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ABSTRACT:  A novel subspace projection approach was
proposed to improve the robustness of adaptive
beamforming and direction finding algorithms. The cost
function of the signal subspace scaled multiple signal
classification (SSMUSIC) is minimized in the uncer-
tainty set of the signal steering vector, the optimal
solution to the optimization problem is that the
assumed steering vector can be modified as the
weighed sum of the vectors orthogonally projected onto
the signal subspace and the noise subspace. Using
the estimated steering vector with small error to the
true steering vector, the spectral peaks in the actual
signal directions are guaranteed. Consequently, the
problem of signal self-canceling encountered by adap-
tive beamforming due to steering vector mismatches
is eliminated. Simulation and lake trial results show
that the proposed method not only possesses high
resolution performance, but also is robust to a few
steering vector errors. Furthermore, the modified MU-
SIC algorithm outperforms the conventional MUSIC and
SSMUSIC methods excellently.
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1.  Introduction
Multi-channel array signal processing has been widely and
successfully used in radar, sonar, seismology, wireless
communications, audio and speech processing, etc. Adaptive
beamforming and high resolution direction-of-arrival (DOA)
estimation algorithms have received much attention in the
past a few decades, and among which, the minimum
variance distortionless response (MVDR) [1] and multiple
signal classification (MUSIC) algorithm [2] are the most
popular two techniques.
Adaptive beamforming is utilized to enhance the signal of
interest (SOI) corrupted in unwanted interferers and noises.
In order to maximize the signal-to-interference-plus-noise-
ratio (SINR) of the adaptive beamforming, the array steering
vector of the SOI usually needs to be known precisely. It is
well known that the MVDR method may suffer significant
performance degradation even when there are very small
array steering vector errors [3], which may result from many
factors, e.g., signal local scattering, DOA mismatch, small
number of data snapshots, nonstationary propagating
environment, and individual sensor errors of positions, gains
and phases, etc. The performance of adaptive beamforming

is even worse when the SOI is contained in the training data
snapshots.  Therefore, robust beamforming has been a key
issue in array applications when there are signal model
errors.
The most widely used method to improve the robustness of
adaptive beamforming is diagonal loading (DL), for its
simplicity and effectiveness [1], [5]. The idea is to add a scaled
identity matrix to the array covariance matrix prior to inversion,
so that the norm of the weight vector and the white noise
gain are constrained, and the noise eigenvalues are
equalized. The key problem of DL method is how to choose
the proper diagonal loading parameter [4]. Recently, some
worst case performance optimization methods have been
proposed to determine the DL value properly [6]–[8], by which
the array output power is minimized subject to the constraint
that the SOI with steering vectors lying in an uncertainty set
not being suppressed, and hence, the output SINR is
maximized when there are steering vector errors, and the
robustness is improved. Besson et.al [9] had derived the
theoretical SINR performance analysis of the generalized
diagonal loading beamformers when existing random
steering vector errors, it was pointed out in [9] that for higher
uncertainties, the remedy to improve robustness must be to
estimate the steering vector or to obtain additional information
about the actual steering vector, rather than to preserve the
array’s response over a larger uncertainty ellipsoid.
Another popular robust method is the subspace-based
beamformer or the projection approach [10], which uses the
orthogonal projection of the presumed steering vector onto
the signal-plus-interference subspace, instead of the
presumed steering vector. The performance of the subspace-
based beamformer is improved in most steering vector error
cases, but this approach is limited to high signal-to-noise-
ratio (SNR) scenarios and its performance depends on the
low-rank stationary model of the training data.
MUSIC [2] algorithm is a subspace high-resolution DOA
estimation method, and it has been proved that the standard
MUSIC method possesses a certain degree of inherent
robustness to steering vector errors [11]. However, for small
training sample data size, low SNRs, or correlated signals,
the estimated noise subspace (eigenspace) is poorly aligned
with the true noise subspace, which may result in DOA’s
missing or spurious peaks occurring. To mitigate these
shortcomings, a new subspace identification algorithm
called SSMUSIC was proposed in [12], SSMUSIC seeks the
local maxima by the ratio of two quadratic forms in the steering
vector, scaling the MUSIC cost function by the estimated
signal subspace to deal with subspace mismatches. Since
SSMUSIC exploits more information of the true covariance
matrix, it appears to be more robust to low SNRs and small
data sets than MUSIC.
In this paper, we extend the SSMUSIC algorithm to a
constrained optimization problem in the presence of steering
vector errors, and the basic idea is that SSMUSIC or adaptive
beamformer has a local maxima if the steering vector* This work is partially supported by Chinese national defense project
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coincides with the true signal response vector. The
appropriate estimate of the steering vector can be found to
maximize the SSMUSIC spectral function, or to minimize its
reciprocal in the constrained uncertainty set of the steering
vector. It is computationally effective and the performance
improvement is obvious, and the proposed method can be
considered as a generalized subspace projection approach.
The rest of this paper is organized as follows. Section 2
presents the signal model, and the SSMUSIC algorithm and
adaptive beamfoming techniques are briefly reviewed.
Section 3 proposes the new optimized robust adaptive
beamforming algorithm based on SSMUSIC performance
optimization criterion. Section 4 gives some numerical
simulation results that illustrate the good behaviour of the
proposed algorithm. Lake trial results are demonstrated in
section 5, and section 6 concludes the paper.

2.  Signal Model

Consider a uniform linear array (ULA) comprised of M sensors
with element spacing d, the array output signal can be written
as

      = As(t)+n(t)
                                                                                                                                                                                                                                                                
      = a (   o)so (t) + Bsi(t)+n(t)

where, s(t) is the source signal, s0(t) is the expected signal,
si(t) is the J×1 interference signal vector, A is the M×(J+1)
signal-plus-interference steering matrix, M×J matrix B is the
steering matrix of interferences, and n(t) denotes the additive
Gaussian noise vector. The matrix A is as follows:
A=[a(   0), a(    1),...., a (   j)] , where  a(   ) is the array steering
vector with ith element be expressed as , exp(j2      (i-1)d
sin        /       ), in which       is the propagating signal wavelength,
then the array covariance matrix and its eigendecomposition
can be written as

   R = E {xx H} = A R s A H +     n 2 I

  = U   UH = U s   s  U s 
H + U n    n  U n 

H

where Us, Un
  denote the eigenvector matrices of the signal

and noise, respectively, and the diagonal elements of    s,    n
are the associated signal and noise eigenvalues. According
to MUSIC algorithm, A and Us

 span the same signal
subspace, and the MUSIC cost function
 g(    ) = a (    ) H UnUn

Ha(     ) has a local minima in the actual
direction of the incoming signal when the steering vector is
exactly known. However, when there are steering vector
errors, the minima may be away from the true signal direction,
and the null may be not deep enough as to be distinguished.

SSMUSIC is an optional method to improve the performance
of MUSIC [12], especially in low SNRs and short training
data cases. The SSMUSIC cost function is given by

      f (    )  = a H (    ) Pn a (    )/(aH(    )RA
+a(    ))

(1)

(2)

where the numerator of f(   ) is the familiar MUSIC cost function
which measures the energy that resolves in the noise
subspace, and the denominator is a bearing response
function that resolves finer scale information about the signal
subspace. Thus SSMUSIC shows some robustness to the
subspace mismatches since it exploits the full structure of
the array spatial covariance matrix. And Pn=UnUn

H is the
orthogonal projection matrix onto the noise subspace. RA

+ is
the pseudo inverse of the signal covariance matrix RA. RA
and RA

+ are given by [12]:

   RA = R -     n
2 I = ARsA

H

 = Us (     s -     n
2 I ) Us 

H                                            (4)

  RA+ = Us (      S -         n
2I)-1Us

H
   .                               (5)

In practice, the exact covariance matrix R is unavailable.
Therefore, the sample covariance matrix (SCM) estimated
from N data snapshots

R =  --       X (t) XH (t).

is used instead of R. In theory,      is a consistent estimator of
R, in other words, it converges in probability to R [14]. Thus,
(5) is replaced by:

 RA + = U s(   s  -      n
2I)-1US

H  ,

with

where    is the eigenvalues of R̂ .
Perhaps the MVDR algorithm is the most commonly used
adaptive beamforming, it is a spatial filter intending to make
the output power minimized with the constraint that its
response is equal to unity in the SOI direction. The MVDR
criterion can be expressed as [1]:

                                   s.t. (subject to)

Using the Lagrange multiplier method, the solution of (7) is
given by

(8) is also referred to as sample matrix inversion (SMI)
technique. The number N of data snapshots is required to
be larger than the number M of sensors, so that the SCM is
invertible. In order to obtain an average output SINR within
3dB of that of the optimum one, N is needed to satisfy that, N
     2M [13]. To combat the finite sample size effects and other
random steering vector errors, the classical MVDR solution
(8) is modified by adding a positive real factor á to the
diagonal entries of the SCM, i.e., diagonal loading:

 (6)

(7)

(9)

where    is the diagonal loading factor.
The robust beamforming algorithms proposed in [6]–[8] can
be regarded as generalized diagonal loading methods. The
beamforming constraint condition is that the beamformer’s

(3)

1
N

(8)
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response be a little above unity for steering vectors that lie in
an uncertainty ellipsoid being centered around the presumed
steering vector. The corresponding worst case performance
optimized solution is given by [9]

where Q is the generalized diagonal loading matrix, and
ADL represents adaptive diagonal loading. When the ellip-
soid is a sphere, (10) is reduced to (9). To model the uncer-
tainty ellipsoid is very complex as in [8], and from the results
in [6], the performance of the robust Capon beamforming
(RCB) with ellipsoid constraint is not better than that of the
RCB with sphere constraint. So only the sphere constraint
on the steering vector will be considered in this paper.

3.  Proposed Robust Beamforming with SSMUSIC
Performance Optimization

In [11], the MUSIC algorithm was extended to a constrained
minimization problem when there existing steering vector
errors, and it was shown that the extended MUSIC can’t
provide better DOA estimates than the standard MUSIC, but
it has some robustness, i.e., there is a tradeoff between the
robustness and the performance of the estimation bias and
variance. Below, we’ll generalize an extended SSMUSIC
algorithm and apply its results to adaptive beamforming, in
order to obtain robustness against the steering vector errors.

3.1 Constrainedly Optimized SSMUSIC Algorithm
When the signal steering vector is exactly known, the
SSMUSIC can achieve better resolution than standard MUSIC
algorithm, especially in low sample size scenarios [12]. Now
let the assumed steering vector and the true steering vector
be (    >   ) and           , when there are steering vector errors, the
norm of the steering vector error can be bounded by a known
:

When the actual signal steering vector belongs to the
uncertainty set (11), the SSMUSIC cost function must has a
minima along the steering vector, so the robust SSMUSIC
algorithm can be written as a constrained minimization
problem as follows:

s.t.                                      .                                       (12)

Using the fact that  UsUs
H + Un Un

H = I, with I the identity matrix.
We can write

     (13)

where                                           , and f(   ) can be rewritten
as

Inserting (13) in (12) leads to the new constraint condition:

Since the denominator of f(   ) only influences the amplitude,
the signal DOA is mainly determined by the nulls of f, i.e. the
zeros of the numerator. The vector     is taken as                    ,
thus the optimized solution of     is                         ,     can’t
comprise one component which is perpendicular to Un H a.
Otherwise, the value of f(   ) will increase and the constraint
set will decrease, which is the same phenomenon as in
[11]. Using      and     in (14), the minimization problem of (12)
is reformulated as

s.t. .                                                                           (16)

It is obvious that     1 and     2   are confined to an ellipse centered
at coordinate (1,1) as shown in Figure 1, and the half-lengths
of the elliptical axes are                           and                        ,
respectively.
Observing the geometrical relationship between   1 and    2, it
can be concluded that the solution of problem
(16) is

                                                          ,

for                    , whereas when                     , the solution of (16)

is           , and it is obvious to see that      can be chosen
arbitrarily.

Figure 1.  Constrained ellipse of ë1 and ë2

                                                                                        (10)

≥

(14)

(17)

Using (17) in (13), the approximation to the actual steering

vector           can be estimated by:

(18)

To maintain the modulus of the estimated vector      be constant
to be M, which is the modulus of the assumed steering vector
a,  is scaled to

(15)

(11)
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                                                                                  (19)
The advantage of the scaling operation is that the signal
power estimate can be less biased, it’s because that the
array weight vector has the “scaling ambiguity” [6], i.e., wHa=
(1/    )wH(    a), with w the adaptive weight vector to maintain
the signal undistortionless for MVDR beamforming.
Form (18), we can see that the steering vector estimate is
the weighted sum of the projection of the presumed steering
vector a onto the signal plus interference subspace and the
noise subspace, respectively. Thus, the proposed method
can be considered as a generalized projection approach,
which is more robust to the steering vector errors since it
exploits more eigen-structure information.
Using (19) instead of the presumed steering vector a, the
robust SSMUSIC spatial spectral function is given by

which is the reciprocal of the cost function in (12).

3.2 Robust Eigenspace-based Beamforming
The proposed robust eigenspace-based beamforming is to
using (19) instead of the presumed steering vector a in the
MVDR weight vector (8):

4.  Numerical Results

An 8-element uniform linear array with 1m interelement
spacing, which is half-wavelength of the received narrowband
signal with center frequency 750Hz, is considered here. The
underwater sound speed is assumed to be c=1500m/s. The
received noise is modelled as additive temporal Gaussian
white noise with power 0dB. There are two uncorrelated
narrowband sources impinging on the array from   1=0° and
     2=20° relative to the array broadside, respectively. The 0°
signal is the expected signal and the 20° signal is assumed
to be the interference. Three algorithms are compared:
MVDR, diagonal loaded MVDR (LMVDR) and the proposed
robust eigenspace-based adaptive beamforming (R-ES). For
the LMVDR algorithm, the DL factor    is 10 (i.e. 10dB relative
to the background noise). The array output SINRs are
obtained by averaging 100 independent realizations.

4.1 Beam Directivity Comparison
The SNRs of the two signals are set to be 5dB and 10dB.
The number of data snapshots is N=200, and   =0.6 for our
proposed R-ES method. Figure 2 (a) shows the beampatterns
of the three algorithms with no DOA mismatch, i.e., the array
steering angle is 0°, in accordance with the actual signal
direction. It can be seen that the MVDR method has a deeper
null nearby the interference, but its sidelobe level is relatively
higher, and the maximum response axis (MRA) is a little
deviated from the actual source position. The performance
of the proposed R-ES method is similar to that of the LMVDR
but has a deeper null at the interference position.
Figure 2 (b) displays the corresponding beampatterns when
there are DOA mismatch, in this example, the array is steered
to 1°. In this case, the MVDR beamformer forms a null at the
direction of the expected signal, because it is treated as a
interference due to undistortionless response constraint in
the direction of 1°. This is the so called “signal self-cancelling”
for the adaptive weight try to make the output power

minimized, which would suppress the useful signal.  The
contrary is that all the three algorithms have a null in the
interference direction, this is also caused by the power
minimization criterion for the interference direction is far away
from the steering direction. Thus, small errors of the
interferers’ steering vectors have little effect on the
beamformer’s performance. The MRA of the R-ES method is
still well steered to 0°, however, the LMVDR has a larger MRA
deviation despite it has some robustness.

4.2 Spatial Spectra Comparison
In this example, the spatial spectra of the MVDR-like and
MUSIC-like algorithms are compared, respectively.
Figure 3 is the normalized spectra of the MVDR-like
algorithms. It can be seen that, for small steering vector
errors, such as   =0.06, the proposed R-ES method is
reduced to the MVDR algorithm. But for larger     , for example,
       =0.6, the R-ES has a wider spectral peaks near the signal
DOA’s, that is to say that the acceptance angle of the robust
method is widened. Moreover, the output background noise
level is much lower that that of the LMVDR’s, and the
resolution of LMVDR is dropped. We can adjust the parameter
å by a tradeoff between the high-resolution capability and
the robustness.

(a) no DOA mismatch

 (b) 1° DOA mismatch

Figure 2.  Beampatterns comparison with or without DOA
mismatch

Figure 4 demonstrates the superior performance of the
proposed robust method relative to MUSIC and SSMUSIC.
The R-ES method has super-low sidelobes, and super-
directivity for small    . Similar to those in Figure 3, the width of
the spectral peak is increasing as    is increasing, which
shows the robustness to the steering vector errors.
Furthermore, The R-ES method not only has robustness,
but also maintains high-resolution seeing the keen-edged
peaks. SSMUSIC has a lower sidelobe than MUSIC, but its
resolution is somewhat decreased. The MUSIC method has
the highest sidelobe level.

     fH-SSMUSIC (   ) =(    H (    ) RA +    (    )) /    H (    ) Pn    (   ),

(21)

(20)
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Now we consider that the array is suffered from shape
distortion, i.e. element position perturbations, which is
common in towed sonar applications. The position
perturbations of M elements is assumed to be independently,
and identically distributed (i.i.d) random variables, and
mutually uncorrelated each other. Then the coordinate of the
ith element position at the nth snapshot can be written as

(xi(n), yi (n)) = ((i-1)d+    xi (n),    yi  (n))

where   xi(n),   yi(n) are random Gaussian processes with
equal variance, and the standard deviation in this example
is assumed to be 0.08m, which is one percentage of 12.5
wavelengths. Figure 5 (a) shows the DOA estimation root-
mean-square-errors (RMSEs) versus input SNR for 0°
source, the two sources have equal power,     =0.6 is for the
R-ES method. The stochastic Cramér-Rao bound (CRB) [15]
of the bearing estimation is also depicted, which is given by

where D is the derivative matrix of A with respect to    ,
is the orthogonal projection matrix onto the complementary
subspace of A:
                                                               ,

and   denotes the Hardmard-Schur product, Re(·) the real
part. It’s clear to see the performance improvements of the
R-ES algorithm under shape distortion condition.

Figure 3.  Spatial spectra of MVDR-like algorithms

Figure 4.  Spatial spectra of MUSIC-like algorithms

For comparison, Figure 5 (b) shows the corresponding
RMSEs of the 0° source versus SNR without array shape
distortion, the performances of the R-ES method and MUSIC
method are similar, which is a little better than that of the
SSMUSIC algorithm in low SNR scenarios, such as when
SNR is below –10dB, and when the SNR of the received
signal is larger than –7.5dB, the estimation RMSE of R-ES
method is dropped quickly, even below the CRB value. If the
5 (b), steering vector errors bounding parameter   is fixed
when SNR is changing, the RMSE would not drop any more,

from Figure the curve is fluctuating around –35dB, and it will
be larger than the CRB value again when the input SNR
reaches a certain even larger threshold.

 (a) with array shape distortion

 (b) without array shape distortion

Figure 5.  DOA estimation RMSEs of  the 0° source vs. SNR

4.3 SINR Performance for DOA Mismatch Error Case

Besides the beam directivity, another important measure of
the beamformer performance is the SINR, which is given by

where   s
2 is the interested signal power, and as is the

corresponding steering vector.      i+n is the sample covariance
matrix of the interference-plus-noise.
Using the interested signal-free snapshots, we can get the
“optimal” weight vector and the “optimal” SINR. The optimal
weight vector wopt  is given by

             Wopt  =     -1         /(     H     -1      )

Thus, using (26) in (25), we can derive the optimal output
SINR as follows:

  SIN R opt =    s 
2  s   

-1   as

Figure 6 depicts the output SINRs versus SNR when there
are no DOA mismatch and 2° DOA mismatch by 100
independent Monte-Carlo experiments, respectively. From
Figure 6 (a), the SINR of R-ES is nearly identical to that of the
LMVDR’s with no DOA mismatch, and the SINR of MVDR is
increasing with the input SNR. However, even small DOA
mismatches can cause great performance degradation for
conventional MVDR method as shown in Figure 6 (b), and in
this case, the proposed R-ES method outperforms LMVDR
for the improper chosen loading value, and the loading value
is not varying with the SNR and the steering vector errors.
The SINR of the proposed R-ES approaches the optimal.

(22)

(24)

(23)

(26)

(27)

(25)

i+n i+n

i+n
aH
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 (a) no DOA mismatch

(b) 2° DOA mismatch)

Figure 7 shows the array SINR curves versus the number of
snapshots with no DOA mismatch and 2° DOA mismatch,
respectively. The parameter    is 0.6. Without DOA mismatch,
the asymptotic (large snapshots N) performances of R-ES
and LMVDR are similar, and they are much better than that of
MVDR’s, as shown in Figure 7 (a). However, when there are
2° small DOA mismatch, approximately 2dB SINR
improvement is achieved using R-ES method than LMVDR
at the stable state in Figure 7 (b), and the MVDR method is
asymptotically less inefficient, whose SINR is about 11dB
less than that of R-ES method.

Figure 6.  Output SINR vs. SNR

 (a) no DOA mismatch

 (b) 2° DOA mismatch

Figure 7.  Output SINR vs. snapshots

4.4 Performance vs. DOA Mismatch
In this example, we’ll examine the algorithm performance
as the DOA mismatch is changing. Figure 8 demonstrates
the output SINR curves when the value of the DOA mismatch
is varying from –8° to 8°, the SINR of MVDR decreases quickly
when the mismatch is increasing, LMVDR shows some better
performance than MVDR, and a litt le performance
degradation starts occurring when the DOA mismatch being
larger than 4° for the optimal beamformer that using the
signal-free snapshots. However, interestingly and
wonderfully, our proposed method maintains the constant
optimal SINR value among the total mismatched array
steering angle area ranging from –8° to 8°, the best
robustness is obtained.

4.5 SINR Performance for Local Scattering Case
This example corresponds to the scenario where the received
signal of interest is distorted by local scattering effects, e.g.
active sonar targets reflected signals, multipath wireless
propagating environment. The coherent local scattering
signal steering vector can be written as in [9]:

b(   ) represents the steering vector of a plane wave arriving
from    , L is the number of scattering paths, and gk is zero-
mean, i.i.d. random variable with power       g. According to
(28), the covariance matrix of the steering vector errors can
be written as

  Ca = E{(   - a) (   -a) H }

where p (      ) is the probability density function (pdf) of       , the
frequent ly used pdf models are uniform and Gaussian
distributions, which are given as follows, respectively:

where the subscript “u” means the uniform distribution, and
“g” means the Gaussian distribution.    is the normal arriving
angle or central angle,        is the standard deviation of the
scattering angular spread.

Figure 8.  Output SINR vs. SNR (2° DOA mismatch)

For small deviation           , we have

Using (30)–(32), and by some arithmetic manipulations, the
k,lth (1   k,l   M) element of (29) can be derived as

                                                                     ,

 sinc (x) = sin x/x .
(29) can also be written in matrix form:

(28)

(29)

(30)

(31)

(32)

(33)

(34)

(35)

2
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(36)
with

.

Therefore, the scattered signal steering vector for small angular spread
is given by

where u is the zero-mean, unit-variance circular complex Gaussian
vector.
The corresponding SINR for local scattering scenarios is given by

                                                               ,

where Ea denotes the expectation with respect to the pdf of
vector a, and using (27), the averaging optimal SINR is given
as follows:

where Tr(·) denotes the matrix trace, p(a) is the pdf of a.

Experimental conditions: the interference signal from 20° is
assumed to be a plane wave with interference-to-noise-ratio
(INR)=20dB, but the signal of interest from 0° is a local
scattered source with angular spread             =2°, and the array
steering direction is 2°, i.e., 2° DOA mismatch with the actual
signal direction. Figure 9 shows the SINR curves of the
optimal and adaptive beamforming evaluated by (38) and
(39), and the SOI is uniform and Guassian angular spread,
respectively. It’s obvious to see the enhanced performance
of the proposed R-ES approach, and the algorithm behaviors
are similar under the two scattering scenarios.
Figure 10 displays the performance of the test methods
versus the number of snapshots for the fixed sensor
SNR=5dB, note that the SNR in this example is defined by
taking into account only the direct arriving signal path, and
the Gaussian angular spread source is considered here.
Figure 11 compares the output SINR of the test methods
versus the DOA mismatch, which is changing from –8° to 8°,
the R-ES method has the superior robustness against DOA
mismatch and local scattering.

5.  Lake Trial Results
In this section, the algorithm performances are compared
using the towed sonar lake trial data. One narrowband source
signal with 1kHz central frequency impinges on the line array,
and 10 sensors are selected to perform adaptive
beamforming. The snapshots are 1024, and the sampling
frequency was 12kHz, and the parameter å is still chosen as
0.6, and the DL value of LMVDR is 10dB as before.
The spatial spectra of R-ES, LMVDR and MVDR algorithms
are depicted in Figure 12, it is obvious that the R-ES method
outperforms the other two, and the signal power is underes-

(a) uniform angular spread

 (b) Gaussian angular spread

Figure 9.  Output SINR vs. SNR. Steered to 2°,          =2°, INR=20dB,
     = 0.6,

    Figure 10.  Output SINR vs. number of  snapshots

Steered to 2°,        =2°, INR=20dB,   =0.6, Gaussian angular
spread.

Figure 11.  Output SINR vs. DOA mismatch.

s?=2°, INR=20dB, e= 0.6, Gaussian angular spread

timated by MVDR. The R-ES method has the highest resolu-
tion and the effective signal power estimate. The LMVDR
method has higher background noise level due to the im-
precise DL value. Since there are array shape distortions,

  (37)

  (38)

Figure 12.  Lake trial result

(39)
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6.  Conclusions
A novel eigenspace-based robust high-resolution array signal
processing method is proposed based on the extended
SSMUSIC subspace DOA estimation algorithm. This method
effectively combines the spatial selectivity of adaptive
beamforming with the super-resolution property of the
subspace-based algorithm which has the inherent
robustness. Theoretical analysis and numerical results have
shown the performance improvements in beampattern, SINR,
resolution and sensitivity to steering vector errors such as
DOA mismatches, array shape distortions and local
scattering. Furthermore, this method is computationally less
complex and asymptotically efficient.
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