
Journal of Digital Information Management Volume 5 Number 3 June 2007 167

Stack-based Pattern Matching Algorithm for XML Query Processing

Su-Cheng Haw, Chien-Sing Lee
Faculty of Information Technology
Multimedia University
63100 Cyberjaya, Malaysia
{schaw, cslee}@mmu.edu.my

ABSTRACT: With the popularity of XML as data
exchange over the Web, querying XML data has become
an important issue to be addressed. Since the logical
structure of XML is a tree, establishing a parent-child
(P-C), ancestor-descendant (A-D) or sibling relationship
between nodes is essential for structural query
processing. Thus, we propose using a <self–level:
parent> labeling scheme to encode each element in
the XML database by its positional information. Based
on this labeling scheme, we further propose our
TwigINLAB algorithm to optimize the query processing.
Experimental results indicate that TwigINLAB can
process both path queries and twig queries better than
the TwigStack algorithm on an average of 27% and
14% respectively in terms of execution time using the
XMARK benchmark dataset.

Categories and Subject Descriptors
D. 3.2 [Language Classification]; Exensible languages: H.2
[Database management] H.2.4 [Systems]: Query processing
General Terms
XML, Query processing, XML database, Pattern matching algorithm
Keywords: XML, pattern matching, labeling, query processing,
structural query, twig query
Received 24 December 2006; Revised 21 March 2007; Accepted 27
April 2007

1. Introduction
XML semi-structured documents provide a flexible and
natural way to store data within content. Correspondingly,
there are two types of user queries, namely full-text queries
(keyword-based search) and structural queries (complex
queries specified in tree-like structure) [1]. To cope with
tree-like structures in XML, several XML-specific query
languages such as XPath [2] and XQuery [3] have been
proposed to provide flexible query mechanisms [4].
This paper is concerned with structural queries. There are
two types of structural queries, namely path query and twig
query. Path query defines query on one single element at a
time while twig query defines query on two or more elements.
In other words, path query consists only one leaf node
whiletwig query have two or more leaf nodes. Thus, they are

also known as Simple Path Expression and Branching Path
Expression respectively. In both cases, query nodes may be
elements, attributes or texts. However, query edges for path
query are either parent-child (P-C) or ancestor-descendant
(A-D) relationships, whereas query edges for twig query
pattern may be either P-C, A-D or sibling (preceding and
following) relationships. In XPath notation [2], P-C relationship
is denoted by “/” while A-D relationship is denoted by “//”.
There are two types of sibling relationships, which also
determine the ordering of the relationship; namely preceding-
sibling (denoted by preceding-sibling::*) and following-
sibling (denoted by following-sibling::*). Figures 1(a) and
1(b) show the example of path query and twig query
respectively. The path query evaluates to “find all the titles of
books under publications” while the twig query evaluates to
“find all the book elements that have child named title and
figure”.
The main focus of this paper is on twig query processing.
The flow for path query processing algorithm has been
reported in [5].
Consider the following sample query (as shown in Figure
1(b)):

Q1: /book[/title]/figure

To find matches for Q1, we need to “track existence of all
element nodes with the path /book/title and path /book/
figure”. Using the conventional top-down navigational
approach [6] to process Q1, all downward paths starting
from any book element should be traversed to find out
whether there exists any immediate title element. Next, it
traverses down all other element nodes one by one until it
reaches the figure element. For the next set of matches, it
needs to backtrack to its previous visited book element node
and start the search again. Thus, this is certainly very
exhaustive and inefficient.
Processing such queries may benefit from using the de-
composition-matching-merging approach [4-8]. TWIG-
XSKETCH [7], tree signature [8], MPMGJN [9], Stack-Tree [10]
and TwigStack [11] are examples of query processing using
the decomposition-matching-merging approaches. Both
MPMGJN and Stack-Tree algorithms accept two lists of sorted

publications

book

title

book

figure

XPath

publications/book/title

XPath

publications/book//figure

 (a) (b)

title

Figure 1. Example of (a) path query (b) twig query in XPath notation

 Journal of Digital
 Information Management

168 Journal of Digital Information Management Volume 5 Number 3 June 2007

individual matching nodes and structurally join pairs of nodes
from both lists to produce the matching of the binary relation-
ships. The difference between MPMGJN and Stack-Tree is
that MPMGJN requires multiple scans on input lists for the
matching process. In contrast, Stack-Tree algorithm is more
efficient as it uses stack to maintain the ancestor or parent
nodes and therefore requires only a one-time scan per input
list. However, these approaches still produce large interme-
diate results. To address this problem, Bruno et al. propose
TwigStack [11], a holistic twig join algorithm which uses a
chain of linked stacks to compactly represent the intermedi-
ate results, and subsequently join them to obtain the final
results. However, this algorithm is only optimal for A-D rela-
tionships. In addition, most of these approaches focus on
the matching phase only and still suffer in producing large
intermediate results before the merging phase.

The work presented in this paper is motivated by the following
observation: although TwigStack [11] is optimal to support
queries with A-D relationship, their algorithms still produce
large intermediate results for queries with P-C relationships.
The main problem of TwigStack is in the matching phase
where it pushes all nodes into a chain of linked stacks as
intermediate results as long as the nodes have edges with
A-D relationships. Thus, this algorithm produces large
‘useless’ intermediate results especially for queries with P-
C and mixed relationships (consists both A-D and P-C
relationships). This resulted in higher processing time
required to check for possible merge-able paths in the
merging phase.
Our contribution. Our TwigINLAB algorithm is a
generalization of the stack-based algorithm of [11]. The main
difference is we decompose the twig query into a set of path
queries. In addition, we focus on optimizing all three
decomposition-matching-merging sub-processes. We
introduce a novel robust and compact labeling scheme
consisting of <self–level: parent> to allow quick
determination of the types of relationships among each path
edge, subsequently optimizing the matching phase based
on each relationship and indices (built only once) that restrict
the searching scope and finally reducing the number of
inspections required in the merging phase.
The rest of the paper is organized as follows. Section 2
presents related work. Section 3 presents the createINLAB
encoding algorithm. Section 4 gives an overview flow of the
TwigINLAB algorithm. Section 5 presents the experimental
setup, findings and performance results. Lastly, Section 6
concludes the paper and suggests future work.

2. Related Work
2.1 Labeling Scheme
Several labeling schemes have been proposed to facilitate
faster query processing. They can be categorized into range-
labeling scheme and prefix-labeling scheme. In range-
labeling scheme, the label of a node is interpreted as a pair
of numbers (start position, end position). When a new node
is inserted, the label usually needs to be regenerated. Thus,
the range-labeling scheme is also known as non-persistent
labeling scheme. However, in the prefix-labeling scheme,
the label of a node is single number. Under heavy update,
prefix-labeling scheme may not need to be recomputed. It is
therefore also known as persistent labeling scheme [12].
Some of these methods are discussed below. Nevertheless,
further elaboration can be found in [1].
Most researchers [9, 11, 13] use the range labeling of (begin
: end, level) for an element as the positional representation
of XML elements and texts. A node node1 (node1.begin:node1

.end,node1.level) is an ancestor of node2
(node2.begin:node2.end,node2.level) iff node1.begin <
node2.begin < node2.end < node1.end. Any two nodes is in P-
C relationship, iff the level difference between the two nodes
is 1. This labeling scheme is unable to determine the sibling
relationship efficiently. For instance, to determine whether
any two nodes are of sibling relationship, it needs to search
the parent of a node, and then decide whether another node
is a child of this parent.
Some other labeling schemes are tree location address
[14], simple prefix [15], GRP [12], prime number labeling
[16], ORDPATH [17], BIRD [18] and work done by Gabillon et
al. [19]. In tree location address and simple prefix, each
ancestor node is a prefix of its descendant. A node id (nid) is
the concatenation of the nids through the path from the root
to the respective node. In GRP, each node contains the label
with groupID and a group prefix label, where groupID is an
integer and group prefix label (similar to simple prefix) is a
binary string. In prime number labeling, each non-leaf node
will be given a unique prime number. The label of each node
is the product of its parent nodes’ label (parent-label) and
its own assigned number (self-label). The concept for
ORDPATH is similar to Dewey Order [20], which encodes
the P-C relationship by extending the parent label with a
component for the child. However, ORDPATH reserves the
even numbering for further node insertion. The BIRD labeling
scheme is based on a structural summary similar to
DataGuide [21]. BIRD labeling is compatible with document
order where the nodes visited later in a pre-order traversal
of the document tree have larger BIRD numbers. In addition,
each node has an integer weight, which determines whether
the reconstruction process is necessary. Gabillon et al.
propose using real numbers between each interval number.
Although this accommodates more number of possible
updates, by naturally leaving gaps between successive
values, however, if we use log n bits to represent the floating
point number, then we can only handle at most n updates, in
the worst case, before running out of space. As summary,
although some labeling schemes [17-19] are able to support
dynamic update, they still face the similar problem of having
large labeling sizes especially if the XML tree is dense or the
tree’s structure is skewed.
In our labeling scheme <self – level : parent>, the size of the
labelled node is only 12 bytes. Besides, our labeling is
integer-based. Integer processing is very efficient compared
to that of string or bit-vector. The details on this will be
explained in Section 3.

2.2 Query Processing Using Decomposition-Matching-
Merging Approach
In the first sub-process, there are typically two types of
decomposition methods [7-11, 22]. First, a complex query
pattern can be decomposed into a set of basic binary
relationships between each pair of nodes. Second, it can
be decomposed into a set of path queries.
As for the second sub-process, MPMGJN [9], Stack-Tree [10]
and TwigStack [11] algorithms are based on (docno, begin:
end, level) labeling of XML elements. These algorithms
accept two lists of sorted individual matching nodes and
structurally join pairs of nodes from both lists to produce the
matching of the binary relationships. Polyzotis et al.
decompose the twig query into a set of path queries and
propose methods to reduce the number of intermediate
results by introducing a filtration step based on some notion
of synopses to facilitate query-approximate answers [7]. They
propose both TREESKETCH and TWIG-XSKETCH. On the

Journal of Digital Information Management Volume 5 Number 3 June 2007 169

other hand, Zezula et al. propose a novel technique, tree
signature, to represent tree structures as ordered sequences
of pre-order and post-order ranks of the nodes [8]. They use
tree signatures as index structure and find qualifying patterns
through integration of structurally consistent path query. Some
other approaches performed using indices to aid in speeding
up the query processing include XR-tree [23], Prix [24] and
ViST [25].
Merging together the structural matches in the final process
poses the problem of selecting a good join ordering. Wu et
al. propose a cost-based join order selection of structural
join [26]. Kim et al. suggest partitioning all nodes in an
extent into several clusters [27]. Given two extents to be joined,
they propose filtering out unnecessary clusters in both extents
prior to the joining process.
As mentioned earlier, our TwigINLAB focuses on optimizing
all three sub-processes; decompose the twig query into a
set of path queries, using <self-level:parent> labeling
scheme and index table as look-up to optimize the matching

phase and finally, reducing the number of inspections
required in the merging phase. Further elaboration can be
found in section 4.

3. Encoding XML Data with createINLAB Algorithm
We pre-process the XML tree into a set of streams labeled
with <self–level: parent> for each element occurrence. Thus,
instead of checking for matches against the whole XML tree,
the “qualified” streams are presented as input. In this section,
we will present the createINLAB encoding algorithm
(Algorithm 1), which takes a regular XML document and
generates a set of encoded XML streams; and PCTable, the
index table storing each element’s parent information.
Some basic operations involved in this algorithm (and in
Algorithm 2 and 3) include operation over stack, operation
over hashtable and operation over vector. Operations over a
stack are empty() to examine if the stack contains no entry,
pop() to remove an entry, push() to add an entry, peek() to
peek on the entry at the topmost, elementAt(index) to retrieve

Algorithm1: create INLAB encoding
1. function createINLAB {
2. input : an XML file X
3. output : encoded XML assigned tag
4. /*A stack eleStack to keep track of element sequence.
5. A vector vExtent to store the occurrence of each element in stream
6. A hashtable eleTable to store each distinct element in X.
7. A hashtable PCTable to keep track of each element parent’s information
8. A record with <self-level : parent> */
9. int ptr = 0, level = 0, self = 0, parent = -1
10. curRec = null
11. while (! eof (X)) do {
12. if SAX event = a start tag <T> then {
13. if (tag has yet been stored into eleTable) {
14. create new instance of vector, vExtent
15. eleTable.put(tag, ptr++)
16. }
17. create new instance of record, curRec
18. curRec.self = self++
19. curRec.level = level++
20. if (eleStack.size() > 0)
21. curRec.parent = eleStack.elementAt(eleStack.size()-1).self
22. else
23. curRec.parent = -1
24. int i = eleTable.get(tag).intValue
25. vExtent[i].addElement(curRec)
26. eleStack.push(curRec)
27. }
28. if SAX event = an end tag </T> then {
29. eleStack.pop()
30. curRec = eleStack.peek()
31. level —
32. }
33. }
34. } //end function
35.
36. function output {
37. input : tag in XML file X and cursor position in data stream
38. output : encoded XML data streams(files)
39. create file fileData = (“myData\\”+tag, with read and write mode)
40. int self, level, parent
41. while (as long as cursor NOT end of stream) {
42. self = cursor.getCurSelf
43. level = cursor.getCurLevel
44. parent = cursor.getCurParent
45. writeInt(fileData, self, level, parent)
46. PCTable.put(self, parent)
47. }
48. } //end function

170 Journal of Digital Information Management Volume 5 Number 3 June 2007

the entry at position specified and size() to return the total
entry in a particular stack. Operations over a hashtable
includes get(key) to retrieve each value which belong to the
key and put(key, value) to add an entry into the hashtable.
Operation over a vector is addElement(entry) to add an entry.
For each SAX event, if the start tag is found (lines 12-27),
createINLAB function pushes the tag into eleTable if the tag
has yet been stored into eleTable (lines 13-16). At the same
time, an instance vector vExtent is created. Next, the label for
each attribute such as self, level and parent is generated as
the current record, curRec in lines 18-23. curRec is then
inserted into the vExtent and pushed into eleStack (to keep
track on each element sequence) as shown in lines 25-26.
However, if the end tag is encounter (lines 28-32), an entry is
removed from the eleStack. Thus, the entry at the topmost of
eleStack is now the curRec. For each end tag, the level
counter also decreases by one.
Function output() (lines 36-48) will generate the label based
on the occurrences in vExtent as a set of streams group by
the tag name and an index table, PCTable. Figure 2(a) shows
a sample XML document and its corresponding fragment of
XML streams stored in the eleTable generated during the
createINLAB encoding algorithm. Likewise, figure 2(b)
depicts the fragment of PCTable generated.
Structural relationships between element nodes can be
efficiently determined from the label as follows:

self parent
0 -1
1 0
2 1
… …
9 8
10 8

PCTable

Figure 2. (a) XML documents and fragment of XML streams (b) fragment of index table

1. P-C relationship
node1 is the parent of node2 if and only if node1.self =
node2.parent.
2. Sibling and ordered relationship (predecessor and
successor)
node1 is the sibling of node2 if and only if node1.parent =
node2.parent.
a. node1 is the predecessor node of node2 if and only if
node1.self < node2.self.
b. node1 is the successor node of node2 if and only if node1.self
> node2.self.
3. A-D relationship
node1 is possible as an ancestor of node2 if and only if level
different, leveldiff = node2.level - node1.level >= 1. A multiple
look-up via PCTable (shown in Figure 2(b)) is necessary as
long as the leveldiff > 1 is true to confirm the A-D relationship.
For example, let publications <0-0:-1> be node1 and title <2-
2:1> be node2. The leveldiff between the two nodes is 2. To
determine whether these two nodes is of P-C relationship,
we need to hash PCTable (as illustrated in Figure 2(b)) twice
(two level up). The retrieved node parent attribute is 0 and it
is equal to the self attribute of publications, which is 0 also.
Thus, publications and title is of A-D relationship.

Figure 3. Overall flow of TwigINLAB

Journal of Digital Information Management Volume 5 Number 3 June 2007 171

4. TwigINLAB Processing
Figure 3 illustrates the TwigINLAB processes, which consist
of the analysisQueryPattern(), partitionTwig(), twigJoin(),
mergeTwig() and outputSolution() functions. Below is a brief
explanation on the flow of these functions.
Initially, the query pattern is analyzed using the
analysisQueryPattern() function. For each query edge, if the
twig is of P-C relationship, the parent and child details will
be updated in the twigPC (a hashtable to store parent and
child) repository as depicted in Figure 4. During this process,
each node in the twig query is associated with a stream.
Each stream contains the positional representations of the
node appearance in the XML tree. The nodes in the stream
are sorted by their self attribute, and thus, this will determine
the order of the node to be processed. Associated also with
each node is a stack. Stack is used to store the possible
intermediate results.
Next, the partitionTwig() function takes place. During this
function, the twig pattern is decomposed into two or more
path queries. Starting from the root of the twig query pattern,
for each start tag event, it pushes the tag into twigStack (a
stack to keep track of twig query sequence). When it reaches
an end tag event, it checks whether the current entry at the
top of twigStack is a leaf node. If it is a leaf, the query node
will be added one by one to the vpathList (a vector to store
query nodes in leaf-to-root order) until it reaches the root.
Finally, it will be output in reverse order by the function
reverse(). The final output of this function is a set of path
queries in root-to-leaf order in pq (a hashtable to keep each
distinct path query).
For each path query, it recursively calls the twigJoin() function
(depicted in Algorithm 2). Function twigJoin() is the main
algorithm of TwigINLAB. It recursively calls getNext() function
to get the next node, qString to be processed. At lines 6 –9,
partial answers from the stacks that cannot be extended to
final answers are removed - in the procedure
cleanParentStack() and cleanSelfADStack() - given the
knowledge of the next qString to be processed. Each potential
qString, which may fulfill the matching criteria, is pushed into
the stack by the procedure moveToStack() for further
processing. If qString is a leaf node, the solution should be
output as in lines 11-12. Note that path solutions should be
output in root-leaf order so that they can be easily merged
together to form final path matches (line 12). Once the node
has been processed, lines 13-15 remove the node from the
stack and advance to the next node.
In the getNext() function, if q is a leaf query node (checked by
procedure isLeaf()), the function directly returns to output the
solution (line 24). In line 26, we recursively invoke the
getNext() function until it is terminated by either line 24 or 27.
Path query has only one child per node, thus the procedure
getChild(q) returns the immediate children of node q. In line
27, if any returned node n is not equal to child of q, we
immediately return n. Lines 28-31 skip nodes that do not
contribute to the results, if the two nodes is not in A-D
relationship. Lines 32-33 are the important step to improve
the query processing for twig query with P-C relationship.
TwigStack [11] pushes all nodes into a chain of linked stacks
as long as the nodes fulfill the A-D criteria. However, if a twig
query is in P-C relationship only, this is a certainly insufficient
criterion to filter out unnecessary nodes before the merging
phase. Thus, more time is needed to merge the partial
solutions, which do not contribute to the final solutions. Our
algorithm blocks the unnecessary nodes to be pushed into
the stack. Lastly, lines 35-36 return the next node to be
processed.

Next, these matches are merged back through the
mergeTwig() function (depicted in Algorithm 3). In the
mergeTwig() function, all partial solutions from the twigJoin()
function are merged together to generate the final solutions.
This function begins by comparing each entry in the partial
solutions of two path queries at a time. All the occurrences in
the partial solutions are in sorted order of their self attributes.
If each entry first node is equal, or if the query edge is of P-C
relationship and the second query node is of sibling and
predecessor relationship, the partial solution will be added
to the final solutions. For query edge with A-D relationship, if
the second query node is a predecessor, it will be added as
a final solution. In both cases, the inner loop begins the
iteration from the current j position. Hence, this function skips
the unnecessary iteration of non-feasible partial solutions.
However, if the first node in the second path query is greater
than node1, the next inner loop will begin from position j-1
(for cases where j > 0). Figure 5 illustrates the merging
process.
Finally, the final solutions are output through the
outputSolution() function.

twigPC
 parent child(s)

book [title,1] [figure,0]

Figure 4. Fragment of twigPC generated

Figure 5. The merging process scenario

5. Experimental Evaluation
5.1 Experimental Setup
We have implemented TwigINLAB using Java API for XML
Processing (JAXP). Experiments have been carried out on
the Standard dataset obtained from the XMARK benchmark
project [28]. We evaluated the performance of TwigINLAB as
compared to TwigStack on two main types of queries namely,
path query and twig query. For each type of query, we measure
the performance of both algorithms on (a) Q1:-Query with P-
C relationship (b) Q2:-Query with A-D relationship and (c)
Q3:-Mixed query.
All our experiments are performed on 1.7GHz Pentium IV
processor with 512 MB SDRAM running on Windows XP
systems. All numbers presented here are produced by
running the experiments five times and averaging the
execution times of several consecutive runs.

172 Journal of Digital Information Management Volume 5 Number 3 June 2007

Algorithm 2 : TwigJoin processing

1. Function twigJoin(pathquery) {
2. input : INLAB encoding streams and partitioned twig pattern
3. output: final solutions matches to the twig pattern
4. while (! end()) { //if cursor not end of Tleaf
5. qString = getNext(getRoot())
6. if (qString != getRoot())
7. cleanParentStack()
8. if (qString == getRoot() || stack_size_of_ parent != empty) {
9. cleanSelfADStack()
10. moveToStack()
11. if (isLeaf(qString)) {
12. formPathListStack()
13. pop()
14. }
15. advance()
16. }
17. else advance(qString)
18. }
19. }//end function
20.
21. function getNext(q) {
22. input : current node in process
23. output : node to be process
24. if (isLeaf(q)) return q
25. tempq = getChild(q)
26. n = getNext(tempq) //recursive call
27. if (n != tempq) return n
28. while (! checkAncestor(q, n) {
29. if (getSelf(q) > getSelf(n)) return n
30. advance (q)
31. }
32. if (getPCRelation(q,n) { //hash twigPC table
33. if (getSelf(q) != getParent(n)) advance(q)
34. }
35. if (getSelf(q) > getSelf(n)) return n
36. return q
37. } //end function
38.
36. function checkAncestor(q, n) {
37. input : two nodes
38. output : boolean true or false
39. leveldiff = getLevel(n) – getLevel(q)
40. current = getSelf(n)
41. if (getSelf(n) != eof) {
42. if (leveldiff> 0) {
43. while (leveldiff > 0) {
44. cursorUp = hashPCTable(current)
45. current = cursorUp
46. leveldiff—
47. }
48. if (current = getSelf(q)) return true
49. else return false
50. }
51. return false
52. }
53. return false
54. } //end function

5.2 Evaluation of Performance
Figures 6, 7 and 8 show the execution time of TwigINLAB
and TwigStack for both path and twig query. Figure 6 shows
the execution time of: Q1PQ= text/keyword for path query and
Q1TQ= text[/keyword]/bold for twig query over Standard

dataset by varying the file sizes. From the result, TwigINLAB
outperforms TwigStack in all the test cases by about 28% for
path query and 19% for twig query.

Journal of Digital Information Management Volume 5 Number 3 June 2007 173

Figure 7 shows the execution time of: Q2PQ = mailbox//date
for path query and Q2TQ= mailbox[//date]//emph for twig query
respectively. TwigINLAB performs by about 26% better than
TwigStack for path query and 16% for twig query.
Figure 8 shows the execution time of: Q3PQ = item/
description//keyword for path query and Q3TQ = item/
description[//keyword]//bold for twig query respectively.
TwigINLAB performs about 26% better than TwigStack for
path query and 6% for twig query.

Figure 6. Test Results for Q1.

Figure 7. Test Results for Q2

Figure 8. Test Results for Q3.

From these figures, we draw several observations and
conclusions:-
 • When the twig query contains only P-C edges, TwigINLAB
performs around 23.5% better as compared to TwigStack
(shown in Figure 6). This may be due to the INLAB labeling
scheme, which is optimal to support P-C relationships.
 • Although TwigINLAB still outperforms TwigStack for query
with edges of A-D relationship by around 21%, the difference
is less as compared to query with edges of P-C relationships.
This may be due to the extra time needed to determine
whether the two nodes is in A-D relationship by multiple
lookups on the index table until the ancestor level is reached.
 • For each test case, TwigINLAB increases less drastically
as compared to TwigStack. This shows that TwigINLAB is
more scalable in processing large-scale datasets efficiently.

6. Conclusion
In this paper, we have presented the TwigINLAB algorithm to
optimize all the sub-processes involved in the
decomposition-matching-merging approaches.
Experimental results show that, in terms of execution time,
on average, TwigINLAB performs about 27% better for path
query and about 14% better for twig query compared to the
TwigStack. Also, TwigINLAB is more scalable compared to
TwigStack.
The study can be further extended to compare the
performance of TwigINLAB and TwigStack using larger size
datasets. Hypothetically, the performance of TwigINLAB is
expected to be better as it is more scalable. Besides, we will
conduct experiments to test some of the basic functions of
an XML database such as create, retrieve, update and delete.

References
[1] Haw, S.C., Rao, G.S.V.R.K (2005). Query Optimization
Techniques for XML Databases. International Journal of
Information Technology, 2(1) 97-104.
[2] XPath, XML path language. http://www.w3.org/TR/xpath
(1999).
[3] XQuery, XML query language. http://www.w3.org/TR/xquery
(2002).
[4] Zou, Q., Liu, S., Chu, W.W. (2004). Ctree: A Compact Tree
for Indexing XML Data, In: Proc. of WIDM. 39-46.
[5] Haw, S.C., Rao, G.S.V.R.K (2007). An efficient Path Query
Processing support for Parent-Child Relationship in Native
XML Databases. Journal of Digital Information Management,
2 (2) 82-87.
[6] McHugh, J., Widom, J. (1999). Query Optimization for XML,
In: Proc of VLDB. 315-326.
[7] Polyzotis, N., Garofalakis, M., Ioannidis, Y. (2004).
Approximate XML Query Answers, In: Proc. of SIGMOD. 263–
274.
[8] Zezula, P., Mandreoli, F., Martoglia, R. (2004). Tree
Signatures and Unordered XML Pattern Matching, In: Proc.
of SOFSEM. 122–139.
[9] Zhang, C., Naughton, J., DeWitty, D., Luo, Q., Lohman, G.
(2001). On Supporting Containment Queries in Relational
Database Management Systems, In: Proc. of SIGMOD. 425-
436.
[10] Al-Khalifa, S., Jagadish, H.V., Koudas, N., Patel, J.M.,
Srivastava, D., Wu, Y. (2002). Structural Joins: A Primitive for
Efficient XML Query Pattern Matching, In: Proc. of ICDE. 141-
152.
[11] Bruno, N., Srivastava, D., Koudas, N. (2002). Holistic
twig joins: optimal XML pattern matching, In: Proc. of ACM

174 Journal of Digital Information Management Volume 5 Number 3 June 2007

SIGMOD. 310-321.
[12] Lu, J., Ling, T.W (2004). Labeling and Querying Dynamic
XML Trees, Lecture Notes Computer Science. 2007. 180-
189.
[13] Lu, J., Chen, T., Ling, T.W (2004). Efficient Processing
of XML Twig Patterns with Parent Child Edges: A Look-ahead
Approach, In: Proc. of CIKM. 533-542.
[14] Kimber, W.E (1993). HyTime and SGML : Understanding
the HyTime HYQ Query Language. Technical Report Version
1.1. IBM Corporation.
[15] Cohen, E., Kaplan, H., Milo, T. (2002). Labeling Dynamic
XML Trees. In : Proc. of ACM SIGMOD-SIGACT-SIGART. 272-
281.
[16] Wu, X., Lee, M.L., Hsu, W (2004). A Prime Number
Labeling Scheme for Dynamic Ordered XML Tree. In : Proc.
of ICDE. 66-78.
[17] O’Neil, P., O’Neil, E., Pal, S., Cseri, I., Schaller, G., Westbury,
N (2004). ORDPATHS : Insert-Friendly XML Node Labels.In:
Proc. of ACM SIGMOD. 903-908.
[18] Weigel, F., Schulz, K.U., Meuss, H (2005). The BIRD
Numbering Scheme for XML and Tree Databases – Deciding
and Reconstructing Tree Relations using Efficient Arithmetic
Operations. Lecture Notes Computer Science. 3671. 49-67.
[19] Gabillon, A., Fansi, M (2006). A New Persistent Labelling
Scheme for XML. Journal of Digital Information Management,
4 (2) 112-116.
[20] Tatarinov, I., Viglas, S., Beyer, K.S., Shanmugasundaram,
J., Shekita, E.J., Zhang, C (2002). Storing and Querying
Ordered XML Using a Relational Database System. In : Proc.
of ACM SIGMOD. 204-215.
[21] Goldman, R., Widom, J (1997). Data Guides : Enabling
Query Formulation and Optimization in Semistructured
Databases. In : Proc. of VLDB. 436-445.
[22] Yao, J.T., Zhang, M (2004). A Fast Tree Pattern Matching
Algorithm for XML Query, In: Proc. of IEEE/WIC/ACM. 235-
241.
[23] Jiang, H., Lu, H., Wang, W., Ooi, B.C (2003). XR-tree :
Indexing XML Data for Efficient Structural Joins, In: Proc. of
ICDE. 253-263.

[24] Rao, P.R.,Moon, B. (2004). Prix : Indexing and Querying
XML Using Prufer Sequences, In: Proc of ICDE. 288-300.
[25] Wang, H., Park, S., Fan, W., Yu, P.S. (2003). A Dynamic
Index Method for Querying XML Data by Tree Structure, In:
Proc. of ACM SIGMOD. 110-121.
[26] Wu, Y., Patel, J.M., Jagadish, H.V. (2003). Structural join
order selection for XML query optimization, In: Proc. of ICDE.
443-454.
[27] Kim, J., Lee, S.H., Kim, H-J. (2004). Efficient structural
joins with clusters extents. Information Processing Letters,
91. 69-75.
[28] XMARK : The XML-benchmark project. http://
monetdb.cwi.nl/xml/ (2002)

Su-Cheng Haw received her BSc degree
in 1999, and MSc (IT) degree in 2001
from University Putra Malaysia, Malay-
sia. She was an Analyst Programmer
cum Team Leader in Infortech MSC Sdn
Bhd and is currently a lecturer in Mul-
timedia University, Malaysia. She is
currently pursuing her Ph.D (Informa-

tion Technology) in Multimedia University, Malaysia.
Her research interests include XML database, query
optimization, database tuning, data warehousing, En-
tity-Relationship Approach and web programming.

Dr. Chien-Sing Lee’s research interests
are in data mining, agents, knowledge
representation and management, ontol-
ogy mapping and merging, e-commerce
and e-learning.

