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ABSTRACT: Differential evolution (DE) is a simple and
powerful evolutionary algorithm, which has been
successfully used in various scientific and engineering
fields. Generally, the base and difference vectors of the
mutation operator in most of DE are randomly selected
from the current population. Additionally, the population
information is not fully exploited in the design of DE. In
order to alleviate these drawbacks and enhance the
performance of DE, this study presents a DE framework
with Composite Population Information based mutation
operator (DE-CPI) for global numerical optimization. In
DE-CPI, the ring topology is employed to define a
neighborhood for each individual and then the direction
information with the neighbors is introduced into the
mutation operator of DE. By this way, the composite
population information, i.e., neighborhood and direction
information, can be fully and simultaneously utilized in
DE-CPI to guide the search of DE. In order to evaluate
the effectiveness of the proposed method, DE-CPI is
incorporated into the original DE algorithms, as well as
several advanced DE variants. Experimental results clearly
show that DE-CPI is able to enhance the performance of
most of the DE algorithms studied.
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1. Introduction

Differential evolution (DE), proposed by Storn and Price
[1], is a simple yet powerful evolutionary algorithm for
global numerical optimization. It has many attractive
characteristics, such as ease to use, simple structure,
speediness and robustness. Due to these merits, DE has
been extended to handle multi-objective, constrained, large-
scale, dynamic, and uncertain optimization problems [2].
Furthermore, DE has been successfully used in diverse
fields [2-4], such as chemical engineering, engineering
design, pattern recognition, and so on.

In DE, there exist two main factors which significantly
influence the performance of DE. The first one is the control
parameters, i.e., population size NP, scaling factor F, and
crossover rate CR, and the second one is the evolutionary
operators, i.e., mutation, crossover and selection. In the
literature about DE, there are many improved DE variants
proposed during the last decade. Based on the reference
[5], these advanced DE variants can be divided into two
categories, DE with the additional components and DE
with a modified structure. Modifications on DE in these
variants mainly focus on introducing the self-adaptive
strategies for the control parameters [6-9], devising the
new mutation operators [10-13], developing the ensemble
strategies [6][14-15], proposing the hybrid DE with other
optimization algorithms [16] and population topology (multi
or parallel population) [17], etc.
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In the mutation operator of most DE variants, a mutant
vector can be treated as the lead individual to explore the
search space and generated by adding a difference vector
to a base vector. We have observed, however, that these
two vectors (i.e., base and difference vectors) in most of
DE are usually selected randomly, which does not fully
utilize the useful population information to guide the
search.

In order to alleviate these drawbacks and enhance the
performance of DE, we propose a new DE framework with
Composite Population Information based mutation operator
(DE-CPI). In DE-CPI, a ring topology is firstly employed
to obtain the neighborhood information by defining the
neighbors for each individual. Then, the neighbors of each
individual are partitioned into the better and worse groups
according to their fitness values compared to that of it.
After that, with respect to the base vector selected from
the neighborhood of the current vector, the direction
information is introduced into the mutation operator by
selecting the vectors from the better and worse groups
respectively to construct the difference vector. In this way,
DE-CPI not only utilizes the information of neighboring
individuals to exploit the regions of minima and accelerate
convergence, but also incorporates the direction
information of population to move the individuals to a
promising area. Therefore, the composite population
information, i.e., neighborhood and direction information,
can be fully and simultaneously utilized in DE-CPI to guide
the search of DE.

To evaluate the effectiveness of the proposed method, DE-
CPI is applied to six original DE algorithms, as well as
several advanced DE variants. Extensive experiments have
been carried out on a set of benchmark functions. Through
the extensive experimental study, the results show that
DE-CPI is able to enhance the performance of most of
the DE algorithms studied.

The main contributions of this study include the following:

• Both neighborhood and direction information, as the
composite population information, are utilized fully and
simultaneously to select the base and difference vectors
for mutation, which is beneficial to guide the search of
DE.

• DE-CPI provides a simple and effective way for enhancing
the exploration ability of DE by combining the
neighborhood and direction information of population.

• By keeping the simple structure of DE, DE-CPI is very
simple and can be easily applied to other advanced DE
variants.

• Extensive experiments have been conducted to show
that DE-CPI can improve the performance of most of the
DE algorithms studied in this paper.

The rest of this paper is organized as follows: In Section
2, the original DE algorithm is introduced. Section 3 briefly

reviews some related work. The proposed DE-CPI is
presented in detail in Section 4. In Section 5, the
experimental results are reported. Finally, the conclusions
are drawn in Section 6.

2. DE

DE is for solving the numerical optimization problem [1].
Without loss of generality, we consider the optimization
problem to be minimized is f (X), X ∈ RD and D is the
dimension of the decision variables. DE evolves a
population of NP vectors representing the candidate
solutions. Each vector is denoted as Xi, G = {x1

i, G, x2
i, G, ..,

xD
i, G }, where i = 1, 2, ..., NP, NP is the size of the population

and G is the number of current generation.

2.1 Initialization
In DE, the initial population should cover the entire search
space as much as possible by uniformly randomizing
individuals within the search space constrained by the
prescribed minimum and maximum bounds. That is, the
jth parameter of the ith individual is initialized by:

x ji, G= Lj+ rand (0, 1) × (Uj − Lj ) (1)

where (0,1)rand  represents a uniformly distributed random
number within the range [0, 1], and Lj and Uj represents
the lower and upper bounds of the jth variable respectively.

2.2 Mutation
After initialization, DE employs the mutation strategy to
generate a mutant vector Vi,G with respect to each individual
Xi,G (called target vector) in the current population. For
example, several frequently used mutation strategies in
the literature are listed as follows:

• DE/rand/1
Vi, G= X r1, G+ F × (X r2, G − X r3, G )        (2)

• DE/rand/2

Vi, G= X r1, G+ F × (X r2, G − X r3, G ) + F × (X r4, G − X r5, G )    (3)

• DE/best/1

Vi, G= Xbest, G+ F ×(X r1, G − X r2, G )                                   (4)

• DE/best/2

Vi, G= Xbest, G+ F ×(X r1, G − X r2, G ) + F × (X r3, G − X r4, G )  (5)

• DE/current-to-best/

Vi, G= Xi, G+ F × (X best, G − X i, G ) + F × (X r1, G − X r2, G )      (6)

• DE/rand-to-best/1

Vi, G= Xr1, G+ F × (Xbest, G − X r1, G) + F × (X r2, G − X r3, G )     (7)

The indices r1, r2, r3, r4, r5 are mutually exclusive integers
that randomly generated within the range [1, NP] and, which
are also different from the index i. Xbest,G is the best
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individual vector at generation G, and the mutation factor
F is a positive control parameter for scaling the difference
vector. Their more details can be found in [1-2].

2.3 Crossover
After the mutation phase, crossover operator is applied to
each pair of Xi,G and Vi,G to generate a trial vector Ui,G.
There are two kinds of crossover scheme: binomial and
exponential. The binomial crossover is widely used, which
can be defined as follows:

,
,

,

  if (0,1)  or ;
  otherwise,

j
j i G rand

ji G
i G

v rand CR j ju x
⎧ ≤ =

= ⎨
⎩

where CR ∈ [0, 1] is called the crossover rate. jrand is a

randomly chosen integer in the range [1, D]. If ,
j

i Gu  is out
of the boundary, we randomly reinitialized it within the
range [Lj, Uj].

2.4 Selection
The selection operator selects the better one from each
pair of Xi,G and Ui,G according to their fitness values for the
next generation. The selection operator is given by
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population in DE, i.e., distributed DE (dDE) [15 – 17] and
cellular DE (cDE) [18 – 20]. In [12], a neighborhood-based
mutation operator is employed by using the ring topology.
In [25], the self-adaptive DE is modified by using a ring
neighborhood topology. In [26], the bare bones DE is
proposed by employing the concept of index
neighborhoods in DE. Recently, five population  topologies
have been introduced in DE to improve its performance in
[17].

With the geographical locations on the fitness landscape,
the neighborhood information is derived from the dynamics
of the population during the evolutionary process. In the
DE variants with the geographical locations, the individuals
for the mutation operator are selected from the vicinity of
its topological region in the search space. In [18], a
proximity-based DE framework (ProDE) is proposed by
using an affinity matrix based on the Euclidean distance
to select the individuals for mutation. For improving the
performance of DE, the learning-enhanced DE (LeDE) is
proposed in [27]. In LeDE, the neighborhoods of each
individual involved in the intra-cluster learning strategy are
defined based on the identified clusters.

3.2 Direction Information
In DE, the difference vector in the mutation operator is
important for guiding the search and is often constructed
in a random manner. In order to overcome this problem of
DE, some works are proposed by exploiting the direction
information for constructing the difference vector.

In [28], a trigonometric mutation DE (TDE) is proposed
with a probabilistic triangle mutation strategy that
incorporates the direction information into DE. In [29], a
new mutation strategy, DE/rand/±mean, is proposed. In
this strategy, the population is partitioned into two sub-
populations according to the mean fitness value of all
individuals. Then two vectors are randomly selected from
the better sub-population and the worse one respectively
to generate the different vector. In [30], a classification-
based self-adaptive DE is proposed by using the direction
information with the current best solution and the best
previous solution of each individual. For the multi-objective
optimization, there are several DE variants that also use
the direction information in mutation to improve the
performance [31-32]. Recently, a new DE framework, DE
with neighborhood and direction information (NDi-DE), is
proposed by explicitly introducing three types of direction
information into mutation [11]. In NDi-DE, the three types
of direction information play different roles to guide the
search, and different mutation strategy equips with different
type of direction information based on its search
characteristic [11].

4. DE-CPI

As mentioned above, the neighborhood and direction
information can be utilized to improve the performance of
DE, but they are not fully and simultaneously exploited in
the evolutionary process of DE. Therefore, we propose a
new mutation operator based on the composite population

(8)

(9)

3. Related Work

In this section, we focus on the related work on how the
population information, especially neighborhood and
direction information, has been utilized in the mutation
operator of DE to improve its performance.

As the salient feature of DE, the mutation operator has
been studied in various ways. In these DE variants,
population information are often in focus and used in
mutation to enhance the exploration ability of DE. In the
literature, neighborhood and direction information are more
widely and successfully used.

3.1 Neighborhood Information
The neighborhood concepts are usually used to improve
the performance of DE. There are two main types of
neighborhood information: one relies on the population
topology and the other relies on the geographical locations
on the fitness landscape. More details about the
neighborhood concepts utilized in DE could be found in
[18].

With the population topology, the neighbors of each
individual do not necessary lie in the vicinity of its
topological region in the search space. Different from the
original DE algorithm, many DE variants utilize the
neighborhood information with the structured population.
In these DE variants, the individuals for the mutation
strategies are selected according to a neighbor list
constructed from the structured population. There are
twoThere are two main canonical kinds of structured



        Journal of Digital Information Management  �  Volume 13    Number  4    �   August    2015                            213

information (CPI), i.e., neighborhood and direction
information, to enhance the exploration ability of DE.
Furthermore, the complete framework, DE-CPI, is also
algorithmically illustrated.

4.1 CPI Based Mutation Operator
In DE-CPI, the neighborhood and direction information,
as the composite population information, are used
simultaneously in the mutation operator. To implement
CPI based mutation operator, we need to address two
issues: First, how to define a neighborhood for each
individual of population? Second, how to incorporate the
direction information into mutation with the defined
neighbors?

Figure 1. Ring topology of neighborhood in DE-CPI

4.1.1 Ring Topology-based Neighborhood
For the first issue, a generalized ring topology with NP
vertexes is employed to define a neighborhood for each
individual. Specifically, with the ring-topology, all the
individuals of population are organized on a ring topology
with respect to their indices. For each individual Xi, a
neighborhood of radius R is defined based on the ring
topology. That is, the neighbors of Xi is constructed by
the individuals Xi-R,…, Xi,..., Xi+R, where R = p×NP, p is the
neighborhood radius proportion. Therefore, each individual
of population is with 2R neighbors. The ring topology of
neighborhood in DE-CPI is illustrated in Figure 1.  Although
various neighborhood topologies, e.g., distributed, cellular,
random topology, are proposed for DE [17], some initial
experimental studies show that the ring topology can
obtain the better and more robust results. The detailed
comparisons of the DE-CPI variants with different
neighborhood topologies will be studied in our future work.

4.1.2 Mutation with Direction Information
For the second issue, based on the defined neighbors
with ring topology, the direction information is incorporated
into mutation by selecting the vectors from the neighbors
to construct the difference vector. Firstly, for each individual
Xi, the base vector for mutation is randomly selected from

the neighborhood of Xi 
1
. Secondly, according to the fitness

of the  selected base vector, all the neighbors of Xi are
partitioned into the better and worse groups. Finally, the
terminal point of the difference vector (e.g., Xr2 for DE/
rand/1 in Eq. (2)) is selected from the better group and
the start point (e.g., Xr3 in Eq. (2)) is selected from the
worse group. In this way, a difference vector that directing
at the better solution from the worse one is constructed
to guide the search.

4.2 The Framework of DE-CPI
By incorporating the CPI based mutation operator into
DE, the complete framework of DE-CPI with the DE/rand/
1 strategy (denoted as DE-CPI/rand/1) is shown in
Algorithm 1 where the differences with respect to DE/
rand/1 are highlighted with “*”. It is clear that the proposed
DE-CPI framework only affects the mutation step of the
original DE, hence it could be directly and easily applied
to most of the DE mutation strategies.

In the application of DE-CPI for the mutation operators
that incorporate the best individual (e.g., DE/best/1, DE/
current-to-best/1, DE/rand-to-best/1, etc.), the definition
of the best individual involved in mutation is redefined.
That is, the best individual of population is replaced by
the best vector in the neighborhood of the target individual
in the mutation operator. In addition, when constructing
the difference vector, if the base vector is the best vector
in the neighborhood (e.g., DE/best/1), two neighbors of
the base vector are randomly selected and the difference
vector is constructed by directing the search from the
worse neighbor to the better neighbor.

Compared with the original DE algorithm, the additional
computation of DE-CPI depends on CPI based mutation
operator. During one generation, the construction of
difference vector for each target vector will take R = p×NP
times of comparison with the base vector. Therefore, the

complexity of CPI based mutation operator is ( )O R .
Since the complexity of the original DE algorithm is

( )maxO G NP D× × , where Gmax is the maximal number of
generation,  the total complexity of DE-CPI is

( )( )max max ,O G NP D R× × .

5. Simulation Result

In order to evaluate the performance of DE-CPI, 25
benchmark functions from CEC 2005 [33] are used as
the test suite.

1 If the base vector is the  best-so-far vector or the target
vector, we do not need to select it in this way. The selection for
the best-so-far base vector will be described in the following
section.
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In this section, the benchmark functions are presented
firstly. Secondly, the experimental setup is shown. Thirdly,
the simulation results are analyzed and discussed.

5.1 Benchmark Functions
In this section, 25 benchmark functions are used, denoted
as F1-F25, which are from the special session on real-
parameter optimization of the 2005 IEEE Congress on
evolutionary computation (CEC 2005) [33]. They can be
categorized into four groups: unimodal functions (F1-F5),
basic multimodal functions (F6-F12), expanded multimodal
functions (F13-F14) and hybrid composition functions
(F15-F25). More details of them can be found in [33].

5.2 Experimental Setup
In order to compare the performance between DE-CPI and
its corresponding competitors, the same random initial
population is used in this study. The parameters for all
the experiments are set as follows unless a change is
mentioned.

• Dimension of each function (D): 30 and 50.
• Population size (NP): 100.
• Mutation factor (F): 0.5.
• Crossover rate (CR): 0.9.
• Neighborhood radius proportion (p): 0.1.
• Number of runs (NumR): 25.
• Maximum number of function evaluations (MNFs):
10000×D.

In the experiments, the comparisons between six original
DE algorithms (i.e., DE/rand/1, DE/rand/2, DE/best/1, DE/
best/2, DE/current-to-best/1 and DE/rand-to-best/1) and

their corresponding DE-CPI algorithms are conducted
firstly. Then, we compare the performance of several
advanced DE variants with the corresponding DE-CPI
variants, including jDE [7], ODE [34], SaDE [6], CoDE
[14], JADE [10] and MDE_pBX [35]. All the parameters of
these DE variants are set as their original papers.

Furthermore, to show the significant differences among
the competitors, several nonparametric statistical tests
[36-37] are also carried out by the KEEL software [38].
The results of the single-problem Wilcoxon signed-rank
test [36-37] at α = 0.05 are firstly summarized in the last
row of the tables as “w/t/l”, which means that DE-CPI
wins, ties and loses on w, t and l functions, compared
with its corresponding competitor.

5.3 Comparison with Original DE Algorithms
In this section, six DE mutation operators (see Eq. (2) -
(7)) are used in the experimental study. Due to the space
limitation, the detailed experimental results of this
simulation are not presented in this paper. The detailed
results can be obtained from the corresponding author.
The results of statistical tests for the functions at 30D
and 50D are summarized in Table 1. The convergence
graphs for some typical functions at 30D and 50D are
also plotted in Figure 2 and Figure 3, respectively.

For the functions at 30D, Table 1 shows that DE-CPI can
provide significantly better results than its corresponding
original DE method in most of the test functions.
Specifically, for DE/rand/1, DE-CPI is significantly better
than the original DE on 12 out of 25 functions and is worse
than it on 4 functions. For DE/rand/2, DE-CPI significantly
wins on 22 functions and ties on 3 functions, compared
with the original DE algorithm. DE-CPI/current-to-best/1

Algorithm 1 DE-CPI/rand/1

1: Generate the initial population PG, set G = 1, p = 0.1;

2: Evaluate the fitness for each individual in PG;

3: While the terminated condition is not satisfied do

4:     For each individual X
i, G

 do

5:     *Randomly select the base vector X
r1
 from the neighborhood of X

i, G
;

6:        *Partition all the neighbors of X
i, G

 into a better and a worse

groups by comparing with the fitness of X
r1, G

;

7:        *Randomly select X
r2
, X

r3
 from the better and worse groups

respectively;

8:         Use Eq. (2) to generate a mutant vector

9:         Use Eq. (8) to generate a trial vector;

10:       Use Eq. (9) to determine the survived vector;

11:    End For

12:    Set G = G + 1

13: End while
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Figure 2. Convergence graphs of the original DE and the corresponding DE-CPI for the selected functions at D = 30

Figure 3. Convergence graphs of the original DE and the corresponding DE-CPI for the selected functions at D = 50

Table 1. Results of the multi-problem Wilcoxon’s test for DE-CPI versus the original DE algorithm for all the functions at 30D

+, “ and = indicate DE-CPI is significantly better than, worse than and equal to its corresponding competitor overall based on the
multi problem Wilcoxon signed-rank test, respectively.
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+, “ and = indicate DE-CPI is significantly better than, worse than and equal to its corresponding competitor overall based on
the multi problem Wilcoxon signed-rank test, respectively.

corresponding DE algorithms. For DE/rand/1 and DE/rand/
2, DE-CPI significantly outperforms them on 11 and 22
functions respectively. For DE/current-to-best/1 and DE/
rand-to-best/1, DE-CPI is significantly better than them
on 22 and 8 functions respectively. DE-CPI/best/1 is
significantly better than DE/best/1 on 22 functions, while
DE-CPI/best/2 is significantly better than DE/best/2 on
13 functions.

Table 2. Results of the multi-problem Wilcoxon’s test for DE-CPI versus the advanced DE variants for all the functions at 30D

From Figure 2 and Figure 3, we can find that DE-CPI is
better than the original DE algorithms in terms of the
convergence speed for most of the selected functions.

Furthermore, to show the significant differences between
DE-CPI and its corresponding DE algorithm, the multi-
problem Wilcoxon signed-rank test is also carried out on

all the problems at 30D and 50D [36-37]. The results are
also shown in Table 1. For the functions at 30D, it is clear
that DE-CPI can obtain the higher R+ values than R- values
in all the cases.

In addition, the p value in most of the cases are less than
0.05, which means that DE-CPI is significantly better than

is significantly better than DE/current-to-best/1 on 22
functions, while DE-CPI/rand-to-best/1 is significantly
better than DE/rand-to-best/1 on 6 functions. For DE/best/
1 and DE/best/2, DE-CPI is significantly better than them
on 22 and 11 functions, respectively.

For the functions at 50D, the results of Table 1 also show
that DE-CPI is consistently superior to most of the

Figure 4. Convergence graphs of the advanced DE and the corresponding DE-CPI for the selected functions at D = 30
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Figure 5. Convergence graphs of the advanced DE and the corresponding DE-CPI for the selected functions at D = 50

most of the original DE algorithms. For the functions at
50D, DE-CPI can consistently obtain the similar results
as those in Table 1.

In general, these results indicate that DE-CPI is effective
to improve the performance of most of the original DE
algorithms studied.

5.4 Comparison with Advanced DE Variants
In order to evaluate the effectiveness of DE-CPI for the
advanced DE variants, six recently proposed DE variants,
jDE [7], ODE [34], SaDE [6], CoDE [14], JADE [10] and
MDE_pBX [35],  are studied in this section. These
advanced DE variants integrate different kinds of
modifications on DE, such as self-adaptive control
parameters, new mutation operators, and ensemble
strategies. They have different characteristics and can
obtain very promising results. The results of statistical
tests for the functions at 30D and 50D are summarized in
Table 2. The convergence graphs for some typical functions
at 30D and 50D are also plotted in Fig. 4 and Fig. 5
respectively. In addition, the detailed experimental results
of this simulation can be obtained from the corresponding
author.

From the results of functions at 30D in Table 2, we can
find that DE-CPI exhibits substantial improvement for most
of the DE variants. Specifically, for jDE, DE-CPI is
significantly better than it on 5 functions and is worse
than it on 1 function. For ODE, DE-CPI significantly
outperforms it on 9 functions and is outperformed by it on
2 functions. For the DE variants with ensemble strategies,
CoDE-CPI is significantly better than CoDE on 21
functions, while SaDE-CPI significantly outperforms SaDE
on 10 functions. DE-CPI can obtain significantly

improvements for MDE_pBX and JADE on 11 and 3
functions, respectively.

From the results of functions at 50D in Table 2, DE-CPI
can also significantly enhance most of the DE variants on
the test functions. For jDE and ODE, DE-CPI can obtain
the significantly results on 6 and 7 functions, respectively.
For SaDE and CoDE, DE-CPI is significantly better than
them on 15 and 21 functions, respectively. For JADE and
MDE_pBX, DE-CPI significantly outperforms them on 7
and 4 functions, respectively.

Fig. 4 and Fig. 5 also show that the convergence speed
of DE-CPI is better than most of the corresponding
advanced DE algorithms for most of the selected functions.
Furthermore, the multi-problem Wilcoxon signed rank
tests at α = 0.05 and α = 0.1 are conducted to show the
significant differences between DE-CPI and its
corresponding DE variant on all the problems at 30D and
50D, and the results are shown in Table 2 respectively. It
is clear that DE-CPI can obtain the higher R+ values than
R- values in all the cases. These results indicate that DE-
CPI is better than its corresponding DE variants overall.

Summarily, the results of Table 2 and Figures. 4-5 show
that  DE-CPI can also bring the beneficial to most of the
DE variants studied here.

5.5 Benefit of Composite Population Information
In DE-CPI, the composite population information, i.e.,
neighborhood and direction information, is exploited to
guide the search of DE. In order to identify the benefit of
the two kinds of population to DE-CPI, we consider two
DE variants in this section. The first variant is DE-RING
which only incorporates the neighborhood information of
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2 If the base vector is the best-so-far vector, the population
does not need to be partitioned. Two vectors are randomly
selected from the population, and the difference vector is con-
structed by directing the search from the worse vector to the
better vector

ring topology into DE. The second variant is DE-DIR which
only introduces the direction information into DE. In DE-
RING, all the vectors for mutation are selected from the
neighborhood of the target individual. In DE-DIR, the whole
population is partitioned into the better and worse groups
based on the fitness of the randomly selected base vector,
and the difference vector is constructed by randomly
choosing two vectors from the two groups respectively2.
The experimental studies are carried out on the 25
functions at 30D, and four DE algorithms, i.e., DE/rand/1,
DE/current-to-best/1, CoDE and SaDE, are used for
comparison in this section. The results are shown in Table
3. The results of the single-problem Wilcoxon signed-rank
test between the DE-CPI and the corresponding original
DE algorithm at α = 0.05 are also summarized in Table 3.

From Table 3, it is clear that all the three variants, i.e.,
DE-CPI, DE-RING and DE-DIR, can obtain significantly
better results than its corresponding original DE algorithm
in most of the functions. Specifically, for DE/rand/2, DE-
CPI, DE-RING and DE-DIR are significantly better than
the original DE algorithm on 22, 12 and 21 functions
respectively. For DE/current-to-best/1, DE-CPI significantly
outperforms it on 22 functions, while DE-RING and DE-
DIR are better than it on 20 and 14 functions respectively.
For CoDE, DE-CPI, DE-RING and DE-DIR can obtain the
significantly better results on 21, 14 and 13 functions
respectively. For SaDE, DE-CPI, DE-RING and DE-DIR
are significantly better than it on 10, 8 and 6 functions
respectively.

In order to further show the effectiveness of CPI,  the multi-
problem Wilcoxon signed rank test between DE-CPI and
DE-RING (DE-DIR) is also carried out and the results are
shown in Table 4. It is interesting to find that DE-CPI obtains
the higher R+ values than R- values in all the cases.
Furthermore, the p values in most of the cases are less
than 0.05, which means that DE-CPI is significantly better
than DE-RING or DE-DIR in these cases. These results
demonstrate that DE-CPI is better than its corresponding
DE-RING and DE-DIR overall.

According to the results in Tables 3 and 4, we can obtain
some interesting findings: 1) all of the neighborhood
information, the direction information and CPI are beneficial
to improving the performance of DE; 2) Compared with
the single information (neighborhood or direction
information), DE with CPI is more effectively for utilizing
the population information to guide the search of DE.

5.6 Parameter Study
In DE-CPI, there is a control parameter (i.e., the

neighborhood radius proportion p) that decides the
neighborhood size of each individual. In order to investigate
the influence of the p value on the performance of DE-CPI,
the experiment studies on the 25 benchmark functions at
30D are conducted in this section. Here, DE/rand/1 is
used for comparison and p is set to 0.05, 0.1, 0.2, 0.3
and 0.4. The results are shown Table 5. Furthermore, the
results of the single-problem and the multi-problem
Wilcoxon signed rank tests between DE/rand/1 and DE-
CPI with different p value are also shown in Tables 5 and 6
respectively.

From Table 5, we can find that DE-CPI is better than DE/
rand/1 in most of the cases overall. Specifically, in the
case of p = 0.1, 0.2, 0.3 and 0.4, DE-CPI is significantly
better than DE/rand/1 on 11, 11, 9 and 7 functions
respectively and is worse than it on 5, 7, 5 and 4 functions
respectively. When p = 0.05, DE-CPI significantly
outperforms DE/rand/1 on 8 functions and is outperformed
by it on 10 functions. According to the results of the
statistical tests in Table 6, DE-CPI can obtain the higher
R+ values than R- values in all the cases. It indicates that
DE-CPI with different p values is better than DE/rand/1
overall. In addition, DE-CPI with p = 0.1 obtains the best
results among all the cases, and DE-CPI with p = 0.05 and
0.4 obtain the worst and the second worst results
respectively. The reasons may lie in: 1) When p is set to
0.05, the neighborhood size of each individual is small
and the individuals belonging to the same neighborhood
may quickly become similar to each other. This will make
the population loses diversity and DE-CPI may have the
problem of premature convergence; 2) When p is set to
0.4, the neighborhood size is large and the selection
pressure for selecting parents from neighborhood will
become too small. It will lead that the composite
population information cannot effectively guide the search
of DE with the neighbors.

In sum, the results of Tables 5 and 6 demonstrate that p
= 0.1 is a good choice for DE-CPI when solving the
benchmark problems studied here. Additionally, the value
of p∈ [0.1, 0.3] has no significant influence on the
performance of DE-CPI. In the future work, the adaptive or
self-adaptive parameter control techniques, e.g., [6][8][10]
and [39], will be studied for choosing the neighborhood
size.

5.7 Application to Real-World Problems
In order to test the performance of DE-CPI on real-world
problems, three problems from [40] and [41] are used in
this section. The first two problems are selected from the
CEC 2011 competition on testing EA on real-world
numerical optimization problems [41]. They are parameter
estimation for frequency modulated sound waves (denoted
as FMP) and spread spectrum radar polly phase code
design (denoted as SRP). FMP is a highly complex multi-
modal problem with strong epistasis and SRP is with
numerous local optima and has proven to be an NP-hard
problem [41]. The last problem is systems of linear
equations problem (denoted as LEP) which has proven to
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Table 3.  Mean and standard deviation of the best error values obtained by DE-RING, DE-DIR and DE-CPI on all the functions
at 30D

Table 4. Results of the multi-problem Wilcoxon’s test for DE-CPI versus DE-RING and DE-DIR for all the functions at 30D
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Table  5. Mean and standard deviation of the best error values obtained by DE/rand/1 and DE-CPI/rand/1 with different
neighborhood size radius (p) on all the functions at 30D.

+, “ and = indicate DE-CPI is significantly better than, worse than and equal to the corresponding original DE overall based on the
multi problem Wilcoxon signed-rank test, respectively.

Table 6. Results of the multi-problem Wilcoxon’s test for DE/rand/1 versus DE-CPI with different neighborhood size radius (p)
on all the functions at 30D

Table 7.  Mean and standard deviation of the best error values obtained by the DE algorithms and DE-CPI for the real-world
application problems
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be quite difficult for the optimizers [36]. The MNFES for
each problem is set to 150000, as suggested in [41]. The
results are shown in Table 7.

From Table 7, we can find that DE-CPI can obtain the
better solutions than the corresponding DE variants in
most of the cases. Specifically, for SRP, DE-CPI is better
than the corresponding DE variants in 10 out of 12 cases.
DE-CPI is better than DE in 8 cases for FMP and 10
cases for LEP. In general, the results of Table 7 indicate
that DE-CPI is able to improve the performance of DE
effectively on the real-world problems considered.

6. Conclusion

In this study, a simple and effective DE framework, DE
with composite population information based mutation
operator (DE-CPI), is proposed to enhance the performance
of DE for global numerical optimization. In DE-CPI, on the
one hand, a generalized ring topology is used to define a
neighborhood for each individual. On the other hand, the
direction information is introduced into the mutation
operator of DE by constructing the difference vector with
the neighbors. In this way, the composite population
information, i.e., neighborhood and direction information,
can be fully and simultaneously utilized in DE-CPI to guide
the search of DE. Through the extensive experimental
study, DE-CPI is shown to be able to improve the
performance of most of the DE algorithms studied.

In the future, the application of DE-CPI to other DE variants
will be comprehensively studied firstly. Then, the adaptive
or self-adaptive techniques for the neighborhood size will
be investigated. Finally, the effectiveness of DE-CPI with
other neighborhood topologies will also be studied.
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