
Journal of Digital Information Management � Volume 5 Number 3 � June 2007 99

Empirically Validating Software Metrics for Risk Prediction Based on Intelligent Methods*

Zhihong Xu1, Xin Zheng1, Ping Guo2, Senior Member, IEEE
1 Image Processing and Pattern Recognition Laboratory
Beijing Normal University, Beijing 100875
China.
2 School of Computer Science
Beijing Institute of Technology, Beijing 100081, China
Image Processing and Pattern Recognition Laboratory
Beijing Normal University, Beijing 100875
China.
pguo@ieee.org

2 To whom all communications should be addressed

* This work was supported by the grants from the National Natural
Science Foundation of China (Project No. 60275002, 60675011).

ABSTRACT: The software systems which are related
to national science and technology projects are very
crucial. This kind of systems always involves high
technical factors and has to spend a large amount of
money, so the quality and reliability of the software
deserve to be further studied. Hence, we propose to
apply four intelligent classification techniques most
used in data mining fields, including Bayesian belief
networks (BBN), nearest neighbor (NN), rough set (RS)
and decision tree (DT), to validate the usefulness of
software metrics for risk prediction. Results show that
comparing with metrics such as Lines of code (LOC)
and Cyclomatic complexity (V(G)) which are traditionally
used for risk prediction, Halstead program difficulty (D),
Number of executable statements (EXEC) and Halstead
program volume (V) are the more effective metrics as
risk predictors. By analyzing obtained results we also
found that BBN was more effective than the other three
methods in risk prediction.

Categories and Subject Descriptors
D. 2.4[Software/Program Verification]; D 2.8 [Software Metrics]
Multimedia Databases; D.2.9 [Software Management]
General Terms
Software reliability, Software systems, Software quality and reliability
Keywords: Software metrics, Bayesian belief networks, decision
tree, nearest neighbor, risk prediction.
Received 30 November 2006; Revised 15 February 2007; Accepted
12 March 2007

1. Introduction
The software systems of national science and technology
projects are very important all the time. Quite different from
commercial software systems developed in company, they
are full of new developed high technology under investigation
and always used to implement some specific tasks which
are very significant and have strict requirement for the
reliability and quality of these systems. So the reliability and
quality of the software needs to be seriously considered.
Various kinds of code measurements can be quite useful in
obtaining information about the risk of the software. In the
early period of software testing, there are no other informa-
tion than software metrics which are a crucial source of in-
formation for decision-making and can help us have an un-
derstanding of the risk of the software system, so we can
use the metrics to analyze the system, predict its risk, and
then calculate the time needed for software testing or deter-
mine whether the whole system can be released or not.

Many researchers have analyzed the relationships between
software metrics and the quality of the software systems.
Ping Guo et al. [9] used Expectation-Maximum (EM) algorithm
to develop a model for predicting software quality by only
employing software size and complexity metrics. Gyimothy
et al. [10] as well as Basili et al. [11] both have done
researches on the object-oriented metrics and got the similar
results. Besides logistic regression used by Basili et al. [11],
Gyimothy et al. [10] applied machine learning techniques
(decision trees and neural networks). Other researchers
used different methods. All in all, the methods they used fall
into the following main categories: association analysis [13],
clustering analysis [9], [14], classification and regression
analysis [10, 11, 15].
In order to find some relationships between the risk of the
software and the metrics extracted from the code of the
national project related software system, in this paper, we
applied four classical intelligent classification methods which
were most used in data mining fields, namely Bayesian belief
networks (BBN) [1, 2, 3], nearest neighbor (NN) [4] rough set
(RS) and decision tree (DT) [5], [6], to predict the risk of the
core source code of a spectrum processing software system
which is a “863” National Project related to the Large Sky
Area Multi-Object Spectroscopic Telescope (LAMOST) Project
in China. In this paper, we mainly studied core algorithms of
this software system which was coded with C++ language,
and studied the risk of every function in the software system.
In order to perform our analysis, we have taken complete
records during the software development process, especially
in the test stage. A metric extraction tool named Krakatau
Professional [7], which was a fully–featured software metric
tool, designed for source code quality and software metrics
specialists, was adopted in the analysis. Krakatau
Professional for C/C++ are industry strength software metrics
tool for organizations committed to delivering maximum
quality and can extract the metrics of projects, files and
functions.
It was found when comparing with extracted metrics such as
Lines of code (LOC) and Cyclomatic complexity (V(G)) which
were traditionally used for risk prediction [8], [9] in this kind of
software systems, Halstead program difficulty (D), Number
of executable statements (EXEC) and Halstead program
volume (V) were more useful. At the same time, by data
analyzing we also found that BBN was more effective than
the other three methods in risk prediction.
The organization of this paper is as follows: In the next sec-
tion, we will describe the metrics suite obtained from
Krakatau Professional and also state our hypotheses about

 Journal of Digital
 Information Management

100 Journal of Digital Information Management � Volume 5 Number 3 � June 2007

their expected connection with risk. In Section 3, we will
present the results of our experiments in applying Bayesian
belief networks, nearest neighbor, rough set and decision
tree models to risk prediction. In last section, we will present
our conclusions and the considerations for future work.

2. Metrics
In this section, we will give the descriptions of the metrics
obtained by Krakatau Professional tool. This tool can extract
more than twenty metrics of functions, but we only chose
twelve of them, which are easy to understand and commonly
used for risk prediction. The detail descriptions of these
twelve metrics are as follows:
• Code: CDENS
Name: Control density
Description: CDENS = CONTROL / NSTAT. Control density
represents the percentage of control statements in the code.
• Code: CONTROL
Name: Number of control statements
Description: A count of the number of control statements in
the function. Every occurrence of a control keyword (such as
if, else, while, switch, case, etc.) causes this count to be
incremented by 1.
• Code: D
Name: Halstead program difficulty
Description: Halstead measure of how compactly the function
implements its algorithms. It shows how difficult this
function’s code is to understand.
• Code: V
Name: Halstead program volume
Description: Halstead volume for the function. Calculated
as: V = Nlog2n.
• Code: EXEC
Name: Number of executable statements
Description: A count of the number of executable statements
in the function. Every statement that is not a control statement
(see CONTROL) causes this count to be incremented by 1.
• Code: LOC
Name: Lines of code
Description: Number of lines in this function, including
source, white space and comments.
• Code: N
Name: Halstead program length
Description: Halstead program length (N) for this function is
calculated as N1 + N2.
N1 = Total number of operators.
N2 = Total number of operands.
• Code: NSC
Name: Number of semicolons
Description: A count of the number of semicolons in this
function excluding those within comments and string literals.
This is useful for approximating “logical lines of code”.
• Code: NSTAT
Name: Number of statements
Description: NSTAT = CONTROL + EXEC.
• Code: SLOC
Name: Source lines of code
Description: Number of source lines in this function,
excluding white space and comments. This is not a count of
semicolons or distinct statements, but a count of physical
lines that contain source code.
l

• Code: V(G)
Name: Cyclomatic complexity
Description: Cyclomatic complexity (V(G)) is a measure of
the complexity of the function’s decision structure. It is the
number of linearly, independent paths and therefore, the
minimum number of paths that should be tested.
• Code: n
Name: Halstead program vocabulary
Description: Halstead program vocabulary (n) for this function
is calculated as n1 + n2.
n1 = Number unique or distinct operators.
n2 = Number unique or distinct operands.
All the definitions of metrics are from the metrics extraction
software. In order to validate the above metrics as quality
indicators, their expected relationship with risk must be
validated. The experimental hypotheses to be tested are, for
each metric, as follows:
CDENS hypothesis: A function with higher density of control
statement than its peers is more fault-proneness than they
are. (Null hypothesis: A function with higher density of control
statement than its peers is no more fault-proneness than
they are.)
CONTROL hypothesis: A function with more number of control
statements than its peers is more fault-proneness than they
are. (Null hypothesis: A function with more number of control
statements than its peers is no more fault-proneness than
they are.)
D hypothesis: A function that implements its algorithms more
compactly than its peers is more fault-proneness than they
are. (Null hypothesis: A function that implements its algorithms
more compactly than its peers are no more fault-proneness
than they are.)
V hypothesis: A function with bigger volume than its peers is
more fault-proneness than they are. (Null hypothesis: A
function with bigger volume than its peers is no more fault-
proneness than they are.)
EXEC hypothesis: A function with more number of executable
statements than its peers is more fault-proneness than they
are. (Null hypothesis: A function with more number of
executable statements than its peers is no more fault-
proneness than they are.)
LOC hypothesis: A function with more lines of codes than its
peers is more fault-proneness than they are. (Null hypothesis:
A function with more lines of codes than its peers is more
fault-proneness than they are.)
N hypothesis: A function with higher number of all operands
and operators than its peers is more fault-proneness than
they are. (Null hypothesis: A function with higher number of
all operands and operators is no more fault-proneness than
they are.)

Max Min Medium Mean Standard
Deviation

 CDENS 1 0 0.318 0.362 0.125
 CONTROL 248 0 7 20.143 20.420
 D 68.489 0 12.435 17.622 11.871
 V 19607.9 0 504.227 1778.78 1868.648
 EXEC 667 0 14 48.971 53.584
 LOC 1220 4 45.5 107.1 105.583
 N 2558 4 108.5 274.214 264.122
 NSC 580 1 25.5 51.757 50.696
 NSTAT 915 1 22.5 69.114 73.751
 SLOC 1145 4 33 91.434 93.810
 V(G) 197 1 6 16.371 16.498
 n 213 3 35 49.543 30.150

Table 1 Discriptive Statistics of the Functions

Journal of Digital Information Management � Volume 5 Number 3 � June 2007 101

SLOC hypothesis: A function with more number of source
lines of codes than its peers is more fault-proneness than
they are. (Null hypothesis: A function with more number of
source lines of codes than its peers is no more fault-
proneness than they are.)
V(G) hypothesis: A function with higher cyclomatic complexity
than its peers is more fault-proneness than they are. (Null
hypothesis: A function with higher cyclomatic complicity than
its peers is no more fault-proneness than they are.)
n hypothesis: A function with higher number of unique
operands and operators than its peers is more fault-
proneness than they are. (Null hypothesis: A function with
higher number of unique operands and operators than its
peers is no more fault-proneness than they are.)
 In the following, as Gyimothy et al. [10] and Basili et al. [11]
did, we will test the null hypothesis for each metric on LAMOST
and either accept the null hypothesis or reject it (in this case,
we will accept the corresponding alternative hypothesis).

3. Analysis
In this section, we will assess empirically whether the metrics
defined above are useful predictors of fault-prone functions.
We will describe the analyses we performed to discover the
relationships between the values of the metrics and the risk
of the functions of the software system. The core of the
system to be tested in this paper includes about 70 primary
functions and about 8000 lines of codes. Table I provides
common descriptive statistics of the metric distributions. The
system is a medium system. In the test stage, we only tested
40 functions and used the results from the 40 functions to
predict risks of the left functions. During the test, we not only
calculated the bugs in each function, but also gave each bug
a risk degree. We divided the risk degree into five levels:
none, low, medium, high, higher. Then we can define a risk
coefficient which is between 0 to 2 for each function by taking
account of both the number of bugs and risk degree of each
bug. In this experiment, we applied both univariate and
multivariate analyses [10], [11]. Univariate analysis is used
to examine the effect of each metric separately, while
multivariate analysis examines the common effectiveness
of all metrics. Firstly, we employed Bayesian belief networks,
which was a statistical classification method. Then we chose
the nearest neighbor method, rough set method and the
decision tree method. Nearest neighbor method and rough
set are able to predict the risk using just one metric and it is
also possible to consider several metrics together for
prediction. In decision tree method, which is more or less
based on statistics, we only predicted the risk using all
metrics, because we must construct a tree in this method,
but one node tree cannot exert the advantages of the decision
tree method for prediction.
In our experiment, we trained the system in two different
ways as Gyimothy et al. [10] did. These are:
1. We considered only two categories: one category which

included the function whose risk coefficient is equal or
less than 1, and the other contained the left functions.
We will use the <low, high> notation for this case.

In our experiment, we applied the method of 5-fold cross-
validated [10] for learning and testing. This means that we
divided the training data into 5 equal parts and then performed
the learning process five times. Each time, we chose another
part for testing and used the remaining four parts for learning.
Then, the average values were calculated from the five
different testing results. We applied this procedure to the
four classification approaches. At the same time, we choose
three measures-accuracy, precision and F_measure to
completely evaluate the results of the four methods. These
measures are defined as

TP
accruracy

pos neg
=

+ (1)

TPprecision
TP FP

=
+

 (2)

TP
recall

TP FN
=

+
 (3)

2* *
_

precision recall
F measure

precision recall
=

+ (4)

where pos is the number of positive samples, neg is the
number of negative samples, TP is number of true positives
and FP is the number of false positives.

 Metrics Accuracy Precision F_measure
 CDENS 75.71% 0.60 0.67
 CONTROL 74.29% 0.59 0.66
 D 81.43% 0.84 0.81
 V 78.57% 0.80 0.80
 EXEC 81.43% 0.82 0.81
 LOC 75.71% 0.64 0.69
 N 78.57% 0.80 0.78
 NSC 77.14% 0.79 0.77
 NSTAT 81.43% 0.82 0.81
 SLOC 72.86% 0.66 0.69
 V(G) 75.71% 0.58 0.78
 n 77.14% 0.80 0.75

Table 2. Result of using BBN for Individual Metrics (2 Categories)

3.1 Bayesian Belief Networks
Fenton et al. [1] used Bayesian belief networks for risk
prediction and found that it had many advantages comparing
with traditional methods which were regression-based.
Bayesian belief networks are powerful tools for modeling
causes and effects in a wide variety of domains. They specify
joint conditional probability distributions. They are compact
networks of probabilities that capture the probabilistic
relationship between variables, as well as historical
information about their relationships. These networks also

2. We considered three categories [12]: one including the
function which had no bugs, another with risk coefficient
between 0 and 1or equal to1, and a category with risk
coefficient greater than 1. We will use the <low, medium,
high> notation for this case.

We compared the results of three methods (BBN, NN and
RS) for individual metric and obtained similar results in all
cases. Also, we compared the results of four methods (BBN,
NN, RS and DT) for all metrics. We will present the results of
the methods once at each time.

NSC hypothesis: A function with more number of semicolons
than its peers is more fault-proneness than they are. (Null
hypothesis: A function with more number of semicolons than
its peers is no more fault-proneness than they are.)
NSTAT hypothesis: A function with more number of
statements than its peers is more fault-proneness than they
are. (Null hypothesis: A function with more number of
statements than its peers is no more fault-proneness than
they are.)

102 Journal of Digital Information Management � Volume 5 Number 3 � June 2007

 Metrics Accuracy Precision F_measure
 CDENS 57.14% 0.33 0.42
 CONTROL 57.14% 0.33 0.42
 D 58.57% 0.40 0.47
 V 60.00% 0.46 0.50
 EXEC 62.86% 0.52 0.53
 LOC 58.57% 0.44 0.48
 N 57.14% 0.36 0.43
 NSC 57.14% 0.36 0.43
 NSTAT 62.86% 0.48 0.52
 SLOC 57.14% 0.42 0.46
 V(G) 57.14% 0.33 0.42
 n 58.57% 0.50 0.52

Table II presents the results of using Bayesian belief
networks for individual metrics in two categories. It shows
that D, EXEC and NSTAT have the same and largest
accuracies (81.43 percent), and their precisions and
F_measures are also much larger than others, especially
D, which has the largest values (0.84 and 0.81 separately).
The analyses above confirm that D is the best predictor for
risk proneness. Although SLOC and CONTROL have
accuracies more than 50 percent, they are much lower than
75 percent while those of others are higher than this value.
Especially, precision and F_measure of CONTROL are the
smallest. So SLOC and CONTROL can not be used as good
predictors in this case. The results of other seven metrics
are worse than D, EXEC and NSTAT, but better than SLOC
and CONTROL.
Table III shows us the results of using Bayesian belief
networks for individual metric in three categories. From Table
III, we can find that EXEC has the largest accuracy, precision
and F_measure values, so in this case, EXEC can be used
as the best predictor. NSTAT is also good except that
precision is a little lower. n has good precision and
F_measure values, 0.50 and 0.52 separately, but its accuracy
is a little lower. Therefore, n is a better predictor than other
metrics except EXEC and NSTAT. From the two tables, it is
easy to find that dividing the functions into two categories
using these metrics independently by BBN is better than
dividing them into three.
Table IV is the results of using Bayesian belief networks for
all metrics including two and three categories. When all
metrics are used to classify these functions, it is found that
the results of dividing them into two categories are better
than dividing into three. Although applying several metrics
(such as D, EXEC, NSTAT) singly in Bayesian belief networks
have higher accuracy, precision and F_measure values than
applying all metrics in the case of two categories, it is simple
to see that in the remaining situations using all metrics has
a much better effect than using individual one.

From Table V, we know that V has the largest accuracy and
F_measure, although its precision is a little lower than that
of D. Therefore, it must be the best predictor in this case. D is
also better than other metrics, because it has the largest
precision, and its accuracy and F_measure are the second
highest separately. EXEC and N have the similar and better
results (accuracy is 74.29 percent, precision is 0.77 and
F_measure is 0.74). LOC is not as good as EXEC and N, but
better than n as predictor. The accuracies, precisions and
F_measures of SLOC, V(G), NSTAT and CDENS are lower
than those of others, hence, they seem less useful.
Table VI is the results of using nearest neighbor for individual
metric in three categories. From Table V, we can see that N
has the largest accuracy, precision and F_measure.
Therefore, we can conclude that N is the best predictor in
this case. V has the second largest accuracy, precision and
F_measure. So V is useful for prediction too. The accuracies
of the CDENS, SLOC, V(G) and NSTAT are significantly
smaller than the others, and also their precisions and
F_measures are lower as they are in two categories in which

Metrics Accuracy Precision F_measure
 CDENS 70.00% 0.68 0.68
 CONTROL 72.86% 0.75 0.71

 D 74.29% 0.79 0.75
 V 77.14% 0.78 0.78
 EXEC 74.29% 0.77 0.74
 LOC 74.29% 0.73 0.73
 N 74.29% 0.77 0.74
 NSC 72.86% 0.79 0.72
 NSTAT 67.14% 0.67 0.67
 SLOC 64.29% 0.67 0.65
 V(G) 65.71% 0.68 0.65
 n 74.29% 0.75 0.74

Table 3. Result of using BBN for Individual Metrics (3 categories)

Table 5. Result of using NN for Individual Metrics (2 categories)

Categories Accuracy Precision F_measure

2 78.57% 0.80 0.80

3 62.86% 0.50 0.54

Table 4. Result of using BBN for ALL metrics

3.2 Nearest Neighbor
In this section, we will present our results of employing
nearest neighbor method to predict the risk of a function with
the help of metrics as predictors. Nearest neighbor
classifiers are based on learning by analogy. They are
comparatively simple and easy to do. Nearest neighbors
classifiers are instance-based or lazy-learners in that they
store all of the training samples and donot build a classifier
until a new (unlabeled) sample needs to be classified.
Instance based learning (also called memory-based
learning) is a non-parametric inductive learning paradigm
that stores training instances in a memory structure on which
predictions of new instances are based. The approach
assumes that reasoning is based on direct reuse of stored
experiences rather than on the application of knowledge
(such as models or decision trees) abstracted from
experience. In our experiment, the most similarity between
the new instance and a sample in memory indicatesthat the
new instance belongs to the class of the sample. Table V
and Table VI show the results of using only one metric by this
method with two and three categories separately.

offer consistent semantics for representing causes and ef-
fects (and likelihoods) via an intuitive graphical representa-
tion on which learning can be performed. A Bayesian belief-
network is a directed acyclic graph (DAG) with a conditional
probability distribution for each node. The DAG structure of
such networks contains nodes representing domain vari-
ables, and arcs between nodes representing probabilistic
dependencies. On constructing Bayesian networks from data
sets, we use nodes to represent data attributes.

Journal of Digital Information Management � Volume 5 Number 3 � June 2007 103

SLOC is the worst while CDENS in three categories.
Therefore, CDENS, SLOC, V(G) and NSTAT are also less
helpful in this prediction. V and N are the better predictors
than others in this classification.
We also use all metrics together in this method to classify
the functions into two categories and three categories
respectively. Table VII presents the results. Using the twelve
metrics together for prediction has the accuracy as high as V
in two categories, but higher precision and lower F_measure
than those of V. Therefore, when we need, we can choose all
metrics together for prediction in this method. Classifying
the functions into three categories is not as advisable as two
categories. The values of using all metrics together in three
categories are very low.

3.3 Rough Set
Rough set theory can be used for classification to discover
structural relationships within imprecise or noisy data. It
applies to discrete-valued attributes. Continuous-valued
attributes must therefore be discredited prior to its use. Rough
set theory is based on the establishment of equivalence
classes within the given training data. All of the data samples
forming an equivalence class are indiscernible, that is, the
samples are identical with respect to the attributes describing
the data. Given real-world data, it is common that some
classes cannot be distinguished in terms of the available
attributes. Rough sets can be used to approximately or
“roughly” define such classes. A rough set definition for a
given class is approximated by two sets- a lower
approximation of C. The Lower approximation of C consists
of all of the data samples that, based on the knowledge of
the attributes, are certain to belong to C without ambiguity.
The upper approximation of C consists of all of the samples
based on the knowledge of the attributes, cannot be
described as not belonging to C. The lower and upper
approximations for a class C are shown in Figure 1, where
each rectangular region represents an equivalence class.
Decision rules can be generated for each class. Typically, a
decision tables is used to represent the rules.

Metrics Accuracy Precision F_measure
CDENS 37.14% 0.43 0.37
CONTROL 52.86% 0.53 0.50
D 50.00% 0.53 0.49
V 57.14% 0.58 0.56
EXEC 50.00% 0.50 0.49
LOC 57.14% 0.49 0.55
N 60.00% 0.63 0.60
NSC 54.29% 0.61 0.51
NSTAT 48.57% 0.42 0.45
SLOC 44.29% 0.44 0.41
V(G) 45.71% 0.49 0.43
n 55.71% 0.49 0.47

Categories Accuracy Precision F_measure
2 77.14% 0.80 0.76
3 48.57% 0.51 0.47

Table VIII gives the results for the two categories classification
using only one metric. As can be seen, D has the highest
values (72.85 present, 0.71 and 0.67) , once again confirming
that D is the best predictor. EXEC and V are a little worse
than D, but better than other metrics, which indicates EXEC
and V are not bad predictors. The results of LOC are also not
bad, only lower than D, EXEC and V. the values of CDENS
and n are more or less equal and these values are
acceptable, only n’s F_measure higher than that of CDENS.
Similar with CDENS and n, N and NSC have the same
accuracy (58.57 percent) which is not high. The other values
of NSC are better than those of N’s. In this case, V(G) has
the worst accuracy (51.43%) and the other values are not
high (0.55 and 0.51 for precision and F_measure
respectively), so it is a poorer predictor in this case.
CONTROL and NSTAT are only a little better than V(G).
Therefore, they are also not good predictors.
We also performed the experiment, using rough set to classify
the functions into three categories (see Table IX). It is clear
that classifying functions into two categories are better than
three as same as the BBN and NN. D, again, is the best
predictor with the highest values. V is just a little poorer than
D, but better than the remained metrics. NSTAT, N, SLOC,
LOC and CONTROL all have the accuracy more than 50
percent and their precision and F_measure are not high.
NSC and CDENS have the similar results. The accuracies of

Metrics Accuracy Precision F_measure
CDENS 60.00% 0.52 0.50
CONTROL 57.14% 0.59 0.57
D 72.85% 0.71 0.67
V 70.00% 0.67 0.64
EXEC 71.43% 0.61 0.60
LOC 61.43% 0.54 0.51
N 58.57% 0.59 0.58
NSC 58.57% 0.64 0.59
NSTAT 52.86% 0.53 0.52
SLOC 58.71% 0.63 0.53
V(G) 51.43% 0.55 0.51
n 60.00% 0.52 0.51

Metrics Accuracy Precision F_measure
CDENS 50.00% 0.33 0.28
CONTROL 51.43% 0.34 0.28
D 58.57% 0.49 0.32
V 57.14% 0.37 0.31
EXEC 48.57% 0.30 0.28
LOC 52.85% 0.30 0.26
N 54.29% 0.42 0.35
NSC 50.00% 0.33 0.30
NSTAT 55.71% 0.41 0.32
SLOC 52.86% 0.36 0.33
V(G) 48.57% 0.31 0.30
n 48.57% 0.45 0.37

Categories Accuracy Precision F_measure
2 61.57% 0.60 0.61
3 41.43% 0.33 0.29

Table 6. Result of using NN for Individual Metrics (3 categories)

Table 7. Result of using NN for ALL Metrics
Table 10. Result of using RS for ALL metrics

Table 8. Result of using RS for individual metrics (2 metrics)

Table 9. Result of using RS for individual metrics (3 metrics)

104 Journal of Digital Information Management � Volume 5 Number 3 � June 2007

Table X provides us the results of using rough set to do
multivariate analysis. The values of two categories are much
better than those of three. When we classify the functions
into two categories using rough set, some univariate
accuracies (D, V and EXEC) are better than that of mutivariate
while only the precisions and F_measures of D and V are
higher that that of multivariate. In the case of three categories,
the results of multivariate experiment are poorer than those
of univariate. Therefore, classifying the functions into three
categories is not as advisable as two categories using rough
set.

3.4 Decision Tree
In this section, we employed decision tree to predict the risk
of a function with the help of all metrics as predictors. Decision
tree (DT) is one of the most popular and inductive learning
algorithms. It is like a tree structure of flow chart. The nodes
inside of the tree correspond to the test of an attribute, and
the links (linking attribute values and the leaves) present the
output of a test, while the leaves represent the classes or the
classification of the classes. To induce a DT, the most
important attribute (according to an attribute selection criteria,
such as information gain, GainRatio, etc.) is selected and
placed at the root; one branch is made for each possible
attribute value. This divides the samples into subsets, one
for each possible attribute value. The process is repeated
recursively for each subset until all samples at a node have
the same classification, in which case a leaf node is created.
To classify a sample we start at the root node of the tree and
follow the path corresponding to the sample’s values until a
leaf node is reached and the classification is obtained. To
prevent overtraining DT is typically pruned. The most popular
DT learning algorithm is Quinlan’s C4.5 [6]. We have used
the Weka [5] implementation of the C4.5 algorithm in our
experiments with information gain as the attribute selection
criterion.
Suppose that there are a total of m classes denoted by C={C1,
C2,…, Cm}, at a particular node in the tree, and there be N
training samples represented by,

(a(1), b(1),…; t(1)), (a(2), b(2),…; t(2)),…, (a(N), b(N),…; t(N))

high>), 52.86 percent for the second. From the precision
and F_measure, we can see that DT can be used for
prediction effectively.

Categories Accuracy Precision F_ measure
 2 72.86% 0.75 0.72
 3 52.86% 0.48 0.47

Comparing Table XI with Table X , TableVII and Table IV, it can
be found that for LAMOST using DT is not the better choice
(because its accuracy is lower than that of BBN and NN, its
72.86 percent while BBN’s and NN’s 78.57 percent and 77.14
percent separately).

3.5. Discussion and the Validation of the Hypotheses
In this section, we will study the results described in the
previous sections to validate our hypotheses. We summa-
rized the descriptive values (only 2 categories) of the three
models in Table XII. Because dividing the functions into two
categories is much better than into 3 categories, we only

where, a(i), b(i),…are vectors of n attributes and t(i)”C is the

class label. Of the N examples,
kCN belong to class Ck. The

decision rule at the node splits these examples into V
partitions, or V child nodes, each of which has N(v) samples.
In a particular classification, the number of samples of class

Ck is denotes by)(v
Ck

N . The information gain resulting from

splitting the rules bases on attribute A can be written as,

)]log()()([

)]log()([)(

)(

)(

1
)(

)(

1

)(

1

v

v
C

m

k
v

v
C

V

v

v

C
m

k

C

N
N

N
N

N
N

N
N

N
N

AGain

kk

kk

∑∑

∑

==

=

−−

−=

 (5)

In the experiment of DT, when we assign m=2, the result is
about two categories, while m=3 about three categories.
Table XI presents the results of using decision tree for all
metrics in two and three categories. As can be seen, DT for
dividing the functions into two categories is better and its
accuracy is 72.86 percent in the first classification (<low,

Metrics

CDENS

CONTROL

D

V

EXEC

LOC

N

NSC

NSTAT

SLOC

V(G)

 n

All
All
All
All

BBN
NN
RS

BBN
NN
RS

BBN
NN
RS

BBN
NN
RS

BBN
NN
RS

BBN
NN
RS

BBN
NN
RS

BBN
NN
RS

BBN
NN
RS

BBN
NN
RS

BBN
NN
RS

BBN
NN
RS

BBN
NN
D T
RS

75.71%
70.00%
60.00%
74.29%
72.86%
57.14%
81.43%
74.29%
72.85%
78.57%
77.14%
70.00%
81.43%
74.29%
71.43%
75.71%
74.29%
61.43%
78.57%
74.29%
58.57%
77.14%
72.86%
58.57%
81.43%

 67.14%5
2.86%

72.86%
64.29%
58.71%
75.71%
65.71%
51.43%
77.14%
74.29%
60.00%
78.57%

0.60
0.68
0.52
0.59
0.75
0.59
0.84
0.80
0.71
0.80
0.78
0.67
0.82
0.77
0.61
0.64
0.74
0.54
0.80
0.77
0.59
0.78
0.79
0.64
0.82
0.67
0.53
0.66
0.67
0.63
0.58
0.68
0.55
0.74
0.80

 0.52
 0.80
 0.80
 0.75
 0.60

0.67
0.68
0.50
0.66
0.71
0.57
0.81
0.75
0.67
0.80
0.78
0.64
0.81
0.74
0.60
0.69
0.73
0.51
0.78
0.74
0.58
0.77
0.72
0.59
0.81
0.67
0.52
0.69
0.65
0.53
0.65
0.65
0.51
0.75
0.74
0.51
0.78
0.76
0.72
0.61

77.14%
72.86%
61.57%

Model Accuracy Precision F_measure

 Table 11. Result of using DT for ALL Metrics

EXEC, V(G) and n are lower than 50 percent, only 48.57 per-
cent, so they are not effective in this classification.

 Table 12. Summary of Accuracy, Precision and F_measure

Journal of Digital Information Management � Volume 5 Number 3 � June 2007 105

consider the 2 categories. From Table XII we can see that all
accuracies of the metrics are more than 50 percent, so the
results of classification can be accepted. Using the num-
bers in TableXII and the initial data of samples after statisti-
cal study, we can check the hypotheses.
CDENS hypothesis: In all methods of BBN, NN and RS,
CDENS’s accuracies, precision and F_measure are a little
lower than most metrics including using all metrics except
that CONTROL, N, NSC, NSTAT, SLOC and V(G). The results
of N and NSC are only lower than those of CDENS in RS.
SLOC and V(G) have a worse effect than CDENS, while
CONTROL and NSTAT are worse in two of the three methods.
So although CDENS is effective for risk prediction, it is not
good enough if take as a predictor. With the related numbers
and initial data, we rejected the null hypothesis of CDENS
and accept the alternative hypothesis.
CONTROL hypothesis: CONTROL has the same situation
with CDENS. Its accuracy, precision and F_measure in BBN
and RS are a little lower than those of CDENS while higher
in NN, so we can conclude that CONTROL is also not a good
enough predictor. Similar to CDENS, we rejected the null
hypothesis of CONTROL and accepted the alternative
hypothesis.
D hypothesis: The results of D in all methods are significant,
especially having the highest accuracies (81.43 percent and
72.58 percent), precisions (0.84 and 0.71) and F_measures
(0.81 and 0.67) in BBN and RS respectively. Although in NN
its accuracy and F_measure are not as high as V, it has the
largest precision. We can say that D is the best predictor.
Taking into account these results and initial data, we rejected
the null hypothesis of D and accepted the alternative
hypothesis.
V hypothesis: V also has the good results with high accuracy,
precision and F_measure in all three methods. Although its
results are a little lower than D’s in BBN and RS , its accuracy
and F_measure are higher than those of D in NN. So we can
see that it is also a good predictor. With the related numbers
and initial data, we rejected the null hypothesis of V and
accepted the alternative hypothesis.
EXEC hypothesis: The results of EXEC are like those of D.
The little differences between them are their precisions and
F_measures, specifically, those of D are higher in all
methods. Although EXEC may not as good as D in risk
prediction, we also can conclude that EXEC is an effective
predictor. After analyzing these numbers and initial data, we
rejected the null hypothesis of EXEC and accepted the
alternative hypothesis.
LOC hypothesis: The precisions and F_measures in BBN
and RS are a little smaller, especially in RS (only 0.54 and
0.51), and the accuracy is not significantly high in all methods,
so it is not a good enough predictor. Considering the results
and the initial data, we rejected the null hypothesis and
accepted the alternative hypothesis.
N hypothesis: N has the same accuracy (78.57 percent) and
precision (0.80) with V in BBN while F_measure is a little
smaller. But in NN and RS, N has a little lower result than V.
So we can make the conclusion that N is not a bad predictor.
With the results and the initial data, we rejected the null
hypothesis of N and accepted alternative hypothesis.
NSC hypothesis: The results of NSC are more or less equal
to those of N, so like N, NSC is not a bad predictor. After
studying the values and initial data we rejected the null
hypothesis and accepted the alternative.
NSTAT hypothesis: The results of NSTAT by using BBN are
good (accuracy 81.43 percent, precision 0.82 and F_measure

 0.81, better not only than those of most metric, but also than
multivariate model), but by using NN and RS are poor
(accuracy 67.14 percent and 52.86 percent, precision 0.67
and 0.53, F_measure 0.67 and 0.52 respectively in two
methods). Therefore, it is difficult to decide whether NSTAT
is a good predictor. We do not know the reason for these big
differences, so it needs further investigation. Overall, though,
we rejected the null hypothesis of NSTAT and accepted
alternative hypothesis after analysis.
SLOC hypothesis: The accuracies (72.86 percent in BBN
and 64.29 percent in NN) of SLOC are the lowest in all the
metrics in both methods. Its two precisions and F_measures
are also quite low, the highest 0.69. And its results in RS is
also not good. Therefore we can conclude that SLOC is not a
good predictor. We also analyzed initial samples, and we
decided to reject the null hypothesis and accept the alternative.
V(G) hypothesis: The results of V(G) is worse than SLOC. Its
accuracy, precision and F_measure in NN are the second
lowest, only better than SLOC and are the worst in RS. So we
also can say that V(G) is not a good predictor. Considering
the values and the initial data, we decided to reject the null
hypothesis of V(G) and accept the alternative hypothesis.
n hypothesis: The results of n are not bad except its precision
and F_measure are a little lower in RS. Its results are
opposite to that of NSC in BBN and NN. In BBN, n has a little
higher values than NSC, but in NN, NSC is better than n. All
in all, n has the similar situation with NSC and they are both
not good enough predictors. Through analysis, we rejected
the null hypothesis and accepted the alternative.
 We also compare the results of the multivariate analyses to
each other. BBN model has slightly better values than those
obtained from nearest neighbor, rough set and decision tree.
The rough set model produced the weakest model with
lowest accuracy, precision and F_measure. We can see in
this kind of software, BBN has the better effect than NN and
RS when using one metrics for classification.

4. Conclusion and future work
Our main observations are following:
1. The three assessment methods (BBN, NN and RS) for
individual metric employed yield similar results.
2. The D metric seems to be the best in predicting the risk of
the functions.
3. The EXEC and V metrics performed fairly well, and because
they can be easily calculated, they seem to be suitable for
quick prediction.
4. N has good values, although worse than D, EXEC and V,
better than the other metrics. And it is also easy to be
calculated.
5. The results of NSTAT in the three methods (BBN, NN and
RS) have significantly differences, so it needs more
investigation.
6. CDENS, CONTROL, LOC, V(G) and SLOC are all not good
risk predictors.
7. NSC and n are not good enough to be quality predictors.
8. In this case, BBN is the best method for classification no
matter whether we use one metric individually or all together.
9. When using univariate metric to do analysis, RS performed
the worst model.
10. When we use all metrics for risk prediction, RS has the
worst effect.
The results of our models are not yet satisfactory, so we
have to analyze the models and examine whether other
metrics can improve them. We will consider some
combination of selected metrics for prediction and find which
combination is more effective. We will also check whether

106 Journal of Digital Information Management � Volume 5 Number 3 � June 2007

multiple models perform better when combined in some
way.

References
[1] Fenton, N., Neil, M (1999). Software Metrics and Risk,
Proc. Second European Software Measurement Conference
(FESMA 99), p. 39-55, October.
[2] Heckerman, D., Geiger, D., Chickering, D.M (1994).
Learning Bayesian Networks: the Combination of Knowledge
and Statistical Data, Technical Report MSR-TR-94-09,
Microsoft Research.
[3] Cheng, J., Bell, D.A., Liu, W (1997). An Algorithm for
Bayesian Belief Network Construction from Data, Proc. AT
@ATAT, p.83-90.
[4] Han, J., Kamber, M (2001). Data Mining – Concepts and
Techniques. Morgan Kaufman Publisher, p. 314–315.
[5] Witten, I., Frank, E (2000). Data Mining –Practical Machine
Learning Tools and Techniques with Java Implementation.
Morgan Kaufmann.
[6] Quinlan, J.R (1993). C4.5: Programs for Machine Learning.
Morgan Kaufmann Publishers, San Mateo, CA.
[7] The Krakatau Professional Homepage http://www.
powersoftware.com/kp/
[8] Rosenbergÿ. L., Hammer, T., Shaw, J (1998). Software
Metrics and Reliability, Proc. Ninth International Symposium
on Software Reliability Engineering (ISSRE 98).
[9] Guo, P., Lyu, M. R (2000). Software Quality Prediction
Using Mixture Models with EM Algorithm. Proc. First Asia-
Pacific Conference on Quality Software (APAQS 2000), p.69-
78.
[10] Gyimothy, T., Ferenc, R., Siket, I (2005). Empirical
Validation of Object-Oriented Metrics on Open Source
Software for Fault Prediction, IEEE Trans. Software Eng., 31
(10) 897-910.

[11] Basili, V.R., .Briand, L.c., Melo, W.L (1996). A Validation of
Object-Oriented Design Metrics as Quality Indicators, IEEE
Trans. Software Eng, 22 (10) p.751-761.
[12] Cherukuri, R (2003). An Empirical Study of a Three-Group
Software Quality Classification Model, M.S. thesis, Florida
Atlantic Univ., Florida, USA.
[13] Pedrycz, W., Succi, G., Chun, M.G., (2002). Association
Analysis of Software Measures, Int. J. of Software Engineering
and Knowledge Engineering, 12 (3) p.291-316.
[14] Pedrycz, W., Succi, G., Musilek, P., X. Bai, X (2001).
Using Self-organizing Maps to Analyze Object Oriented
Software Measures, J. of Systems and Software, 59, 65-82.
[15] Xing, F., Guo, P., Lyu, M.R (2005). A novel method for early
software quality prediction based on support vector machine”,
Proc. of 16th International Symposium on Software Reliability
Engineering, (ISSRE’2005) p. 213-222.

Dr Ping Guo is currently a Professor with the
School of Computer Science at Beijing Insti-
tute of Technology, China and Computer Sci-
ence Department, Beijing Normal University,
China. From 1993 to 1994, he was with the
Department of Computer Science and Engi-
neering, Wright State University, Dayton, USA
as a visiting faculty. His current research in-
terests include computational intelligence,
image processing, software reliability engi-
neering, optical computing, and spectra analy-
sis.

