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ABSTRACT: Heuristic methods based on biological aspects
have been successfully used in many computer science
areas of research, including information retrieval (IR).
This let us ask: why there is no biological environment
for the problem of information retrieval. In this paper,
we tried to introduce a new biological environment and
model for information retrieval that broad the modeling
concept from the mathematical formula that simulates
the basic elements of IR problem to their dual schemas
in biology. It’s a new way of thinking of, and dealing with,
the problem of information retrieval.
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1. Introduction

Probabilistic methods are relatively recent in computer
science, but their range of applications has increased rapidly
in many research areas, including information retrieval.
Genetic algorithms (GAs) specifically have been used by
many researches to solve IR problems. In this vein, the main
directions concern modifying the document indexing (Gordon
[6]; Blair [2]), the clustering problem (Raghavan and Agarval,

[11]; Gordon [7]) and improving query formulation (Yang et al.
[18]; Perty et al. [10]; Chen [3]; Horng and Yeh [8]). Also, there
are good experiments to improve GA operators that are
applied to IR (Vrajitoru [16]; Vrajitoru [17]).
However, every time we adopt a heuristic method to an IR
problem, we force the given method in order to suit the task
at hand. This paper introduces a new ideology of dealing
with the problem of information retrieval. It builds a new IR
environment based on biological aspects. This model used
the similarity between textual material and the biological
chromosome. From this point, we move, step by step, through
document representation, term indexing, term classification,
and search strategy. Finally, we tested two retrieval models
on our new IR biological schema.
The paper is organized as follows: Section 2 shows the
similarity between the textual document and the biological
chromosome. Section 3 describes biological environment
phases we adapt in our schema. Section 4 describes query
manipulation and section 5 describes the search strategy of
our system. Our biological model for IR is introduced in
section 6. Experiments are given in section 7. In section 8,
we compared our model with two probabilistic IR models,
which are vector space model (VSM) with new weightings,
and Okapi model. In section 9, we introduced some
modifications to our model to improve its performance.

2. Similarity between Biological Chromosome and Textual
Document
By comparing the structure and functionality of the biological
chromosome and the textual document, we can discover
great similarity between them. As the chromosome consists
of a series of nucleotides, the document consists of a series

Figure 1. Similarity between biological chromosome and textual document
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3.1.2 Isolating digits, capitals, and abbreviations
After that, the remaining tokens of document can be classified
linguistically into four categories. These categories are digits,
capitals, abbreviations, and lower-case words. Our model
depends basically on these types of tokens. So, we isolate
digits, capitals, and abbreviations from the context, and store
them as part of the document representation.

3.1.3 Lower-case tokens
The only type of tokens left after the above 2 steps is the
lower-case words, which represents the core of most textual
materials. For this category, a suffix-stripping routine
(stemmer) is applied to reduce significant words in the
collection of words to word stems. Instead of throwing suffixes
away, we save the suffix of each stem to be used later in term
representation.

3.1.4 Calculating frequency
After stemming lower-case tokens, we calculate the
frequency of each stem. That is, number of occurrences of
each stem within the document. And for each stem, we store
its different suffixes generated from the stemming process.

3.1.5 Assistant Factor
The assistant factor (AF) of a given token is defined to be the
most frequent suffix appended to the given stem all over the
document. This parameter is obtained by calculating the
frequency of each suffix of the stem. If one suffix frequency is
higher than the others, it is declared as the AF of the given
stem. Otherwise, if more than one suffix have the same
highest frequency, then the AF parameter is set to zero (Null).
After assigning assistant factor parameter to each stem
(nucleotide), we can construct the first series of nucleotides
as shown in Figure 3. Each nucleotide (nuc) is consisted of
two parts. The stem part and the AF part, which represent the
significant suffix of the stem.

3.1.6 Selecting gene nucleotides
Inspired from biological facts, each chromosome contains
hundreds, or may be thousands, of nucleotides. However,

If (nucnum< 150) Then
limit= 10;
Else If (nucnum>= 150 AND nucnum< 250) Then

limit= 15;
Else If (nucnum>= 250 AND nucnum< 400) Then

limit= 20;
Else
limit= 25;

The system begins to take nucleotides of higher frequency
while the given limit is not reached. If the system comes to a
level of frequency that its number of nucleotides exceeds the
given limit, the system selects the required number of
nucleotides randomly from that level. Figure 2 shows a block
diagram of this phase.
Note that this number of nucleotides acts as part of document
representation in our environment, beside other parts
(capitals, abbreviations, …).

In this paper, Head section represents 70% of nucleotides
number, Body section is 20%, and Tail section is 10%.
Note that, our genetic classification depends on frequency
variation between nucleotides. But, if all nucleotides
frequencies are equal, all nucleotides will be classified as
Head ones.

3.3 Genetic Map
Over a set of documents, where each one is represented by
a gene, we order nucleotides of all documents alphabetically.
After that, we calculate the document frequency, (docfreq), of
each nucleotide, i.e., the number of  documents in which
each nucleotide occurs. Then, we construct a corpus of genes
(called the genetic map), that contains all genetic information
about nucleotides in each gene. Figure 5 shows how this
map looks like.
In this figure, nucleotide axis represents nucleotides of
documents collection ordered alphabetically. For each
nucleotide, there are three pieces of information connected
to it: Gene_ID (the document number/index in the collection),
AF (the assistant factor of nucleotide in that document), and
Position (the section on which the nucleotide appears in that
document).

From programming point of view, we can represent the
genetic map by two data files: nucleotides file and statistics
file. Nucleotides file holds nucleotides of the map. Each
nucleotide data structure has 3 fields: name (which holds
nucleotide stem), docfreq (which holds nucleotide document
frequency, and address (which holds the reference of
statistical part of nucleotide into statistics file). Figure 6 shows
the implementation of the genetic map.

3.4  Other Maps
Beside lower-case tokens, there are other linguistic
components (digits, capitals, and abbreviations) and/or

If we give a more deeply looking to the structure of both
chromosome and document, we find that as the chromosome
consists of four types of nucleotides (thymine, cytosine,
adenine, guanine), the document consists of four basic types
of tokens (lower-case, capitals, abbreviations, and digits).
Figure 2 shows this duality between both chromosome and
document.

3. Biological Environment Phases
3.1 Text Analysis and Gene Extraction
In order to extract the indexing language (gene) of the
document, we follow the steps given below [5]:

3.1.1 Eliminating special characters and stop words
Firstly, we need to eliminate special characters, (&, /, $, …),
from the document. Also, we eliminate stop words. That is,
the high frequency function words that are insufficiently
specific to represent document content (i.e. are, each, …)

of tokens (words). Also, within the chromosome, a sub
seriesof nucleotides, with some known function, called a
gene, corresponds to the group of tokens that we extract
from the document and represent it within the IR system,
called the indexing language. Figure 1 shows the similarity
between both components.

only few number of them can construct a series with well
known, and useful function (gene). As we want our gene to
be as concentrated as possible, i.e. consists only of the
important (most frequent) nucleotides. We arrange
nucleotides decreasingly according to nucleotide frequency.
According to the size of our collections, we specify a maximum
number of nucleotides,  (limit), to represent the document
gene over the actual number of nucleotides (nucnum) found
so far. For this purpose, we adapted rule that is based on
predefined number of nucleotides to be applied:
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statistical components (Author, Publisher … etc.), that could
be included in or attached to a given document. So, we
construct three linguistic maps (Capitals map, Abbreviations
map. and Digital map) as well as one statistical map (Authors
map) in addition to our basic genetic map. Figure 6 shows
the general structure of a non-genetic map
4. Query Manipulation
A query is manipulated just the same as a document. So, for
a query we obtain query nucleotides, query capitals, query
abbreviations, and query digits.
5. Search Strategy
Our search strategy is shown in Figure 8. Firstly, we search
for abbreviations and digits in abbreviations and digital maps,
respectively. Then, we search for capital nucleotides in
authors map and capitals map. After that, we perform a
transformation process, by stemming capital nucleotides,
turning them into lower-case nucleotides, and search for
them as B (Body) nucleotides within the genetic map. Finally,
we search for query nucleotides in the genetic map.

6. Biological Model for Information Retrieval

In this section, we introduce a new formula for information
retrieval.
6.1 Maximum likelihood estimate
A maximum likelihood estimate can be defined as in (Song
and Croft [14]):

Figure 2. Structural similarity between biological chromosome and textual document

Figure 3. A block diagram of phase 1 of the biological model

Figure 4. Gene diagram after genetic classification
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number of term occurrences in a document iD , (or in a
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where ijTf , is the number of different tokens related to a
given token type T (nucleotides, capitals, digits,… etc) in
document iD , and 

iDlengthgene_  is the total number of
tokens of all types in document iD .
By multiplying equations (1) and (2), we obtain:
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 6.2 Juxtaposition vs. discrimination
Since our model is based on token categorization, and we
search a variety of maps, we need to juxtapose equation (3)
to suite each token  type and  frequency.  If we assume that

‘five’ is the average number of maps that can be supported
by this model, an exponent of 1/5 (0.2) is expected to be fair:
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Figure 5. Genetic map

(4)

Figure 6. Implementation of the genetic map

Figure 7. Non-genetic map

Figure 8. Search Strategy

(3)

(2)
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Equation (4) gives a good equilibrium between tokens of
different types in document. However, in most cases we need
to differentiate between terms according to their type and
term frequencies. In order to do this, we increase the power
of the numerator of equation (4) by 0.05, and decrease the
power of its denominator by the same value:

                     
lengthgeneN
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ii DD
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)_.(
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=

6.3 Position factor
As lower-case token represents the majority of document/
query gene, we may also need to make special
discrimination for the members of this category by adding a
certain parameter to the power of the numerator, and
subtracting it from the power of the denominator. Position

factor ( ijfactorP _ ), defined below, can play such a role in

this aspect.                              .

                 10
2
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where ingthsection_le  is the percentage of nucleotides in

each section of the gene.
In this paper, for both documents and queries, we define the

ilengthtion _sec as follows:

                        
Tail_nuc's     for  0.1       
Body_nuc's     for  0.2       
Head_nuc's     for  0.7       
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Now, we can define the retrieval status value (RVS) of the
biological model to be:

                idf.ww)(DRSV jqkik

q
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where:

                     
jdf

N
2logjidf =           (10)

where:

ikw : term weight of kT  in a document iD .

qkw : term weight of kT  in a query q.
q:     number of search keywords in the query.
Ni:    number of documents iD  in the collection.

jdf : number of documents in which term jT occurs

7. Experiments
In the experiments we used OHSUMED document collections
as they were used for the TREC-9 Filtering Track. The
OHSUMED collections (ohsu part) provides two lengths for
the queries from which we generated two test sets: “ohsu-
title” contains the “title” queries (the shortest query
representation), and “ohsu-desc” contains the “description”

(6)

 (9)

queries. Table 1 shows detailed statistics about test
collection.
Table 2 provides tokenization statistics, i.e., statistics
obtained from test collections after phase 1 of the biological
model. As the table shows, we have five types of tokens for
each collection. Nucleotides (number of nucleotides
extracted from the documents), capitals, abbreviations, and
digits (linguistic tokens extracted from the documents), and
authors (statistical tokens of the documents). Table 3 shows
statistics of test collection tokens after the mapping phase. It
provides each map capacity of tokens after calculating
document frequency of each token.

8.  Comparisons
Under the same circumstances, we compared our formula
with two probabilistic IR models: vector space model (VSM),
and Okapi model.

          OHSUMID87     OHSUMID88-91

     Number of documents              56,710             293,856

     Number of queries               63                   63

     Average document length           165.06             167.7

     Average gene length/document   18.972              19.959

     Average gene length/query         4.97 (Title)        4.97 (Title)
               5.14                    5.14

                                                       (Description)     (Description)

                      Table 1. Statistics about test collections

            Type OHSUMID87              OHSUMID88-91

     Nucleotides 456,331                         2,466,336

     Capitals 119,182                         669,494

     Abbreviations 51,660                            336,925

     Digits 221, 685                         1,335,350

     Authors 189,069                          1,056,924

     Total                      1,037,927                       5,865,029

                   Table 2. Tokenization statistics

       Map                        OHSUMID87          OHSUMID88-91

       Genetic Map 19,724 38,359

       Capitals Map 18,265 44,670

       Abbreviations Map 6,658 18,050

       Digital Map 6,292 15,250

       Authors Map 55,554 134,781

         Total                         106,493                       251,110

                                 Table 3. Mapping statistics

(a) Vector Space Model (VSM)
For vector space model, we’ve used the LNC formula found
in (Savoy, Ndarugendamwo and Vrajitoru [13]). According to
it, document score is calculated as:

(5)
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(b) Okapi Model
To score the relevance of a document versus a query, the
following Okapi weighting function is applied (Bertoldi and
Federico [1]):
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where:

qktf  : frequency of term t in query q.

N: number of term occurrences allover the collection.

wN  : number of documents in D which contain term w.

T: average term occurrences allover the collection D.

1k  = 2, b= 0.6.

Table 4 shows the average precision taken over eleven recall
points. It shows that vector space model have an advantage
over Okapi model in most places. Usually, if the percentage
of change is around (5%), the difference will be considered
as significant. Figure 9 shows the recall and precision values
obtained from applying our model, the VSM, and Okapi model
on the test collections.

(11)

(9)

                       OHSU87    OHSU87   OHSU88-91 OHSU88-91
                              (title)         (desc)        (title)           desc)

   VSM   11.22         20.1 7.5            15.4

   Okapi   11.4           19.6 7.05          14.7

   Biological Model  13.06         22.9 8.5            16.5

   Bio.vs.VSM   +16.5 %    +14.1 %     +14.17 %     +6.8 %

   Bio.vs. Okapi   +14.6 %    +17.2 %    +20.89 %      +12.00 %

Table 4. Comparisons: 11-pt Average precision

                      OHSU87   OHSU87    OHSU88-91    OHSU88-91
                             (title)    (desc)        (title)          (desc)
     Biological   13.06        22.92         8.5     16.5
    After AF help   13.18        23.17         8.16     16.7
     Change          +0.91 %     +1.13 %    -4.31 %     +1.41 %

Table 5. Assistant Factor Help: 11-pt Average precision

Figure 9. Recall and precision values obtained from applying
our model, the VSM, and Okapi model on the test collections.

9. Make Use of Assistant Factor
Until now, nothing is mentioned about how to use the
assistant factor to improve the performance of our model. In
this section, we’ll introduce a new genetic concept; the
Identical Nucleotides. Identical nucleotides are those
nucleotides that match in both stem and assistant factor in
document and query genes. In the following experiment, we’ll
identify the first 33% of query nucleotides as identical ones,
as shown in Figure 10.
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Figure 10. Identical nucleotides within gene query

Now the rule is: A document is eliminated from the retrieved
set of documents, if the following conditions are fulfilled:

• the query nucleotide is defined as identical.
• the query nucleotide has a (non-empty) assistant

factor.
• the document nucleotide is not a Head one.
• the document nucleotide does not match the query

nucleotide identically.
On the other hand, a document score (Doc_Score) is
incremented by a certain value which is obtained as follows:
 Doc_Score = Doc_Score X (1+2 X P _ factor (Q Nuc)) X
 (1+ 2 X P _factor (DNuc))

if the following conditions are fulfilled:
• the query nucleotide (QNuc) is defined as identical.
• the query nucleotide has a (non-empty) assistant

factor.
• the document nucleotide (DNuc) matches the query

nucleotide identically.
After applying this rule on the biological model, we obtained
the results shown in Table 5. Although the difference is not
significant, it is positive in most cases. Besides, eliminating
documents saves considerable time, especially with large
collections.

10. Conclusion and Future Work

In this paper, we introduced a new concept for information
retrieval modeling that simulates a biological schema. The
goal is not just creating a new retrieving formula, but
developing a new IR theoretical environment. For the future
work, we’ll try to improve the performance of the biological
model through the genetic map. Also, we will develop a new
feedback technique that makes great use of the assistant
factor parameter.
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