
Journal of Digital Information Management Volume 5 Number 3 June 2007 115

Knowledge-Based Support for Object-Oriented Software Design and Synthesis: a category
theoretic approach

Yujun Zheng 1,2, Jinyun Xue 2, Qimin Hu 1,2

1 Institute of Software, Chinese Academy of Sciences
Beijing 100080, China.
yujun.zheng@computer.org
2 Center of Software Sci. & Tech., Coll. & Univ. of Jiangxi province
Nanchang 330027, China.
fjxue, qiminhug@jxnucie.com

ABSTRACT: To reuse previous knowledge of object-
oriented design and adapt them to solve new problems,
the collaboration relationships and the responsibility
distribution among software objects need to be
thoroughly understood and precisely formulated. The
paper proposes a knowledge-based approach that
employs category theoretic models to formalize and
mechanize objectoriented software design and
synthesis by focusing concern on reasoning about the
interdependency relationships at different levels of
abstraction and granularity. The major benefit of our
approach is twofold: First, it provides an explicit
semantics for formal object-oriented specifications, and
therefore enables a high-level of reusability and dynamic
adaptability. Second, it utilizes the ability of categorical
computations to support automated software
composition and refinement. A prototype tool that
demonstrates the feasibility and effectiveness of our
approach is also presented.

Categories and Subject Descriptors
D. 2.4 [Software/Program Verification]; D 2.8 [Software
Metrics] D.2.9 [Software Management]
General Terms
Software reliability, Software systems, Software quality and reliability
Keywords: Object oriented design, Automated software, Software
quality, Software metrics

Received 30 November 2006; Revised 15 February 2007; Accepted
12 March 2007

1. Introduction
One way to software reuse is to construct and use source
code libraries, which heavily rely upon directory information
and keyword/string search that is often cumbersome and
problematic [18]. Subsequently, many knowledge-based
systems (e.g., [4, 9, 24]) have been investigated for more
sophisticated support mechanisms, which typically have a
knowledge representation of reusable software components,
and provide knowledge-based functions to query, browse
and edit the components to meet user requirements. The
advantages of using a knowledge-base approach include:
semantic retrieval and proliferation, information aggregation
and intelligent index for components, and use of classification
and inheritance to support updates.
However, users of those software reuse systems generally
face with both a terminological and a cognitive gap [14].
Focusing concern on providing a formal definition of basic
object-oriented concepts by extending current ADT-based
specification language such as Z [23], B [1], and Slang [7],
some formal models (e.g., [8, 11, 17]) have been proposed
to facilitate the representation, understanding and validation
of object-oriented knowledge, but they sti l l lack a
mathematically precise semantics for reasoning about the
collaboration relationships and responsibility distribution
among software objects, which are recognized as key to

effective design and reuse of object-oriented design (OOD)
frameworks in current component-based software
development.
As a “theory of functions”, category theory offers a highly
formalized language for object-oriented specifications, and
is especially suited for focusing concern on reasoning about
relations between objects. Also, it is sufficiently abstract that
it can be applied to a wide range of different specification
languages [26]. In this paper we present a knowledge-based
approach that employs a category theoretic framework to
model object-oriented software design and synthesis. This
approach
• formally defines and represents the application domain
knowledge with theory-based specifications at different levels
of granularity;
• explicit models the similarities and variations among
software components at different levels of abstraction;
• utilizes category theoretic computations to generate new
software components out of existing ones automatically.
In consequence, our approach enables a high level of
reusability and dynamic adaptability and features
mechanizable specification composition, refinement and
code generation. We also implement a prototype of a
knowledge-based tool which has been successfully built
into MISCE [27] to support object-oriented software
development.
The remainder of the paper is structured as follows: Section
2 briefly introduces the basic notions of category theory.
Section 3 describes the theory-based framework for formally
representing object-oriented design and synthesis. Section
4 depicts the categorical operations for modeling the
interdependency relationships among object-oriented
designs and constructions for achieving the high-level
reusability through theoretic computations. Section 5
presents an overview of our prototype tool with case studies
of design pattern and domain-specific framework reuse.
Section 6 concludes with discussion and future work
directions.

2. Category Theory
Category theory, with its increasing role in computer science,
has proved useful in the semantic investigation of
programming languages [5]. First we introduce some basic
notions of category theory, sufficient to understand the paper.
Definition 1 A category C is
– a collection ObC of objects
– a collection MorC of morphisms (arrows)
– an operation id (identity) assigning to each object b a
morphism idb such that dom(idb) = cod(idb) = b
– an operation ± (composition) assigning to each pair f, g of
arrows with dom(f) = cod(g) and arrow f ± g such that
dom(f ± g) = dom(g), cod(f ± g) = cod(f)

 Journal of Digital
 Information Management

116 Journal of Digital Information Management Volume 5 Number 3 June 2007

– an operation o (composition) assigning to each pair f, g of
arrows with dom(f) = cod(g) and arrow f o g such that
dom(f o g) = dom(g), cod(f o g) = cod(f)
– identity and composition must satisfy: (1) for any arrows f,
g such that cod(f) = b = dom(g), we have idbof = f and
goidb = g; (2) for any arrows f, g, h such that dom(f) = cod(g)
and dom(g) = cod(h), we have (f og)oh = f o(goh)
Definition 2 A diagram D in a category C is a directed graph
whose vertices i I are labeled by objects di ObC and
whose edges e E labeled by morphisms fe MorC.
Definition 3 Let C be a category, a; b ObC and f : a
b :
– f is epic iff, g o f = h o f = g = h
– f is monic iff, f o g = f o h = g = h
– f is isomorphic iff, there exists g : b a such that f o g = ida
and g o f = idb
Definition 4 Let D be a diagram in C, a cocone to D is
– a C-object x
– a family of morphisms {fi: di x i I } such that for each
arrow g: di dj in D, we have fj o g = fi, as shown in Figure
1(a).
Definition 5 Let D be a diagram in C, a colimit to D is a
cocone with C-object x such that for any other cocone with
C-object x0, there is a unique arrow k: x x0 in C such that
for each di in D, fi: di x and f’ i : di x0, we have
k o fi = f’ i , as shown in Figure 1(b).
Definition 6 An w -diagram in a category C is a diagram with
the structure shown in Figure 1(c).
Definition 7 Let C and D be categories, a functor F: C D is
a pair of operations Fob: ObC ObD, Fmor:
MorC MorD such that, for each morphism f: a b, g: c d in
C,
– Fmor(f): Fob(a) Fob(b)
– Fmor(f o g) = Fmor(f) o Fmor(g)
– Fmor(ida) = idFob(a)
Definition 8 Let C and D be categories and F, G: C D be
functors, a natural transformation : F G is a function that
assigns each object a in C a morphism na : Fob(a)
Gob(a) in D, such that for each morphism f: a b in C
we have n b o Fmor(f) = Gmor(f) 0 n a, as shown in Figure 1(d).
Definition 9 Given a family of morphisms f1, f2 fn Mor[a;
b], a coequalizer of them is an object e and a morphism
i Mor[b; e] such that (1)i o f1 = i o f2 = : : : = i o fn; (2) for each
h Mor[b; c], h o f1 = h o f2 = : : : = h o fn, there exists k Mor[e;
c] such that k o i = h, as shown in Figure 1(e).

3. Design and Synthesis Framework
As mentioned above, category theory studies “objects” and

“morphisms” between them: objects are not collections of
“elements”, and morphisms do not need to be functions
between sets; any immediate access to the internal structure
of objects is prevented. This is quite similar to the concepts
in object-oriented methodology. Moreover, the objects of a
metacategory correspond exactly to its identity arrows, and
hence it is technically possible to dispense altogether with
the objects and deal only with arrows (that is, the subject
could be described as learning how to “live without elements”
[21]). In this section, we lay down the foundations of object-
oriented categorial framework, on top of which OOD
knowledge are modeled and implemented. More details on
the proof theory and the connections with temporal logic can
be found in [11].

3.1 Basic Constructions
Category theory has been proposed as a framework for
synthesizing formal specifications based on works by
Goguen [13]. Following are basic notions of category
localizations, in which a specification is the finite presentation
of a theory, and a signature provides the vocabulary of a
specification.
Definition 10 A signature =< S, >, where S denotes a set
of sort symbols, and - denotes a set of operators. In more
detail, =< C, F, P >, where C is a set of sorted constant
symbols, F a set of sorted function symbols, and P a set of
sorted predicate symbols.
Definition 11 SIG is a category with signatures as objects,
and a signature morphism is a consistent mapping from
one signature to another.
Definition 12 A specification SP =< ; O >, where is a
signature, and O is a (finite) set of axioms over .
Definition 13 SPEC is a category with specifications as
objects, and a specification morphism between specification
< 1; O1 > and specification < 2; O2> is a mapping of signature
 1 into signature 2 such that all the axioms in O1 are
translated to theorems in O2.

3.2 Object-Based Categories
Now we show how to use notions of category theory to
abstract OOD at the levels of object, class, meta-class, and
meta-meta-class. Following constructions are an extended
version we previously developed in [28]:
Definition 14 An object signature =< ; A; >, where =<
S, > is a (universe) signature, A is an S* X S-indexed family
of attribute symbols, and is an S* -indexed family of action
symbols.
Definition 15 OBJ-SIG is a category with object signatures
as objects, and an object signature morphism is a consistent
mapping from one signature to another.

Figure 1. Basic diagrams in category theory

∈ ∈
∈

∈
∈

∈

∈

∈

∈

∈

Journal of Digital Information Management Volume 5 Number 3 June 2007 117

Definition 16 An object specification OSP =< ; >, where is
an object signature, and O is a (finite) set of -axioms.

Definition 17 OBJ-SPEC is a category with object
specifications as objects, and a morphism between
specification < 1; O1 > and specification < 2; O2> is a
mapping of signature 1 into signature 2 such that all the
axioms in O1 are translated to theorems in O2.
In the object-oriented world, there seem to be two different
notions of class: a sort of abstraction and an extensional
collection of objects [10]. Here we construct the category of
classes out of the category of objects in the second sense,
and so are the category of meta-classes and the category of
meta-meta-classes.
Definition 18 Let D1, D2 . . .Dn be -diagrams in OBJ-SPEC
and COLi be colimits for Di (i = 1; 2 : : : n), then CLSSPEC
is a category with COLi as objects, and a class morphism
between COL1 and COL2 is the colimit of all morphisms in
OBJ-SPEC that between an object in D1 and an object in D2.
Definition 19 Let D1, D2 . . .Dn be -diagrams in CLS-SPEC
and COLi be colimits for Di(i = 1; 2 : : : n), then M-CLS-SPEC
is a category with COLi as objects, and a meta-class
morphism between COL1 and COL2 is the colimit of
morphisms in CLS-SPEC that between a class in D1 and a
class in D2.
Definition 20 Let D1, D2 . . .Dn be -diagrams in M-CLS-
SPEC and COLi be colimits for Di(i = 1; 2 : : : n), then MM-CLS-
SPEC is a category with COLi as objects, and a meta-meta-
class morphism between COL1 and COL2 is the colimit of
morphisms in M-CLS-SPEC that between a meta-class in
D1 and a meta-class in D2.
Functors from CLS-SPEC to OBJ-SPEC can be treated
syntactically as instantiations or refinements. Similarly, we
can consider a meta-class as a parameterized specification
from a collection of class specifications, and a meta-
metaclass from meta-class specifications. Thus functors
from M-CLS-SPEC to CLS-SPEC are the refinements from
metaclasses to classes, and functors from MM-CLS-SPEC
to M-CLS-SPEC the refinements from meta-meta-classes to
meta-classes. Figure 2(a) illustrates the bottom-up way of
object-oriented categories construction.
Definition 21 E-OBJ-SPEC is a discrete category with
(executable) programs as objects. Functors from OBJ-SPEC
to E-OBJ-SPEC just take each O ObOBJ-SPEC to (one of)
its implementation(s) P ObE-OBJ-SPEC, as shown in
Figure 2(b).

3.3 Framework-Based Categories
Taking an OOD framework as a community of objects/
classes/meta-classes/meta-meta-classes, it is
straightforward to construct new categories out of object-
based categories by composing their objects and relations
(morphisms).
Definition 22 MM-FRM-SPEC is a category with diagrams in
MM-CLS-SPEC as objects, and a morphism between two
meta-meta-frameworks, namelyMM-FRM1 andMM-FRM2, is
the colimit of morphisms in MM-CLS-SPEC that between a
meta-meta-class of MM-FRM1 and a meta-meta-class of MM-
FRM2.
Definition 23 M-FRM-SPEC is a category with diagrams in
M-CLS-SPEC as objects, and a morphism between two meta-
frameworks, namely M-FRM1 and M-FRM2, is the colimit of
morphisms in M-CLS-SPEC that between a meta-class ofFigure 2. Constructions of object-oriented categories

Figure 3. Constructing framework-based categories

M-FRM1 and a meta-class of M-FRM2.
Definition 24 FRM-SPEC is a category with diagrams in CLS-
SPEC as objects, and a morphism between two frameworks,
namely FRM1 and FRM2, is the colimit of morphisms in CLS-
SPEC that between a class of FRM1 and a class of FRM2.
Definition 25 I-FRM-SPEC is a category with diagrams in
OBJ-SPEC as objects, and a morphism between two
implemented frameworks, namely I-FRM1 and I-FRM2, is the
colimit of morphisms in OBJ-SPEC that between an object
of I-FRM1 and an object of I-FRM2.
Definition 26 E-FRM-SPEC is a discrete category with
(executable) programs as objects, and that functors from I-
FRM-SPEC to E-FRM-SPEC just take eachO ObI-FRM-SPEC to
(one of) its implementation P ObE-FRM-SPEC.

As illustrated in Figure 3, the left refinement process of class-
based specifications is brought to the right refinement
process of framework-based specifications through
compositions at different levels of granularity.
4. Operations and Constructions
As shown in the above section, a knowledge base of
categorial specifications consists of two main types of
representations: Individual software objects (including
specifications of meta-meta-classes, meta-classes,
classes, objects, and executable objects) and composed
software designs (including specifications of meta-meta-
frameworks, meta-frameworks, frameworks, implemented
frameworks, and executable frameworks). Correspondingly,
software reuse can be achieved by constructing:
• Morphisms between individual software objects.
• Functors between composed software designs.

O

118 Journal of Digital Information Management Volume 5 Number 3 June 2007

4.1 Composition and Refinement
Under this framework, category theoretic computations can
be applied to support automatic reuse of software (specifi-
cation) designs and refinements. First, the colimit operation
can be used for constructing refinements mechanically. That
is, an existing refinement (morphism) f: A1 A2 can be
applied to a new specification S1 by constructing a morphism
e: A1 S1 which classifies S1 as having A1-structure [22]. In
consequence, the new specification S2 can be obtained by
computing the colimit of e and f instead of performing the
refinement g, as shown in Figure 4(a).
Second, the basic principle to specify a system is to build the
specification for each component separately, and then use
the colimit operation to compose them together. Consider
the specifications (namely A1 and A2) of two interactive
components, the morphisms between them form a new
specification, namely R, which expresses the
interdependency relationships between the two components.
By computing the colimit of f1: R A1 and f2: R A2, the
composed specification (namely S) is automatically worked
out1, as shown in Figure 4(b). This approach not only allows
us to reason about interactions between software objects,

1 For two interdependent specifications, the shared specification R
is empty (a null object), and the colimit is just the combination of
the two specifications.

Figure 5. Implement a new framework by categorical computations

Figure 6. The architecture of the prototype tool

Figure 4. Modular refinement and composition

but also helps to maintain the traceability of each shared
area that may evolves at a different rate [26].
In conclusion, at the object level, it needs two colimit
operations to generate the implementation of the composed
specification from scratch, one for composition and one for
refinement. The number of colimits needed at the class level,
meta-class level, and meta-meta-class level are three, four,
and five respectively. Such operations can be easily extended
to the composition of more than two components.
However, if the refinements of individual specifications
already exist (e.g., in a knowledge base), the number of
colimit operations needed to generate the implementation
of the composed specification are all two, no matter at which
level. That is, suppose the refinements h1: A1 A1 and h2: A2
 A2 exist in the knowledge base, instead of performing a
refinement S S’,S’ can be obtained by computing the colimit
of f’1 : R’ A’1 and f’2 : R’ A’2, which are calculated by the
composition h1 o f1 o e-1 and h2 o f2 o e -1 respectively (where e
and its inverse e-1 can also be worked out automaticlly), as
illustrated in Figure 4(c). Such constructions can also be
easily scaled up to the paths through more than two levels of
refinements.

Journal of Digital Information Management Volume 5 Number 3 June 2007 119

implements their concrete types with C++ and C#. Those
abstract types are also grouped into basic types (including
simple types, aggregated types, and generic types) and
domain-specific types (including entities, relations between
entities, and constraints on those entities and relations).
Users can query/browse existing types from the library, directly
use them in software design, or generate new types by
constructions illustrated in Section 4.1.
• Domain-specific frameworks. Any domain-specific
language is referred to as a meta-model [19], or a meta-
framework in category M-FRM-SPEC. In consequence, each
model that abstracts one or more parts of a real-world system
in the specific domain is an instance of the language, i.e., a
framework in category FRM-SPEC. Based on the architectural
design and/or reverse engineering of a number of logistic
information systems [25, 30],we elaborately select about thirty
architectural models that frequently occur in the logistic
domain, construct their framework specifications, and save
their refinement paths in the knowledge base for further
reuse.
• Design patterns. A design pattern specification is the
composition of its individual class-template (i.e., meta-class)
specifications while all the properties are preserved [29]. In
this sense, A design pattern can be viewed as a
metaframework in M-FRM-SPEC. We select architectural
patterns from [3, 12] and domain-specific patterns from [15],
model their meta-framework specifications, refine them into
executable programs, and save specifications together with
refinements and final implementations in the knowledge
base. Although users can directly reuse existing frameworks
or patterns in software design, in most conditions they
generate new instances for their specific contexts by
constructions illustrated in Section 4.2.

By capturing successful OOD experiences, we can extract
and abstract design knowledge, formally specifies the design
(typically at the level of framework or meta-framework),
rigorously implement them into executable products, and
save the “standard” refinement history in the knowledge base.
Next time encountering the similar problem in another
context, instead of implementing a new refinement path, we
can mechanically generate the new implementation via
category theoretic computations.
As shown in Figure 5(a), taking a meta-framework M-FRM
from M-FRM-SPEC, if a refinement path f3 o f2 o f1 already
exists, by constructing a functor h1: FRM1 FRM2, we can
work out the refinement path for FRM2 without refining g3 o g2
o g1 manually. In detail, g1 is the composition of h1 o f1, while
g2 and h2 can be obtained by computing the colimit of h1 and
f2, so are g3 and h3.

2

Furthermore, if the refinement f1: M-FRM FRM1 and g1: M-
FRM FRM2 are both epimorphisms, FRM2 itself can be
constructed exclusively from h1 and FRM1 because h1 is an
isomorphism, which is proved as follows:
For morphisms id1: FRM1 FRM1, id2: FRM2 FRM2, h1: FRM1
 FRM2 and h’1: FRM2 FRM1, we have: (1) id1 o f = f = h’1 o g
= h’1 o h1 o f; (2) id2 o g = g = h1 o f = h1 o h’1 o g. Since f and g are
epic and therefore right cancelable, we have h’1 o h1 = id1 and
h1 o h’1 = id2, and thus h1 is an isomorphism, as shown in
Figure 5(b).

5. A Prototype Tool
We build a prototype tool that implements the knowledge-
based approach for object-oriented software design and
synthesis, whose architecture is shown in Figure 6. The tool
is also a plug-in of MISCE, a domain-specific software
development environment, which has been successfully
applied in several industrial logistic information systems.

2 Although the morphisms g3 and h3 in Figure 5(a) can be worked out
automatically via category theoretic computations, in most cases it
is sufficient for us to generate the products at the level of
implemented framework, since the refinement g3 can always
performed by compilers of programming languages, and h3 is just
an isomorphism between binary codes.

5.1 Knowledge Base
The knowledge base saves reusable OOD specifications at
both the meta-framework level and the framework level
together with their “standard” refinements. Such knowledge
can be divided into the following three parts:
• Elementary types. The knowledge base contains an
elementary library, which models a variety of abstract type
specifications at the levels of meta-class and class, and

4.2 Framework Reuse

5.2 Knowledge base editor
In the knowledge base, all the specifications and their
refinements are formally described in CASL (common
algebraic specification language) [6]. The tool provides an
integrated GUI (see Figure 7) which contains an editor for
users to manipulate the knowledge base. Currently, it allows
the users to create or modify the specifications of elementary
types and domain-specific frameworks through unified
modeling language (UML) diagrams, and automatically
generates/regenerates the relevant refinements. We are now

120 Journal of Digital Information Management Volume 5 Number 3 June 2007

extending the editor to support creating design pattern
specifications at the metaframework level. For domain-
specific frameworks, the users can specify the following six
types of relationships (morphisms) between individual class
specifications:

• SCont(A1;A2): specification A1 contains specification A2.
• SCons(A1;m1;A2): method m1 of specification A1 consumes
A2.
• FCons(A1;m1;A2; f2): method m1 of specification A1
consumes field f2 of A2.
• MCall(A1;m1;A2;m2): method m1 of specification A1 calls
method m2 of A2.
• EDepe(A1; e1;A2; e2): event e1 (invokes one or more
methods) of specification A1 arises after the event e2 of A2.
• SInhe(A1;A2): specification A1 inherits specification A2.
• MOver(A1;m1;A2;m2): method m1 of specification A1 overrides
method m2 of A2.

5.3 Constructor and Generator
When reusing existing domain-specific frameworks or design
patterns in the knowledge base, the users browse/query the
library components, specify morphisms and functors, and
construct new types, frameworks and patterns, which are all
manipulated through UML diagrams and saved as
background extensible markup language (XML) files. In the
prototype tool, the pattern constructor and the domain
framework constructor play the following three roles:
• Providing the GUI for the users to construct new designs by
drag/drop and property alteration.
• Mapping UML diagrams in the GUI to background XML files
[16].
• Parsing XML elements and building corresponding CASL-
based specifications, which are send to the program
generator to generate executable code via category theoretic
computations.

5.3.1 Case Study 1: Domain Framework Reuse
First we show a simple example of domain-specific
framework reuse through categorial constructions and
refinements. Figure 8 illustrate the kernel part of a domain-
specific language (meta-framework), namely
TheManufactory, which has been refined into a system model
(framework), namelyM-FAC1. As shown in Figure 9(a),M-
FAC1 refines each meta-class and meta-relationship of
TheManufactory into exact one concrete class and
relationship respectively. A “standard” model instance
(implemented framework), namely IM-FAC1, is generated
by building class instances into generic lists and relationship
instances into class properties. The kernel code fragment
(in C#) of IM-FAC1 is as follows:

Golbal.Factories = new List<Factory>;
Factory fact1 = new Factory(“Factory1”);
fact1.Workers = new List<Worker>;
fact1.Machines = new List<Machine>;
Worker wor1 = new Worker(“Worker1”);
fact1.Workers.Add(wor1);
wor1.Machines = new List<Machine>;
Machine mac1 = new Machine(“Machine1”);
wor1.Machines.Add(mac1);
fact1.Machines.Add(mac1);
Golbal.Factories.Add(fact1);

Now suppose we need to refine the meta-framework
TheManufactory into a new system model, namely M-FAC2,
which has three instances of meta-class Machine and two
instances of meta-class Worker, as described in Figure 9(b).
To work out the implemented framework ofM-FAC2, we need
to construct a functor which specifiesM-FAC2 has at least
the categorial structure ofM-FAC1. Such a functor H does
exist, and it does not need to take each morphism inM-FAC1
to an M-FAC2-morphism; instead it just consists of the
following parts that take three morphisms to three equalizers
respectively (intra-framework morphisms are labeled in
Figure 9):
• f1 coequalizer(g1; g2; g3)
• f2 coequalizer(g4; g5)
• f3 coequalizer(coequalizer(g6; g7); g8)
In fact, here H it is a homemorphism but does not need to be
an isomorphism. Hence, by computing the colimit of H : M-
FAC1 M-FAC2 and the library refinement F : M-FAC1 IM-
FAC1, the new implemented framework namely IM-FAC2 can
be worked out as follows:

Golbal.Factories = new List<Factory>;
Factory fact1 = new Factory(“Lumbermill”);
fact1.Workers = new List<Worker>;
fact1.Machines = new List<Machine>;
Worker wor1 = new Worker(“Mike”);
fact1.Workers.Add(wor1);
wor1.Machines = new List<Machine>;
Machine mac1 = new Machine(“Lather”);
wor1.Machines.Add(mac1);
fact1.Machines.Add(mac1);
mac1 = new Machine(“Slicer”);
wor1.Machines.Add(mac1);
fact1.Machines.Add(mac1);
wor1 = new Worker(“John”);
fact1.Workers.Add(wor1);
wor1.Machines = new List<Machine>;
mac1 = new Machine(“Planer”);
wor1.Machines.Add(mac1);
fact1.Machines.Add(mac1);
Golbal.Factories.Add(fact1);

Figure 8. Domain-specific language “TheManufactory”

Journal of Digital Information Management Volume 5 Number 3 June 2007 121

5.3.2 Case Study 2: Design Pattern Reuse
Now we consider an example of design pattern reuse. As
illustrated in Figure 10, the design pattern Observer from
[12] is modeled as a meta-framework namely M-FRM, and
its refinement in the knowledge base is FRM1, where two
observers DigitalClock and AnalogClock query the subject
Timer to synchronize their time with the Time’s state. To
construct a new framework FRM2 that represents the
underlying dataset in separate forms of interface, we just
construct a functor H1:
FRM1 FRM2 that contains the following four parts:
• f0 g0

• f1 g1
• equalizer(f2; f3) equalizer(g2; g3; g4)
• equalizer(f4; f5) equalizer(g5; g6; g7)

Thereby, the new implemented framework I-FRM2 is
generated without refiningG2oG1 manually: G1 is the
composition H1 o F1, while G2 and H2 are obtained by
computing the colimit of H1 and F2.

6. Conclusion
Mylopoulos [20] once argued that one important role that
artificial intelligence can play in software engineering is to
act as a source of ideas about representing knowledge that
can improve the state-of-the-art in software information
management, rather than just building intelligent computer
assistants. To reduce the complexities inherent in large-scale
software systems and improve reusability of previous
software designs, knowledge-base techniques need to
employ a mathematically precise semantics for reasoning
about the interdependency relationships and responsibility
distribution among software components.
We propose here a knowledge-based software development
approach that employs category theoretic models to formalize
and mechanize object-oriented software design and
synthesis. The major benefit of our approach is twofold: First,
it provides an explicit semantics for formal object-oriented
specifications, and therefore enables a high-level of
reusability and dynamic adaptability. Second, it utilizes the
ability of categorical computations to support automated
software composition and refinement at different levels of
abstraction and granularity. The prototype tool that

122 Journal of Digital Information Management Volume 5 Number 3 June 2007

implements our approach is also briefly introduced, with case
studies of design pattern and domain-specific framework
reuse. Our ongoing efforts include extending the category
theoretic computations to other software artifacts including
documents, test cases and scripts, and using a UML profile
based formalism [2] to serve as a communication basis
between experts and knowledge engineers during
knowledge acquisition.

7. Acknowledgements
The work was supported in part by grants from NNSF (No.
60573080) and NGFR 973 Program (No. 2003CCA02800)
of China. We are indebted to the anonymous reviewers of
ISDA’06 for their valuable suggestions to improve the content
and the structure of the paper.

References
[1] Abrial, J.R. (1996). The B-Book: Assigning Programs to
Meanings. Cambridge: Cambridge University Press.
[2] Abdullah, M.S., Kimble, C., Paige, R. Benest, I., Evans, A.
(2005). Developing a UML Profile for Modelling Knowledge-
Based Systems. Lecture Notes in Computer Science, vol.
3599, 220-233.
[3] Alexandrescu, A (2001). Modern C++ Design: Generic
Programming and Design Patterns Applied. Reading MA:
Addison-Wesley.
[4] Allen, B.P.,Lee, S.D (1989). A Knowledge-based
Environment for the Development of Software Parts
Composition Systems, In: Proceedings of 11th International
Conference on Software Engineering, Pittsburgh, PA. 104-
112.
[5] Asperti, A., Longo, G (1991). Categories, Types and
Structures: an introduction to category theory for the working
computer scientist. Cambridge: MIT Press. 306.
[6] Bidoit, M., Sannella, D., Tarlecki, A (1998). Architectural
Specifications in CASL, In: Proceedings of 7th International
Conference on Methodology and Software Technology,
Lecture Notes in Computer Science, vol. 1548, 341-357.
[7] Blaine, L., Gilham, L.M., Goldberg, A., Jullig, R., McDonald,
J., Srinivas, Y.V. (Ed.) (1994). Slang Language Manual:
Specware Version Core4. Kestrel Institute.
[8] DeLoach, S.A.,Hartrum, T.C. (2000). A Theory-Based
Representation for Object-Oriented Domain Models. IEEE
Transactions on Software Engineering, 26 (6) 500-517.
[9] Devanbu, P., Brachman, R.J, et al. (1990). LaSSIE: A
Knowledge-based Software Information System, In:
Proceedings of 12th International Conference on Software
Engineering, Nice, France. 249-261.
[10] Ehrich, H.D.,Gogolla, M. (1991). Objects and Their
Specifications. In Proceedings of 8th Workshop on Abstract
Data Types. Lecture Notes in Computer Science, vol. 665,
40-65.
[11] Fiadeiro, J., Maibaum, T. (1991). Describing, Structuring
and Implementing Objects. Rex90 Workshop on the
Foundations of Object Oriented Languages, Lecture Notes
in Computer Science, vol. 489, 274-310.
[12] Gamma, E., Helm, R., Johnson, R., Vlissides J. (1995).
Design Patterns: Elements of Reusable Object-Oriented
Systems. Reading MA: Addison-Wesley. 395.
[13] Goguen, J.A (1991). A Categorical Manifesto.
Mathematical Structures in Computer Sciences, 1(1), 49-67.
[14] Henninger, S. (1994). Using Iterative Refinement to Find
Reusable Software, IEEE Software, 11 (5) 48-59.

[15] Kennedy, G.J. (2004). Design Patterns in Information
System Development, In: Proceeding of 5th Australasian
Workshop on Software and System Architectures, Melbourne,
Australia, 12-18.
[16] Kurtev, I., Berg, K., Aksit, M (2003). UML to XML-Schema
Transformation: a Case Study in Managing Alternative Model
Transformations in MDA, In: Proceedings of the Forum on
Specification and Design Languages, Frankfurt, Germany.
[17] Lu, X.M., Dillon, T.S. (1994). An Algebraic Theory of Object-
Oriented Systems. IEEE Transactions on Knowledge and
Data Engineering, 6 (3) 412-419.
[18] Mi, P.W., Lee, M.J., Scacchi, W (1992). A Knowledge-Based
Software Process Library for Process-Driven Software
Development. Proceedings of IEEE 7th Conference on
Knowledge-Based Software Engineering, Washington. 121-
132.
[19] Microsoft Corp.: Visual Studio SDK September 2006 Help.
Avariable at: http://msdn.microsoft.com/vstudio/dsltools/,
2006-8-18.
[20] Mylopoulos, J., Borgida. A., Yu, E. (1997). Representing
Software Engineering Knowledge. Automated Software
Engineering, 4 (3) 291-317.
[21] Saunders, M.L (1998). Categories for the Working
Mathematician. New York: Springer-Verlag. 314.
[22] Smith, D.R. (1999). Designware: Software Development
by Refinement. Proceedings of 8th International Conference
on Category Theory and Computer Science, The Kluwer
International Series In Engineering And Computer Science.
3-21.
[23] Spivey, J.M (1989). The Z Notation: A Reference Manual.
New York: Prentice Hall.
[24] Wood, M., Sommerville, I. (1998). A Knowledge-based
Software Components Catalogue. Software Engineering
Environments (ed. Brereton, P.). Ellis Horwood Limited. 116-
133.
[25] Wang, J.Q., Wang, K., Zheng, Y.J. (2004). The Application
of CBD Approach in Materiel Support Information
Management System. Journal of Academy of Armored Force
Engineering, 18 (4) 58-61, 70.
[26] Wiels, V., Easterbrook, S (1998). Management of Evolving
Specifications Using Category Theory. Proceedings of IEEE
13th International Conference on Automated Software
Engineering, Hawaii. 12-21.
[27] Zheng, Y.J. and Xue, J.Y (2005). MISCE: A Semi-Automatic
Development Environment for Logistic Information Systems.
Proceedings of IEEE 1st International Conference on Service
Operations and Logistics, and Informatics, Beijing, China.
1020-1025.
[28] Zheng, Y.J., Xue, J.Y., Liu, W.B (2006). Object-Oriented
Specification Composition and Refinement via Category
Theoretic Computations. Proceedings of 3rd International
Conference on Theory and Applications of Models of
Computation. Lecture Notes in Computer Science, vol. 3959,
601-610.
[29] Zheng, Y.J., Shi, H.H., Xue, J.Y (2006). Formalization and
Mechanization of Design Patterns. Proceedings of 1st
International Conference on Computer Science & Education,
Xiamen, China, 2006. 892-897.
[30] Zheng, Y.J., Wang, J.Q., Xue, J.Y (2006). Developing
Reliable Software of Logistic Information System with SPEC#.
Computer Engineering and Design, 27 (22) 4178-4182.

