi automatic

-

-

-

semi automatic

-

-

-

-

semi automatic

-

-

-

-

-

semi automatic

-

semi automatic

semi automatic

semi automatic

-

Fully automated

Table 1. The characteristics of xml data warehousing
Approaches (|9| 3 indicates support3)

Query/View/Transformation (QVT) [32] can be considered
as the standard model transformation language proposed
by the OMG (Object Management Group) in 2007. The
QVT transformation is a function with source and target
models which must conform to the MOF. It is defined as
a set of relations that must hold for the transformation to
be successful. These following lines show the basic
elements and transformation modes of a relation:

Check-only: to test that models are related in a specified
way;

Enforce mode: to modify one of the models so that the
set of models will be consistent.

When clause: it indicates the pre-condition under which
the relation needs to hold.

Where clause: it indicates the post-condition that must
be satisfied by elements in the relation.

The QVT-Relations has both a textual and a graphical
concrete syntax of relations as shown in this section, in
which we provide a formal and clear description of
transformations that are automatically executed. For
example, Figure 1 (R1) below shows the transformation

 Journal of Digital Information Management � Volume 12 Number 6 � December 2014 411

Approach [4] [28,16] [2] [3] [22] XUML Star

Automation 3/5 4/5 1/4 2/3 2/4 4/4

level M H L M M F

Trans-

formation - - - - - QVT

Technique

Table 2. Automation Degree-based Comparison

XML Schema UML Class diagram

Table 3. Transformation of XML Schema To UML Class

(<xs :element>) with (<xs:complexType>) Classes UML

sub element of the corresponding class Attribute
complex type

<xs:minOccurs> or <xs:maxOccurs> UML cardinalities

xs :int>, <xs :double>, <xs :float>, Natives data types such as
 <xs:string> int, double, float, string,

Simple type attributes and child elements Attributes of the
of a complex element corresponding UML class

Key/Keyref references of elements. Associations
Hierarchical relationship.
XLink and XPointer.

Complex type of the subclass is defined as Generalization
an extension of the complex type of the
Super Class

rule of ComplexType (source: XML schema) to a UML
Class (target: XML schema) uses the function
complexType2class ().

Relation complexType2class (complexType ,class)

{

checkonly domain xml complexType : complexType {

name = complexTypeName ,

set { attribute = aXML: Attribute {name = attributeName ;

type=attributetype, minoccur = n, maxoccur = m}

}

set { element = eleXML: element {name = element Name, Type=type

element, minoccur = n, maxoccur = m,}

}

}

enforce domain uml class : class { classeName = complexTypeName ,

set { attribute = aUML: Attribute {name = attributeName ;type

= attributetype, multiplicité = n..m ;}

set { attribute = aUML: Attribute {name = elementName; type

 = elementType, }

}

When Schema2package(s, p)}

Where

{ attribute2attribute() ;

Element2attribute() ;

complexType2class (complexType,class)

}}

• R1: Transformation rule of ComplexType to class (textual
and graphical syntax)

412 Journal of Digital Information Management � Volume 12 Number 6 � December 2014

3.2 Preprocessing process
This step tends to make some cleaning and conforming
for the UML class diagram generated in the previous step
to produce compact structure with compulsory classes
and relationships. This is achieved by removing
inconsistency and reducing their complexity by relaxing
some conditions, or by deleting the unnecessary and
redundant classes. This process includes data cleaning
and transformation. This stage includes six basic rules
(Redundant classes (RR), Embedded class (RE), Inline
class (RI), Disconnected classes (RD), Trivial classes
(RT), and Associations between removed classes (RA)):

• (RR) Redundant classes: Two Classes are redundant if
they denote the same set of instances and express the
same information, In that case, remove one class;

• (RE) Embedded class: Removing redundant attributes,
this function is applied in the case when one class has all
attribute of another class and linked by key

• (RI)Merges Inline classes: (One-to-one relationships):
Two classes are related by One-to-one relationships that
objects involved in the relation are highly dependent. In
that case, join together inline classes.

• (RD)Remove isolated classes (Disconnected
classes): This function verify if there is isolated classes,
then removes a class without incoming or outgoing
relationships), while the smallest Star schema require two
connected classes one for fact and other for dimension,

• (RT)Trivial classes: Delete a class without content.

• (RA) eliminated classes: Remove relations between
eliminated classes: If one class in the relationship has
been eliminated, then the relationship must be eliminated

or restated in terms of other classes.

As a result, From obtained reduced form, after applying
this process, discovering MD elements is an easy process,
because the number of classes to check is decrease and
the maximum number of attributes for each class with
numerous one-to-many relationship between classes,
therefore high cohesion level, as a consequence the
complexity of the algorithm for searching MD elements
decreases from O (n) to O (k) for fact and from O (n2) to
O(k)2 for dimensions, (n is the number of classes and k <
n).

3.3 Building logical schema (The star schema)
Once the generated UML classes diagram has sufficiently
been reduced, the activity to identify the DW schema can
start with reduced form. The most natural way to model a
data warehouse is as a star schema, which is the simplest
DW model. It is called a star schema because the diagram
resembles a star in which the center consists of one or
more fact classes and the points of the star are the
dimension classes. The identification of the all potentially
needed multidimensional elements such as fact and
dimensions is a compulsory and a tedious process.

In the literature there are several techniques to facilitate
such process. However, they do not provide a standard
approach to correctly identify all potentially elements in a
fully automatic manner using formal specifications, and
therefore, there is a need for Automatable rules based on
standard transformation language. In this step, we propose
an automatic algorithm for selecting suitable fact
according to the number of additive attributes they have,
then, for every fact; we extract their corresponding

 Journal of Digital Information Management � Volume 12 Number 6 � December 2014 413

dimensions, in which both fact and dimensions can be
considered as potential star schema based on the following
transformation rules expressed using QVT. The main idea
underlying this step is that candidate’s fact classes emerge
from those many-to-many relationships in the UML CD
with numeric fields and additive non key facts and
candidates dimensions are identified by means of (* - 1)
and (1-1) relationships from the candidate fact. Figure 2
(R2) below shows the top relation to transform UML class
diagram (source: obtained from XML schema) to a Star
schema (target: Dimensional model/Kimball model) using
the function Top relation UML2UMLstar () with their
embedded functions.

3.3.1 Find Measures
The first step is defining measures, the numerical
attributes:

• Every numerical no-key attribute and additive is potential
measure of class,

• Every numerical no-key attribute of a class linked with
potential fact class by one-to-one or one-to-many is
potential measure for fact class.

Top relation UML2UMLstar

{

checkonly domain uml u:Package {name =
ps}

enforced domain umlstar us:Package {name
= ps}

where { class2fact(class, fact);

class2dimension(class, dimension);

attribute2measure(attribute)}

}

• R2: Main: Transformation of UML into UML star

Class System

Fact C1 C2
1 1..* 1

Relation Attribut 2 Measure(attribut)

{matrice min [M][M], max[M][M]:int;

fact,c1,c2:class; rel12:Booleen;//relationship between classes c1 and c2
checkonly domain uml c:Class { name = className ,

set { attribute :a {name = attributeName , Type = typeattribute,}}

Where {if ((min[fact][C1] = 1 and max [fact][C1] = 1) and (min[C1][fact]
= 1 and max[C1][fact] = N))

then Attribute2mesurefact (fact, c1) ;

endif

if ((rel12 = true and min[C2][C1] = max[C2][C1] = 1)and(min[fact][C1] =
1 and max[fact][C1] = 1)) then Attribute2measurefact(fact,c2) ;

endif }}

relation Attribute2measurefact (fact, c1)

{enforce domain umlstar fact: factclass { name = className ,

set { measure :m{name = attributeNamec1, Type = typeattributec1,}

}}

3.3.2 Find Facts
• Each class containing numerical values of interest is
also identified as a fact
• Class with a large number of numeric attributes is most
probable to be a potential fact class For example: An
important type of relationships used in our case is shown

in the figure below:

• A class C1 in UML class diagram is transformed into
fact class, if for each classes C

I
and the cardinality is C

I

(1-1) and Fact class (C
1
) (0 - N)

R3: Transformation of attributes into measures

414 Journal of Digital Information Management � Volume 12 Number 6 � December 2014

Class System

Fact (C1) C3C2

1 * 1

Relation class2fact(class, fact)

{ i, a, M: integer;

matrice min [M] [M], max [M] [M]: integer; rel Fact
i
: Booleen

fact:class; myclasses: = list {C1, C2,…..Cm};

checkonly domain uml class : Class { name = className,

set { attribute :a {name = attributeName , Type = typeattribute,} }

umlModel :mu {id_model = string, type = string} }

enforce domain uml star fact: fact { factName = className , set {
measure: m{ mesureName = attributeName , measuretype =
attributetype}}

umlstarModel : mus{id _starmodel = id_ model, type_starmodel =
type_umlmodel, }}}

When Uml2UMLstar

Where {for Each ((i|i < m) &&(a! = 0))

{if ((rel
fact, i

= true) and (min [fact] [Ci] = 0) and (max [fact] [Ci]
= N) and min [Ci] [fact] = max [Ci] [fact] = 1) else a = 0;

}

if (a = = 1) Attribute2measure (a, m);

}}

3.3.3 Find Dimensions
Dimension classes: information for which facts will be
analysed.

• For each fact class, dimensions are identified by means
of many-to-one and one-to-one relationships

• In addition, time is an important dimension in DW
applications.

For example:

two important types of relationships used in our star
schema, Hierarchies for the dimensions are represented
in the dimensional class itself.

1. Appropriate star schema

Each generated star schema is composed of one fact
and several dimensions. An appropriate star schema (SS)
is identified by using a formula that computes (Val) the
total number of measures and dimensions as follows:

R4: Transformation of class into fact

*

 Journal of Digital Information Management � Volume 12 Number 6 � December 2014 415

Class System

Fact (C1) C3C2

1*

Class System

Fact (C1) C3C2

1*

R5: Transformation of class into dimension

Relation class2dimension(class,dimension)

{ M:integer;

matrice min[M][M],max[M][M]:integer; fact;C2;C3:class;
rel23:Booleen;// A relationship between classes C2 and C3

checkonly domain uml class : Class { name = className , set { attribute
:at {name = attributeName , Type=typeattribute,}}

umlmodel:mu {id_ model =string, type=string}

when UML2UMLstar ;

Where { if ((rel23=true) and(min[fact][C2]=0 and
max[fact][C2]=N) and (min[C2][fact]=max[C2][fact]=1)) then

If(min[C2][C3]=max[C2][C3]=min[C3][C2]=max[C3][C2]=1) then
Dimention_class (fact, C3);

else if ((min[C2][C3]=0)and(max[C2][C3]=N)and

(min[C3][C2]=max[C3][C2]=1)) then Dimention_class(c2,c3) ;

endif

endif

endif

} }

Relation Dimention_class(class1,class2)

{ enforce domain uml star class2: class { Name = className ,

set { mesure: m{ mesureName = attributeName , mesuretype

=attributetype}}

umlstarmodel : mus{id _starmodel = class2+’asoc’+class1,

type_starmodel=type_umlmodel, }

}

1 1

1 *

416 Journal of Digital Information Management � Volume 12 Number 6 � December 2014

SSi = {Name, F (m), D}∀∀∀∀∀i∈ [1. ...n], is a star schema where
F is a fact,
m is a measure of the fact F,
D is a dimension
Val (SSi) = Nbr (m) + Nbr D

This formula is executed and repeated for each schema
SSi generated from each identified fact. It is important to
note generally that, a star schema with a higher number
of dimensions and measures is most likely to be the most
appropriate model.

3.3 Generating XML Star Schema (XML DW structure)
Finally, for this last step of the design process, we present
a set of rules based also on QVT to automatically transform
a select star UML model into XML schema, which serve
as PSM model equivalent. Thus, this final star XML
schema contain all the necessary XML Data warehouse
structure that composed of multiple schema sub-
documents, one part to describe fact data and other parts
to clearly describe every dimensions data. Following, we
explain in each transformation rules for the most widely
used UML Class Diagram elements (class, attribute,
association, generalization and built-in data type).

A UML class is transformed into complex types
(<xs:complexType>) and elements of these types

- UML class attributes are transformed to either XML
elements or XML attributes.

- UML association is transformed into child elements of
complex types in XML schema.

- Multiplicity is represented by minOccurs and maxOccurs

elements

- Built-in data types (int, double, and string) are
transformed into <xs:int>, <xs:double>, and <xs:string>
in XML schema

- Not restricted attributes in the UML class into <xs:all>
in XML schema and restricted attributes in the UML class
into <xs:sequence>.

- Other association types like dependency, composition
and aggregation are treated as general associations.

Fragment of the generated Star XML schema
is shown as follow.
<?xml version = ”1.0" encoding = ”UTF-
8"?>
<xs:schemaxmlns:xs=
“http://www.w3.org/2001/XMLSchema”>
< - - FACT - ->
<xsd:element name = ”Fact”>
<xsd:element name = ”id_invoice” type =
”int”/>
<xsd:element name = ”id_customer” type =
”int”/>
<xsd:element name = ”id_product” type =
”int”/>
<xsd:element name = ”montant” type =
”float”/>
<xsd:element name = ”qte” type = ”int”/>
<xsd:element name = ”Ass_1" type =
”customer”/>
<xsd:element name = ”Ass_2" type = ”date”/
>
<xsd:element name = ”Ass_3" type =
”product”/>
</xsd:element>
< - - Dimension customer - ->
<xsd:element name = ”customer”>
<xsd:element name = ”id_ customer “ type
= ”int”/>
<xsd:element name = ”name” type = ”string”/
>
<xsd:element name = ”street” type =
”string”/>
<xsd:element name = ”city” type = ”string”/
>
<xsd:element name = ”state” type =
”string”/>
<xsd:element name = ”zip” type = ”string”/
>
<xsd:element name = ”Ass_1" type = ”fact”
minOccurs = ”0" maxOccurs = ”unbounded”/
>
</xsd:element>

 Journal of Digital Information Management � Volume 12 Number 6 � December 2014 417

< - - Dimension date- - >
<xsd:element name = ”date”>
<xsd:element name = ”date_days” type =
”date”/>
<xsd:element name = ”month” type = ”int”/
>
<xsd:element name = ”year” type = ”int”/>
<xsd:element name = ”Ass_2" type = ”fact”
minOccurs = ”0" maxOccurs = ”unbounded”/>
</xsd:element>
< - - Dimension product- ->
<xsd:element name = ”product”>
<xsd:element name = ”id_product” type =
”int”/>
<xsd:element name = ”nom_prod” type =
”string”/>
<xsd:element name = ”Ass_3" type = ”fact”
minOccurs = ”0" maxOccurs = ”unbounded”/>
</xsd:element>
</xsd:schema>

Top relation umlStar2xmlStarPackage
{
packageName , className : String ;
checkonly domain uml1 class : Class { name
= className , namespace
= package : Package{ name = packageName}}
;
enforce domain xml1 ns : NameSpace { name
= packageName
{ child = element : Element { tagName =
className }} ;
where { uml2xml Class (class , element)
;
uml2xml Aggregation (class , element) ;
uml 2 xml Association (class , element)
;
uml 2 xml Generalization (class , element
) ;
}}

• R6: Top relation for the transformation of UML Star into
XML Star

Relation class2element(class,element)
{ checkonly domain uml class : Class {
name = className, namespace = p:Package {
},
set { attribute = aUML: Attribute {name =
attributeName, type = attributetype,
multiplicity = n . .m, }

• R7: Transformation rule of UML class to ComplexType
(textual syntax)

}}
enforce domain xml element : Element {
elementName = className,
set { child = aXML: Element{ elementName =
attributeName
elementtype = attributetype ,
minoccur = n, maxoccur = m,}
} } ;
when package2schema(p,s)
where uml2xmlAttribute (attribute);
}

In this fragment, we present a part of the Star XML schema
of the Star model obtained in the previous step. This
schema can be accordingly imported in the native XML
database representing the schema of XML Data warehouse
which is populated with XML data sources by applying
XSLT stylesheets to transform the original XML sources
into another presentation according to the structure of
this schema.

4. Implementation

To demonstrate the applicability of the previously
described our approach based on transformation rules
introduced in each step of design process, we have
developed A prototype tool for Automatically Generating
Star Schema from XML schema using UML called “XUML
Star tool” that allows designers to design and to create
an XML data warehouse. It is developed using the Eclipse
platform, which is one of the most well known software
development environment (a free and open-source project)
and evolved into a multi-language, highly-extensible
framework, thanks to a powerful plug-in system and the
integration of MDE concepts in the platform. Implemented
as a set of Eclipse plugins, our prototype can be integrated
with Eclipse based-BI tools.

The prototype is composed of three main elements
developed as set of graphical user interfaces (GUI), which
itself are often composed of many smaller sub- modules

– UML Modelling interface: our tool generate automatically
the UML class diagram from a XML schema and remove
inconsistencies. This graphical interface allows designers
to visualise each XML data sources in UML and then in
compact form which is principally a graphical, visual
language where as XML schema has essentially a
complex textual presentation. In this part, we adopt
reverse engineering technique and the best practices of
UML design.

– Multidimensional Modelling interface: the system create
automatically Star UML model from a UML class diagram
generated in the first step. this a graphical interface allows
designers to visualise, check and endorse the obtained
Star schema. In this part, we adopt some traditional data
warehouse design techniques.

– Schema generation interface, the system generate
automatically the XML schema (or XML data warehouse

418 Journal of Digital Information Management � Volume 12 Number 6 � December 2014

schema), in which one part for describing fact and another
part for describing dimension. This graphical interface
allows designers to visualise then upload the generated
Star XML schema to a native XML database, which must
populated with XML data sources according to the . In
this part, we adopt some traditional data warehouse design

 techniques. For example, following figure (Figure 9), we
can see a screenshot from XUML Star tool that shows
the obtained DW schema in UML model Star from XML
schema.

2.The following figure illustrates the obtained Star Schema:

5. Conclusions and Future Work

In this paper, we introduced a new rule-based model
transformation approach and an efficient tool to
automatically design data warehouses starting from XML
Schemas. We established and formalized relationship
between the three levels of data warehouses (DW) using
Query/Views/Transformation (QVT), which is the OMG

standard language for specifying model transformations.
We defined a set of transformation rules to generate UML
class model from XML schemas model (a source model),
and then automatic generation of multidimensional model
(output star model) based on Well-formed transformation
rules. The XML data warehouse schema description using
XML schema language is derived automatically from UML
star schema

1. Java-Editor with the XUML Star Tool main class file

 Journal of Digital Information Management � Volume 12 Number 6 � December 2014 419

An initial prototype called “XUML Star Tool” is developed
based on our approach and conducted experiments on a
large XML schema as data sources. Our prototype
operates as a helpful support for creating an XML data
warehouse conceptual and logical schema, with multiple
options at each step. We believe that using our tool for
XML data warehouse design may reduce design time and
the risk of design errors.

In future work, we plan to extend the capabilities of our
approach and the prototype tool to automatically generate
multiple logical schema from multiple schema (DTDs,
XSDs,...etc), with a new ranking function to select the
most appropriate schema according to their relevance.
Moreover, we plan to integrate user requirements in design
process. Thus, a mixed approach for XML Data Warehouse
design, that takes into account user requirements as well
as data sources.

References

[1] Baril, X., Bellahsène, Z. (2003). Designing and
Managing an XML Warehouse. XML Data Management:
Native XML and XMLenabled Database Systems. Addison
Wessley, p. 455-473.

[2] Boussaïd. O., BenMessaoud, R., Choquet, R.,
Anthoard, S. (2006). XWarehousing: an XML-Based
Approach for Warehousing Complex Data, 10th East-Euro
Conf on Advances in Databases and Information Systems.

[3] Dasgupta, S., Sen, S., Chaki, N. (2011). A Framework
To Convert XML Schema to ROLAP; In: Proc. of the
Second International Conference on Emerging Applications
of Information Technology (EAIT 2011), Kolkata, India,
ISBN : 978-1-4244-9683-9

[4] Gofarelli, M., Rizzi, S., Vrdoljak, B. (2001). Data
Warehouse Design from XML Sources. 4th ACM Intl
Workshop DOLAP. 40–47, Atlanta.

[5] Hümmer, W., Bauer, A., Harde, G. (2003). Xcube : Xml
for data warehouses. DOLAP ’03 : 6th ACM intl workshop
on Data warehousing and OLAP, NY, USA, p. 33–40.

[6] Jensen, M. R., MÆller, T. H., Pedersen, T. B. (2001).
Converting XML Data To UML Diagrams For Conceptual
Data Integration, In Proc. The 1st Intl Workshop on Data
Integration Over The Web, p. 17–31.

[7] Kimball, R. (1996). The data warehouse toolkit. Wiley.

[8] Kurze. C., Gluchowski. P., Computer-Aided
Warehouse Engineering (CAWE): Leveraging MDA and
ADM for the Development of Data Warehouses. AMCIS
2010:282

[9] Mahboubi, H., Ralaivao, J. C., Loudcher, S., Boussaid,
O., Bentayeb, F., Darmont, J. (2009). X-WACoDa: An XML-
based approach for Warehousing and Analyzing Complex
Data, Advances in Data Warehousing and Mining, IGI
Publishing, 2009.

[10] Mazon J. -N., Trujillo. J. (2008). An MDA approach
for the development of data warehouses. Decis. Support
Syst., 45 (1):41–58.

[11] Nassis, V., Rajugan, R., Dillon, R., Rahayu, W.
(2004). Conceptual Design of XML Document Warehouses,
In Proc 6th International Conference, DaWaK, pp. 1–14,
Spain.

[12] Nassis, V., Rajugan, R., Dillon, T. S., Rahayu, J. W.
(2005). Conceptual and Systematic Design Approach for
XML Document Warehouses. Int Journal of Data
Warehousing & Mining 1 (3), 63– 86.

[13] Niemi, T., Niinimaki, M., Nummenmaa, J., Thanisch,
P. (2002). Constructing an OLAP cube from distributed
XML data. In the 5th ACM Int workshop, DOLAP ’02, pages
22–27, NY, USA, 2002.

[14] Ouaret. Z., Chalal. R., Boussaid, O., An overview of
XML warehouse design approaches and techniques: Int.
J. of Information and Coding Theory 2013 Vol.2, No.2/
3.140 - 170

[15] Pardillo. J, Mazón J -N, Trujillo. J. (2001). An MDA
Approach and QVT Transformations for the Integrated
Development of Goal- Oriented Data Warehouses and Data
Marts. J. Database Manag 22 (1):43-68 (2011)

[16] Pokorny, J. (2001). Modelling Stars Using XML, In
Proc. The 4th ACM Int Workshop DOLAP, p. 24-31, , 2001.

[17] Park, B. -K., Han, H., Song. Il- Y. (2005). XML-OLAP:
A Multidimensional Analysis Framework for
MLWarehouses. DAWAK(2005) Springer Berlin /
Heidelberg, p. 32-42

[18] Pedersen D. and. Pedersen T. B. Achieving adaptivity
for OLAP-XML federations. In Proceedings of the DOLAP,
pages 25– 32, 2003

[19] G. Pujolle, F. Ravat, O. Teste, R. Tournier, G. Zurfluh.
Multidimensional Database Design from Document-
Centric XML Documents: (DaWaK2011), Toulouse,
Springer-Verlag, LNCS, p 51- 65.

[20] Perez, J. M., Berlanga, R., Aramburu, M. J., &
Pedersen, T. B.. Integrating data warehouses with web
data: A survey. Knowledge and Data Engineering, IEEE
Transactions on, 20; 20(7), 940-955. (2008)

[21] Parimala, N., Payel pahwa (2009). From XML schema
to cube International Journal of Computer Theory and
Engineering Vol 1 No 3 August.

[22] Ravat, F., Teste, O., Tournier, R., Zurfluh, G. (2009).
: Designing and Implementing OLAP Systems from XML
Documents. New Trends in Data Warehousing and Data
Analysis : Annals of Information Systems V3,p 1-21

[23] Ravat, F., Teste, O., Tournier, R., Zurfluh. G. (2010).
Finding an Application-Appropriate Model for XML Data
Warehouses. In, Information Systems, Elsevier, Vol. 36
N. 6, p. 662- 687.

[24] Rusu, L. I., Rahayu, W., Taniar, D. A. (2005).
methodology for Building XML Data Warehouses, IJDM,

420 Journal of Digital Information Management � Volume 12 Number 6 � December 2014

1 (2), p.67-92, - June 2005

[25] Rajugan, R., Chang, E., Dillon, T. S. (2005).
Conceptual design of an XML FACT repository for
dispersed XML document warehouses & XML marts, The
5th Intl Conf Computer and Information Technology,
Page(s): 141 – 147.

[26] Sarkar, A., Choudhury, S., Debnath, N. C. (2012).
Graph Semantic Based Design of XML Data Warehouse:
A Conceptual Perspective”, 10th IEEE (INDIN 2012),
Beijing, China, P 992 – 997, July 25 – 27.

[27] Trujillo, J., Lujµan-Mora, S., et I. (2004). Song. Applying
UML and XML for Designing and Interchanging Information
for Data Warehouses and OLAP Applications. JDM 15
(1), 41-72.

[28] Vrdoljak, B., Banek, M., Rizzi, S. (2003). Designing
Web Warehouses from XML Schema, Data Warehousing

and Knowledge Discovery, 5th International Conference
DaWak 2003, Prague, Czech Republic, Sept.3-5.

[29] Li, Y., An. A. (2005). Representing UML Snowflake
Diagram from Integrating XML Data Using XML Schema.
IEEE International Workshop on Data Engineering Issues
in E-Commerce (DEEC ’2005), Tokyo, Japan, p. 103–111.

[30] Zhang, Ji., Wei, Wang., Han, Liu., Sheng, Zhang.
(2004). X-Warehouse : Building Query Pattern-driven Data
ACM.

[31] Zepeda, L., Celma, M., Zatarain. R. (2008). A Mixed
Approach for Data Warehouse Conceptual Design with
MDA. In ICCSA, pages 1204–1217. Springer-Verlag.

[32] Object Management Group (OMG), QVT /MOF 2.0
Query/View/Transformation.http://www.omg.org/spec/
MOF/2.0/PDF

