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ABSTRACT: Data streams are becoming an important concept and used in more and more applications. Processing of data
streams needs a streaming engine. The streaming engine can start query processing once initial data is available. This
capability is especially important for real-time computation and for long-relay transmission of data streams. In this work, we
demonstrate a monitoring system of eBay auctions, which is based on our RDF stream engine and can analyze eBay auctions
in a flexible way. Using our monitoring system, users can easily monitor the eBay auctions information of interest, analyze the
behavior of buyers and sellers, predict the tendency of auctions and make more favorable decisions. Furthermore, each step
during RDF stream processing can be visualized allowing a better and easier understanding of the internal processes. This
paper is an extended version of [22].
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1. Introduction

A growing number of applications in areas like network monitoring, sensor networks and auction industry are using continuous
data streams rather than finite stored data sets. Processing and querying data streams require long-running continuous queries
as opposed to one-time queries.

Data produced over time form data streams. Data streams having no end are called infinite data streams. (Infinite) data streams
are generated from e.g., sensors, which constantly obtain data from their environment. In order to determine useful conclusions
(like a probably upcoming earth quake) from data streams, we need to consider the infinite nature and support the computation
of intermediate results based on a window, which contains the recent data of the infinite data stream. In many scenarios, the
intermediate results must be calculated in a timely fashion, e.g., a probably upcoming earth quake must be detected as early as
possible allowing no delays for the computations.

Streaming query engines operating on data streams can (a) discard irrelevant input as early as possible, and thus save processing
costs and space costs, (b) build indices only on those parts of the data, which are needed for the evaluation of the query, and
(c) determine partial results of a query earlier, and thus evaluate queries more efficiently.

Stream-based processing enables more efficient evaluation not only in local scenarios, where the data is stored and the query
engines run on the same computer, but also in many other applications, e.g.
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• in integrating data over networks like the Internet, in particular from slow sources. It is desirable to progressively process the
input before all the data is retrieved.

• in continuous query processing over infinite data streams (e.g., [3]), generated by e.g., sensors. Continuous query processing
(e.g., [3]) evaluates queries periodically.

• in selective dissemination of information, where RDF data has to be filtered according to requirements given in a query, and

• in pipelined processing, where data is sent through a chain of processors, and the input of each processor is the output of the
preceding processor.

The data format of the Semantic Web is RDF [9], and a large amount of data is described using RDF. SPARQL [28] is the standard
RDF querying language and has been extended by several contributions to support operations in infinite RDF data streams (see
e.g., [10] and [7]). In this paper, we demonstrate our streaming query engine by a real-world case: monitoring the eBay auctions
based on querying a real-time eBay RDF data stream. Our demonstration application is online available and can be downloaded
from [13].

This paper is an extended version of [22]. The extensions include the formalization of a streaming SPARQL algebra (see Section
6), which extends the algebra in [21] by window and stream operators and the possibility to delete triples and solutions from
operators as well as to compute periodic results of the whole query.

2. RDF and SPARQL

The Semantic Web uses RDF [9] as its data format and SPARQL [28] as the basic query language of RDF data.

The core element of RDF data is the RDF triple, and a set of RDF triples is called an RDF graph.

Definition 1 (RDF triple): Assume there are pairwise disjoint infinite sets I, B and L, where I represents the set of IRIs [12], B the
set of blank nodes and L the set of literals. We call a triple (s, p, o) (I ∪ B)  x I x (I ∪ B ∪ L) an RDF triple, where s represents
the subject, p the predicate and o the object of the RDF triple. We call an element of I ∪ B ∪ L an RDF term.

Figure 1. Monitoring System of eBay Auctions
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SPARQL queries are evaluated on RDF graphs, and select data based on the matching of graph patterns of SPARQL. The core
component of SPARQL graph patterns is a set of triple patterns s p o. s p o corresponds to the subject (s), predicate (p) and
object (o) of an RDF triple, but they can be variables as well as RDF terms. Within a SPARQL query, the user specifies the known
RDF terms of triples and leaves the unknown ones as variables in triple patterns.

Figure 2. Main window of our demonstration

Figure 3. Demonstrating the evaluation of RDF streams
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The same variables can occur in multiple triple patterns and thus imply joins. A triple pattern matches a subset of  the RDF data,
where the RDF terms in the triple pattern correspond to the ones in the RDF data.

Figure 4 presents the example RDF data Records.rdf with 3 triples, and Figure 5 an SPARQL query DLCRecords.sparql for this
RDF data. DLCRecords.sparql consists of a SELECT clause and a WHERE clause. The SELECT clause identifies the variables
to appear in the query results, i.e., the variable bindings of ?a and ?c. The WHERE clause contains two triple patterns, which
identify the constraints on the input RDF data. The triple pattern ?a <records> ?c matches the first two triples of Records.rdf,
and thus its result is {(?a=<ID1>, ?c=<ID6>),(?a=<ID2>, ?c=<ID5>)}. The triple pattern ?a <origin> <DLC> matches the last
triple of Records.rdf, and thus its result is {(?a=<ID2>)}. The two triple patterns impose a join over the common variable ?a, and
their result is hence {(?a=<ID2>, ?c=<ID5>)}, which is the final query result.

<ID1> <records> <ID6>

<ID2> <records> <ID5>

<ID2> <origin>  <DLC>

Figure 4. Example RDF data Recods.rdf

SELECT ?a ?c

WHERE {

         ?a<records>?c.

         ?a<origin><DLC>.

      }

Figure 5. SPARQL query DLCRecords.sparql

3. EBAY

eBay (http://www.ebay.com/) is a popular on-line auction and shopping website. Through eBay individuals and business sell
and buy a wide variety goods and services, and millions of items are auctioned daily. Furthermore, the eBay Developers Program
(http://developer.ebay.com/) offers several eBay web services, with which new applications, tools and value-added services can
be created in order to meet the diverse needs of buyers and sellers on eBay.

The eBay web services use domains and aspects describe the auctioned items. A domain represents a kind of items, the aspects
describe the characteristics of items in a given domain, and items are instances of a domain. For example, book can be a domain,
and the title, author, pages and price can be the aspects of the book domain. A book entitled “Stream Processing” auctioned in
eBay is an instance of the book domain. The information model1 used by eBay is very similar to the RDF data model.

Therefore, we can use RDF to describe eBay auctions, and thus leveraging SPARQL and RDF tools to query and process
auction data. While the eBay’s Finding API supports the functionality of searching and browsing items listed on eBay, the RDF
query language SPARQL provides more powerful capabilities than the eBay Finding API.

4. Monitoring EBAY Auctions
By monitoring the real-time eBay auctions of interest, the buyers and sellers can predict auction tendencies and make better
decisions. Furthermore, it also helps the economists and researchers in analyzing various aspects of buying and selling
behavior. In this section, we demonstrate how the users of our system can easily query and monitor the eBay auction information
in which they are interested.

4.1 Monitoring System
Figure 1 describes our system of monitoring eBay Auctions. Our stream generator interacts with the eBay  platform using the
eBay web services. In this figure, the stream generator calls the eBay server with the function findItemsByKeywords(“Wii“),
which retrieves and returns the auction information matched by the keyword “Wii”. Once the first data element arrives, the

1http://developer.ebay.com/DevZone/finding/Concepts/FindingAPIGuide.html
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stream generator transforms it into the RDF format and sends it to the streaming query engine. The streaming query engine
processes the SPARQL query on the RDF data stream and the results of the query are displayed in the monitoring window.

4.2 Demonstration
Figure 2 is a screen snapshot of the main window of our demonstration system. Users can specify the search keywords (see (1)
of Figure 2) or eBay item numbers or the webpage address of the eBay auction (see (2) of Figure 2) for retrieving related
information from eBay. The eBay item number can be found at its auction webpage. A SPARQL expression is used (see (3) of
Figure 2) to query the data returned by the eBay server.Several pre-defined SPARQL queries can be obtained by clicking the
menu item Presets in the top menu.

After specifying the query information, clicking the button Start starts the communication with the eBay server, the generation
of RDF data and the evaluation of the SPARQL query over the RDF data stream. It might take some time to finish these
processes, depending on various factors, e.g., the speed of networks, and the size of transmitted data.

The query result is displayed in the main window (see (4) of Figure 2). If a checkbox is marked in the query result, the numerical
values are displayed in a chart (see (5) of Figure 2). The data is periodically retrieved and processed from eBay, and the query
result periodically updated. The old query result still remains in the charts when updated. Consequently, users can easily
observe and monitor the changes over time.

4.3 Streaming SPARQL Engine
Our streaming SPARQL engine supports an extended version of SPARQL by allowing windows and the specification of the
periods for updating the query result. Figure 6 describes such a query for the RDF stream. Line (5) specifies the query result to
be updated every second and lines (7) to (9) specify a window of the recent 100 triples of the RDF stream to be queried by the
triple patterns in lines (8) and (9). Additional to SPARQL 1.0 [28], we support aggregation functions (see lines (3) and (4)) like
average, min, max and sum to determine the average, minimum, maximum and summation.

(1) PREFIX ebay:<http://developer.ebay.com/DevZone/finding/CallRef/
findItemsByKeywords.html#>

(2) PREFIX lupos: <http://www.luposdate.org/>

(3) SELECT DISTINCT ?id ?title ?bid lupos:average(?bid) AS ?avg

(4)  lupos:min(?bid) AS ?min lupos:max(?bid) AS ?max lupos:sum(?bid)AS?sum

(5) STREAM INTERMEDIATERESULT DURATION 1000

(6) WHERE {

(7)   WINDOW TYPE SLIDINGTRIPLES 100 {

(8)     ?id ebay:Response.searchResult.item.sellingStatus.currentPrice ?bid.

(9)  ?id ebay:Response.searchResult.item.title ?title. }}

Figure 6. Example query for RDF streams

Our demonstration also shows the internals of stream processing. Before processing a query, our streaming SPARQL engine
parses the query and transforms it into a logically and physically optimized operator graph. If the checkbox “demo” (see (6) in
Figure 2) is enabled, a window of the evaluation demo will be popped after clicking the button Start. The window demonstrates
single execution steps of the query processing, and displays the operator graph of the SPARQL query, and the information
transmission between the operators (see (1) of Figure 3).

The user can navigate through the processing steps by clicking on the next (see (2) of Figure 3) or previous (see (3) of Figure 3)
step button. The user can also directly navigate to the first step (see (4) of Figure 3) or watch an animation of the processing
steps (see (5) of Figure 3). The processing of the RDF stream is initialized by sending a Start-Of-Evaluation-Message to each
operator. Incoming triples are transmitted along the operator graph until a Triple Pattern operator, which is evaluated on the
incoming triples. The result (see (1) of Figure 3) is then transmitted to succeeding operators. The Window operator (see (6) of
Figure 3) handles the window of considered triples for query evaluation. If a triple is out of the window, then the Window
operator transmits the information of deleting this triple downwards. This information might cause a succeeding Triple Pattern
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operator to delete a certain solution. The streaming engine triggers the periodic computation of the query by a Compute-
Intermediate-Result-Message, and the query result is displayed (see (7) of Figure 3).

5. Special Operators for Stream Processing

The SPARQL algebra must be extended by basically two types of operators for stream processing:

1. The first one called Stream operator triggers the periodic computation of query results. The Stream operator is the root in
operator graphs of stream queries.

2. The second one called Window operator implements that query processing only considers certain recent data
instead of all data.

Both operator types can be found in the operator graph presented in Figure 3.

5.1 Types of Stream Operators
Stream operators differ in the way they determine when they trigger succeeding operators to compute an intermediate query
result:

• The Stream Triples operator triggers the computation of an intermediate query result after a given number of triples have been
arrived (and processed) independent from the time of the last computation.

• The Stream Duration operator starts the computation of intermediate query results after a certain time is over independent from
the number of arrived (and processed) triples.

Both operator types have their applications: While the Stream Duration operator guarantees up-to-date query results, the
Stream Triples operator allows computing the query result only when there are many changes in the input.

5.2 Types of Window Operators
Window operators can differ how one can define the triples to be considered:

• The Window Triples operator considers only the last recent triples (up to a specified number of triples) for query processing.
The Window Triples operator finds its applications e.g. whenever new triples update the values of older ones and these newer
triples should be only considered during query processing.

• The Window Duration operator considers only those triples, which have been arrived in recent time (up to a specified time
period), for query processing. The Window Duration operator is a necessity to compute aggregation functions over a certain
time period, e.g., the average temperature of the last hour.

More types of Window operators exist. We refer the interested reader to e.g. [3].

6. Streaming SPARQL Algebra

There are two ways to describe the streaming SPARQL algebra. The trivial variant uses the traditional (nonestreaming) SPARQL
algebra and extends it by Stream and Window operators, which define the times of periodic query evaluations and the RDF
dataset to be considered. However, the trivial variant describes a normal query evaluation with the actual RDF dataset, but does
not describe an incremental query evaluation, where triples are immediately processed by the operators in the operator graph
and (together with their caused intermediate results) are released if they do not need to be considered any more. We describe the
SPARQL algebra of this incremental variant.

We formalize the special operators for stream processing as well as some important operators for SPARQL processing in the
following paragraphs. For this purpose, we define also the term environment, which is used to define an intermediate (and final)
result of the operators. As one part of the environment is a binding of a value to a variable, we first define this term accordingly.

Definition 2: A binding of a variable is a tuple (n,v) where n represents the name of the variable and v its current value.

Definition 3: An environment E is a set of bindings of variables, where each variable of the bindings in E has exactly one
assigned value, i.e. (n, v1) E: (n, v2) E: v1=v2.
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In the following paragraphs, we enumerate the operators of the proposed streaming SPARQL algebra. The proposed operators
provide core functionalities for SPARQL processing, which abstract from SPARQL syntax and equivalent language constructs,
and are the basis for logical and physical optimization. The proposed operators for the streaming SPARQL engine are event-
based. For every incoming triple of the RDF data stream the Stream operator triggers an event at its succeeding operators, which
may trigger events at their succeeding operators as well. All operators, their succeeding and preceding operators span an
operator graph. Figure 7 contains the operator graph of the streaming SPARQL query of Figure 6.

Figure 7. The operator graph of the streaming SPARQL query of Figure 6

For each operator, we describe the actions and the resulting events of the operators after receiving an event ti from the i-th
preceding operator in pseudo code. Note that we describe the resulting event in a declarative way, i.e. we only describe what the
resulting events look like and not how to compute the resulting events.

In the definitions of the operators, we describe the optional initialization after the keyword “Init”, the events to receive after the
keyword “Input”, the actions to be done for each received event after the keyword “Actions” and the actions to be done after
the RDF data stream has been closed, i.e. the RDF data stream has no incoming triples any more, after the keyword “Final”
(optional) in pseudo code. The actions for computing a valid periodic result of the whole query are described after the
computeResult keyword. If no computeResult keyword appears in the description of the operators, then the computeResult
action just triggers the computeResult actions at its succeeding operators. The actions to be done for deletion of a triple or
environment can be found after the keyword “Delete”. We may define a subroutine after the keyword Helperop, which supports
the parameter op for defining a specific instruction (trigger or delete). If a subroutine Helperop occurs in the description of an
operator, but no Actions and Delete actions, then the Actions and Delete actions are defined by the following statements:
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Actions: Helper
trigger

;
Delete: Helper

delete
;

While ti represents an event from the i-th preceding operator, we use t to represent an event if there is only one preceding
operand or if the events of the preceding operators do not need to be distinguished. ti.E represents an attached environment
and ti.S an attached triple of the event ti.num represents the concrete number of operands of an operator. The instruction
triggerp E triggers an event with attached environment/triple E at the operator p and trigger E triggers at all succeeding
operators. Accordingly, the instruction deletep E deletes an environment/triple E at the operator p and deletes E deletes E at all
succeeding operators. The instruction computeResult triggers the actions for computeResult at all succeeding operators.

We may use a queue in the description of operators, which supports operations to add elements at the end of its elements, to
access its first element, remove the first or any given element from its stored elements. Furthermore, we sometimes use multisets,
which have the same operations like sets, but additionally consider the number of its elements when adding new elements or
removing existing ones.

We enumerate the operators in the following items:

1. Every operator graph has a Stream or StreamTriplesnumberOfTriples or StreamDurationduration operator as root node. The
Stream operator receives the incoming triples of the RDF data stream and transmits these triples as events to its succeeding
operators (which typically consist of pattern matcher operators or window operators). The Stream operator is used whenever no
STREAM clause occurs in the query.

Operator Stream

Input:   RDF data stream with incoming triple s

Actions: s.setTimestamp(getTimestamp());

         trigger s;

Final:   computeResult;

The StreamTriplesnumberOfTriples  operator triggers the computation of an intermediate query result after a given number of triples
(numberOfTriples) have been arrived (and processed) independent from the time of the last computation.

Operator StreamTriples
numberOfTriples

Init:    count=0;
Input:   RDF data stream with incoming triple s
Actions: s.setTimestamp(getTimestamp());
         trigger s;
         count=count+1;
         if(count>=numerOfTriples)
         then { count=0; computeResult; }
Final:   computeResult;

The StreamDurationduration operator starts the computation of intermediate query results after a certain time (duration) is over
independent from the number of arrived (and processed) triples.

Operator StreamDuration
duration

Init:    timestamp=getTimestamp();
Input:   RDF data stream with incoming triple s
Actions: interTimestamp = getTimestamp();
         s.setTimestamp(interTimestamp);
         trigger s;
         If(timestamp - interTimestamp >=duration)
         then { timestamp = interTimestamp; computeResult; }
Final:    computeResult;
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2. The window operators specify the triples to be processed from its succeeding operators.

The WindowTriplesnumberOfTriples operator considers only the last recent triples (up to a specified number of triples
(numberOfTriples)) for query processing.

Operator WindowTriples
numberOfTriples

Init:    queue.init();
Input:   Event t with attached triple
Actions: If(|queue| >= numberOfTriples)
         then { delete queue.first(); queue.removeFirst(); }
         queue.addLast(t);
         trigger t;
Final:   queue.release();

The WindowDurationduration operator considers only those triples, which have been arrived in recent time (up to a specified time
period (duration)), for query processing.

Operator WindowDuration
duration

Init:    queue.init();
Input:   Event t with attached triple
Actions: now=getTimestamp();
         s queue:s.timestamp()- now>= duration:{queue.remove(s); delete s;}
         queue.addLast(t);
         trigger t;
Final:   queue.release();

3. The pattern matcher operator MatchPats triggers all triple pattern operators Pats with an incoming event with attached triple.
Note that implementations of the pattern matcher may choose matching triple pattern operators in a more intelligent way for
speeding up processing of SPARQL queries as part of the physical optimization.

Operator Match
Pats

Input:   Event t with attached triple

Helper
op
: p Pats: op

p
 t.S;

4. The triple pattern operator Pat(p1, p2,p3) represents a triple pattern (p1, p2, p3) (e.g. Pat(?id,ebay:Response.searchResult.item.title, ?title) for
line (9) of Figure 6). The resulting event of Pat(p1, p2,p3) is triggered when the attached triple of the received event matches the
triple pattern, i.e. all literals in the triple pattern are also in the attached triple at the same position and the variables are only
bound to one value. An environment is attached to the resulting event, where the variables of the triple pattern are bound to the
corresponding values of the considered triple. For example, Pat(?id, ebay:Response.searchResult.item.title, ?title) triggers an event with
attachedenvironment{(id,ebay:book1),(title,“title1”)}forthetriple(ebay:book1, ebay:Response.searchResult.item.title,”title1”),
but triggers no event for the triple (ebay:book1, ebay:price, 22).

Operator   Pat
(p1,p2,p3)

Input:     Event t with attached triple t.S=(s
1
,s

2
,s

3
)

Helper
op
:  E={(x,v)|i {1,2,3} x=pi pi is a variable v=s

i
)};

     if(( j {1,2,3}:(p
j
 is a variable) (p

j
=s

j
)) (n,v

1
) E: (n,

           v
2
) E:v

1
=v

2
) then op E;

5. The join operator Join represents a join of environments of received events of several operands (e.g. one join operator for the
triple pattern operators representing the triple patterns from line (8) to (9) in Figure 6). An environment of a received event of one
operand is joined with all environments of previously received events of the other operands. The Join operator triggers events
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with all joined environments of the received environment and all previously received environments of the other operands
whenever the join condition is fulfilled. The join condition requires that variables with the same name (which are called join
partners) are bound to the same value.

Operator Join
Init:    i {1,...,num}:SE

i
={}; // SE

i
 are multisets!

Input:   Event t
i
 with attached environment, where i {1,...,num}

Actions: SE
i
= SE

i
t
i
.E;

         Helper
trigger

;
Delete:  SE

i
 = SE

i 
- t

i
.E;

   Helper
delete

;
Helper

op
: E { s

1
... s

num
| j {1,...,num}- {i}:s

j
SE

j
s
i
=t

i
.E (n,v

1
)

         s
1

... s
num
: (n,v

2
) s

1
... s

num
:v

1
=v

2
}:op E;

6. The filter operator Selexpression evaluates a filter expression expression based on the environment of the received event in
order to transmit the environment to its succeeding operators or to discard this environment.

Operator  Sel
expression

Input:    Event t with attached environment

Helperop: if(expression(t.E)) then op t.E;

7. The Optional operator joins the environments, which are attached to the events of its two operands, where the second
operand is transformed from an optional graph pattern, and triggers the joined environments afterwards. After the RDF data
stream has been closed, the Optional operator triggers the environments received from events of the first operand, which have
not been joined so far with the environments from the second operand.

Operator Optional
Init:    SE

1
={};SE

2
={};SE

joined
={}; // SE

1
,SE

1
 and SE

joined
 are multisets!

Input:   Event t
i
 with attached environment, where i {1,2}

Actions: SE
i
 = SE

i
t
i
.E;

   (e
1
,e

2
) {(s

1
,s

2
)| j {1,2}-{i}:s

j
SE

j

         s
i
=t

i
.E (n,v

1
) s

1
s
2
: (n,v

2
) s

1
s
2
:

         v
1
=v

2
}:{SE

joined
 = SE

joined
e
1
;trigger e

1
e
2
;}

Delete:  SE
i
=SE

i
-t

2
.E;

         (e
1
,e

2
) {(s

1
,s

2
)| j {1,2}-{i}:s

j
SE

j

   s
i
=t

i
.E (n,v

1
) s

1
s
2
: (n,v

2
) s

1
s
2
:

         v
1
=v

2
}:{SE

joined
 = SE

joined
-e

1
;delete e

1
e
2
; }

Final:   E SE
1
-SE

joined
:trigger E;

         computeResult: E SE
1
-SE

joined
: trigger E;

         computeResult;
         E SE

1
-SE

joined
: delete E;

The projection operator ProjectionV excludes those bindings of an environment of a received event, which are not contained in
V. For example, we use Projection{?id, ?title, ?bid, ?avg, ?min, ?max, ?sum} for the SELECT clause (except DISTINCT and the select-
expressions for aggregation functions for which we have own operators) in line (3) and (4) of Figure 6.

Operator Projection
V

Input:   Event t with attached environment
Helperop:op{(n,v)|(n,v) t.E n V};
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8. The distinct operator Distinct represents the option DISTINCT in SELECT clauses (as in line (3) of Figure 6). The distinct
operator triggers the succeeding operator(s) with the environments of received events, if the environment is different from
environments of previously received events.

Operator Distinct
Init: E

previous
={};

Input: Event t with attached environment

Actions: if(t.E E
previous

) then {E
previous

=E
previous

t.E; trigger t.E;}
Delete: if(t.E E

previous
) then {E

previous
=E

previous 
-t.E;delete t.E;}

9. The union operator Union triggers the unchanged environments of each received event of different operands.

Operator Union
Input:   Event t with attached environment
Helper

op
:opt.E;

10. The Bind operator adds a binding to the environments of each received event. The binding typically contains the computation
of a select-expression such as lupos:average(?bid) AS ?avg in line (3) of Figure 6.

Operator Bind
expression

 
AS ?v

Input:   Event t with attached environment
Helper

op
:opt.E {(v,expression(t.E))};

11. Every operator graph has a Result operator as leaf. The events for the output operator Result contain the results of the
operator graph, such that the operator Result triggers the application with the environments of each received event in order to
transmit the resultant bindings of the operator graph. If the operator retrieves a computeResult event, then the application is
informed that the current result is a valid intermediate result (which considers also the correct result of optional operators).

Operator Result
Input:   Event t with attached environment
Helper

op
:opt.E;

7. Related Work

We divide the related contributions into those dealing with data streams in general and those especially for Semantic Web
streams:

7.1 Data Streams in general
The Chronicle [23] data model introduced data streams by describing chronicles as append-only ordered sequence of tuples and
an algebra operating over chronicles as well as over traditional relations. Distributed stream management is supported in
OpenCQ [26], NiagraCQ [11] and Aurora [6], which evolved into the Borealis project [1]. [4] addresses continuous queries over
data streams, which evolved into the development of the CQL [2] [3] [27] query language tailored for data streams. [24], [25] and
[5] deal with mining data streams.

Especially [5] extensively considers data aggregation in streams. Rewriting techniques for streaming aggregation queries are
discussed in [14].

7.2 Semantic Web Streams
We have proposed a SPARQL engine processing finite data streams in [21] and have there defined corresponding logical and
physical operators. To the best of our knowledge, our contribution in [21] reports the first streaming SPARQL engine. At that
time, we did not support window functions. [10] firstly introduced a window-based processing of RDF streams. [7] and [8] have
further extended the syntax of SPARQL by aggregates and timestamp functions, but restrict the functionalities by allowing only
one Window per stream.Apart from supporting the aggregates and timestamp functions, we also allow several windows per
stream. [28] describes a first approach to reasoning on data streams.
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8. Summary and Conclusions

Our demonstration [13] shows the importance of streaming query engines in data-stream applications. By using the RDF data
stream and its querying language SPARQL, our monitoring system obtains big benefits in realtime data processing, and it
provides users with the capabilities of observing, analyzing and predicating the behavior and pattern of eBay buyers and
sellers. Furthermore, our system can also stepwise display the internal processes of querying RDF streams, which helps ones
better and easier understand the RDF stream processing technology.
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