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1. Introduction
Three-dimensional (3D) content is literally invading the world
of nowadays multimedia, within the framework of consumer
and professional applications such as 3D games, virtual
reality, computer assisted design, etc.
As one of the most important properties of 3D model, shape
feature extraction is an essential task in 3D information
processing. Therefore, 3D shape descriptors are widely used
in some specific domains, such as 3D model retrieval, 3D
object classification and recognition, etc. Nowadays,
however, the performance of 3D shape descriptor is not very
satisfactory.
Generally, the desirable properties of a 3D shape descriptor
are as follows: invariance to transformation; robustness to
noise; conciseness for storage; less computational
complexity; shape discrimination, etc. In this paper, we
present a novel 3D shape description method with above
properties, besides these, it need no normalization. In
particular, first we randomly sample points on the surface
and compute their normal vectors. Secondly, Gauss mapping
is performed and the model is rotated, actually rotating the
Gauss sphere. The third step is to count normal distributions
on the sphere surface. Next, the Euclidean distance is
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computed, and finally a statistic histogram is constructed.
The rest of this paper is organized as follows: Section 2
reviews available shape descriptors. In Section 3, we exten-
sively describe the proposed shape descriptor. In Section 4,
experimental results are presented and analyzed; Section 5
concludes the paper and opens perspectives of future work.

2. Related work
Most existing 3D shape description methods can be divided
into four categories.
(1) Global feature based methods. These methods apply
global properties, such as volume, surface area, curvature,
moments, etc., to describe 3D shapes. Novotni et al. apply
3D Zernike moments to extract shape features. Kazhdan et
al. [2] describe the shape based on spherical harmonics,
and Vanic et al. [3] present a descriptor based on 3D Fourier
Transform. These approaches are quick to compute, and
can be applied to classify models. Since they fail to capture
the details of a shape and they are also not very robust, they
therefore fail to discriminate among locally dissimilar shapes.
(2) Statistic based methods. These approaches sample
points on the surface of 3D models and extract characteristics
from the sample points. These characteristics are organized
in the form of histograms or distributions representing
frequency of occurrence. Ankerst et al. [4] subdivide the space
into spherical shells and sectors around the center of gravity
of an object; the resulting partitions correspond to the bins of
3D shape histogram. Osada et al. [5] represent the shape
signature as a probability distribution sampled from a shape
function measuring the geometric properties of a 3D model.
Ohbuchi et al. [6] improve Osada’s method by constructing
2D histograms. Compared with other methods, statistic
based methods are not only fast and easy to implement, but
also have some desired properties, such as robustness
and invariance. However, the discrimination ability of these
methods is not good enough due to the fact that local shape
features are not depicted explicitly.
(3) Topology based methods. Besides geometric and
physical properties, topology structure is another important
characteristic for 3D shapes. Hilaga et al. [7] propose a
topology-based method, in which Multiresolutional Reeb
Graph is constructed by using a continuous function such
as the geodesic distance. Siddiqi et al. [8] present a shape
description based on shock graphs. Sundar et al. [9] describe
a method that encodes the geometric and topological
information in the form of a skeletal graph. Topology-based
methods have properties of intuition, invariance and
generality. However, they require a consistent model of the
object’s boundary and interior, and a large amount of
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computational resources are needed to compute the
skeleton.
(4) Image based methods. The human vision system has
an uncanny ability to recognize objects from a single view.
On the basis of this idea, Christopher et al. [10] adopt a
concept named aspect graph to group all views and
represent a 3D model with a set of 2D views. Thus, 3D
problems can be transformed to 2D problems. Pu et al. [11]
represent 3D shape accurately by three views. In these
methods, several thumbnail images must be computed
beforehand. Generally, these methods are robust but time-
consuming.

3. Overview of the algorithm
In general, 3D content is represented by 3D mesh models,
because of the simple and efficient visualization techniques
supported, and performed in real time by most of the
commercial graphic devices. Besides, other formats models
can be easily converted into meshes using available 3D
information processing software. Hence, this paper deals
with the shape description of mesh models.
Our approach is to represent 3D shape as a one-dimensional
histogram. The motivation originates from such a question:
As a 3D model rotates in the spatial domain, why the human
vision system, from the fixed viewing position, is sensitive to
aware that the shape after rotation differs from the initial
shape (see Figure 1)? If points are sampled uniformly on
the model surface, we notice that the orientation of normal
vector of points is changed after rotation. As shown in Figure
2, regardless of the position of the point p, we translate its
normal vector n  so that its origin coincides with the origin of
the coordinate system, and the end of the unit normal lies on
a unit sphere. This process is called Gaussian mapping,
and the sphere is called the Gaussian sphere.
Let us assume that considerable points are sampled on the
surface of a model. Repeating Gaussian mapping, we attain
a sphere distributed normal vectors of these sample points.
Thus shape feature extraction can be transformed into
analyzing normal distributions on the sphere. Once randomly
rotating a model K times, we attain K different shapes and
corresponding spheres with different normal distributions.
To describe the shape with a histogram, our approach
statistically analyzes the normal distributions on K spheres.

Figure 1. Shape of a 3D model viewing from the same angle after
various rotations, (a) the shape of the original model, (b)-(g) shapes
after various random rotations

Figure 2. Gaussian mapping

(2) Invariance. The proposed descriptor is invariant to affine
transform, including rotation, translation and scaling. The
reason lies in that we only consider orientations of normal
vectors, instead of positions of the sample points.
(3) Robustness. Randomly sampling ensures the descriptor
is insensitive to noise. In other words, as a statistic method,
the descriptor lays emphasis on the global shape feature.
(4) Without normalization. In order to capture features, a
model is usually placed into a canonical coordinate frame.
This is called pose estimation or normalization. Nowadays
normalization is an important task to preprocess a 3D model.
However, it is still a difficult operation. The proposed
descriptor does not need to normalize 3D model so that
shape feature extraction is speeded up.

4. Proposed algorithm
The proposed method consists of four steps as follows:
Step 1. Sample points and compute normal vectors. For a
triangulated mesh model, N random points are sampled
uniformly on its surface. Let us assume si and k denote area
of the triangle i and number of triangles, respectively. Then
we can compute ni, namely the number of sample points on
the triangle i with the Formula (1).
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The normal vector of the point p is estimated by the normal
of triangle ABC∆  where p lies on, as shown in Formula (2).

Hereto a mesh model is translated into a point set with
orientations. Notice that the proposed method does not need
to accurately determine position of random points, only needs
to attain the normal orientations. Unlike this, positions of
sample points must be obtained in Osada’s D2 [5] and
Ohbuchi’s improvement [6]. Consequently computational
complexity of our descriptor is smaller than [5] and [6].

Step 2. Rotate Models. In this step, the model is randomly

(2)

(1) Generality. The description scope of the method is for all
classes of shapes. It can be applied to extract shape features
of popular models, such as meshes, solid models and other
geometric representations.

The intrinsic properties of our proposed descriptor are as
follows:
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As shown in Formula (3), R is the general 3D rotation matrix.
When a 3D point   p is rotated by R     p  is transformed to   p’
as shown in Formula (4).

Actually, we rotate a model in order to find the shape difference
after rotation. This can be reduced to analyzing normal
distributions on the unit sphere. Let us assume we rotate a
model T times with T group of rotation angles;   ,   ,   are
randomly selected in the range of [0, 2   ]. When rotating a
model, the normal distribution of points is changed
accordingly.

Figure 3. Rotate a triangle on the surface
As shown in Figure 3, the triangle    A’B’C’ and point p are
rotated to     A’B’C’ and  p’   respectively. Then  np and np  have
the relationship as shown in Formula (5).

                                                    (5)

Figure 4. Segmentation of Gaussian sphere, (a) 8 sections (b)
24 sections

Step 3. Count Normal Distributions. As a model is rotated T
times, we obtain T Gaussian spheres; each being distrib-
uted by N normal vectors. To analyze the distributions, we
segment the surface of a Gaussian sphere into L sections.
As an example, the spherical surface is segmented into 8
sections by x-y, y-z, and x-z planes, as shown in Figure 4 (a).
We count the normal on each section in turn. To determine

which section a normal belongs to, we only need to capture
signs of each component of a normal, as shown in Figure 5
(a). Thus we obtain T groups 8 dimensional vectors, as
shown in Formula (6) and (7). The element vi is the number
of normal distributed in the i-th section.

(6)

Base on these 8 sections, the spherical surface also can be
further segmented into 24 sections. As shown in Figure 4(b),
one eighth of surface is divided into three Subsections. In
this case, a sample point can be localized by finding the
maximum absolute value of three components of normal.

Figure 5. Count normal distributions, (a) signs and corresponding
section (b) example of normal

Step 4. Construct Histograms. To construct a one-
dimensional histogram, we compute the Euclidean distance
L2 between two vectors Vx and Vy, as shown in Formula (8).

  Thus, we obtain                   distances for T groups vectors, and
a histogram is then constructed.

5. Experimental Results
In the experiment, we test the descriptor with a set of
parameters as N={32768, 65536, 131072}, T={1000, 2000,
3000}, L={8, 24}. In order to achieve a preferable tradeoff
between better performance and lower computational
complexity, we find that N=65536, T=2000, and L=24 yields
a histogram with good discrimination ability. Experimental
models are randomly selected from the database of
Princeton Shape Benchmark (PSB), a publicly available 3D
model database with 1814 mesh models. We classify the
experimental models into 10 classes;  each class contains

rotated, controlled by     ,     ,    ,  i.e. rotation angles relative to
x, y, z-axes respectively. (3)

(7)

(8)

T(T-1)
2

(4)
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2-9 models. All histograms are normalized under the same
mode with 256 bins. From Figure 6 we can find that: models
in the same class have similar histograms, while models in
the different classes have dissimilar histograms.
Experimental results show effectiveness of the proposed
descriptor.

6. Conclusions
This paper proposes a novel method based on rotation to
characterize 3D shapes. Experimental results show its
effective to discriminate different models. In order to improve
the performance of our descriptor, a 2D histogram is
constructed as shape features in the future work instead of
1D histogram, for in the 1D histogram, the positions
information of sample points is not taken into account. In
addition, the descriptor will be utilized in some specific
applications such as 3D model retrieval, 3D object
classification, 3D object recognition, etc.

References
[1] Novotni, M., Klein, R (2003). Shape retrieval using 3D
Zernike descriptors, In: Proceedings of the eighth ACM
symposium on Solid modeling and applications. 216–225.
[2] Kazhdan, M., Funkhouser, T., Rusinkiewicz, S (2003).
Rotation invariant spherical harmonic representation of 3D
shape descriptors, In: Proceedings of the 2003
Eurographics/ACM SIGGRAPH symposium on Geometry
processing. 156–164.
[3] Vranic, D.V., Saupe, D (2001). 3D Shape Descriptor Based
on 3D Fourier Transform, In: Proceedings of the EURASIP
Conference on Digital Signal Processing for Multimedia
Communications and Services. 271–274.

[4] Ankerst, M., Kastenmuller, G., Kriegel, H., Seidl, T (1999).
3D shape histograms for similarity search and classification
in spatial databases. Lecture Notes In Computer Science,
vol. 1651, In: Proceedings of the 6th International Symposium
on Advances in Spatial Databases. 207–226.
[5] Osada, R., Funkhouser, T., Chazelle, B.,  Dobkin, D (2002).
Shape Distributions. ACM Transactions on Graphics. (4) 807–
832.
[6] Ohbuchi, R., Minamitani, T., Takei, T (2005). Shape-
Similarity Search of 3D Models by using Enhanced Shape
Functions. International Journal of Computer Applications
in Technology 23 (2/3/4) 70–85.
[7] Hilaga, M., Shinaagagawa, Y., Kohmura, T., Kunii, T.L
(2001). Topology Matching for Fully Automatic Similarity
Estimation of 3D Shapes, In: Proc. SIGGRAPH 2001,
Computer Graphics Proceedings. 203–212.
[8] Siddiqi, K., Shokoufandeh, A., Dickinson, S., Zucke, S
(1999). Shock Graphs and Shape Matching. Computer Vision.
35 (1) 13–20.
[9] Sundar, H., Silver, D., Gagvani, S. (2003). Skeleton Based
Shape Matching and Retrieval, In: Proc. Shape Modeling
International. 130–142.
[10] Christopher, M.C., Benjamin, B.K (2001). 3D Object
Recognition using Shape Similarity-Based Aspect Graph,
In: Proc. 8th International Conference on Computer Vision.
254–261.
[11] Pu, J.T (2004). Research on 3D model retrieval.
Unpublished report. Peking University.


