
Journal of Digital Information Management � Volume 5 Number 6 � December 2007 347

VDM Specification of an Algorithm for Graph Decomposition

Abdul Huq
Middle East College of Information Technology, Sultanate of Oman
huq@mecit.edu.om

Narayanan T. Ramachandran
Middle East College of Information Technology, Sultanate of Oman
narayanan@mecit.edu.om

by several authors for different applications. Pedersen and
Klein use it to formalise a communication protocol [20].
Comparing specifications in software cost reduction method
and in VDM for a safety-critical system, Williams identifies
several key assessment issues [24].

In this paper, an application of VDM is considered for the
purpose of implementing an algorithm developed for
decomposing a graph. Such a decomposition can be used in
problems relating to software testing.

More specifically, a decomposition algorithm that produces
several disjoint paths, the union of which results in the original
graph has been developed and VDM specification of the
process is described. The advantage of specifying the algorithm
in VDM is to introduce rigour and to eliminate inconsistencies
and ambiguity, facilitating code development for the purpose of
automated implementation of the proposed algorithm.

The remainder of the paper is organised as follows: The
algorithm is presented in Section 2. In Section 3, an
application of the algorithm is described. The next Section
discusses the VDM specification. It gives details of the
terminology and notations used as well as the data structures
and functions.

2. Graph Decomposition Algorithm

Graphs are very useful discrete structures in Computer
science. Describing how graph properties are valuable for
understanding the characteristics of the underlying software
systems, usefulness of graph theory in object oriented
systems has been explored in [6].

In the following paragraphs we describe a decomposition
algorithm that produces disjoint paths, whose union is the
original graph. In other words, given a graph G, with edge set
E and node set V, the algorithm yields paths P

1
 (with edge set

E
1
 and node set V

1
), path P

2
 (with edge set E

2
 and node set V

2
)

…, path P
n
 (with edge set E

n
 and node set V

n
) such that every

member of E is in exactly one of E1, E2,…, En i.e., E1�E2� …
�En = E and Ei�Ej = ø, for i�j.

Different paths are obtained by successively collecting
adjacent nodes, starting with an arbitrary initial node. The
search for adjacent nodes to be included in the path continues
until a node is repeated or a final node is reached. However,
our search is on for the next path, if any.

Whenever an edge (vi,vj) is included in a path, it is deleted
from E. Also whenever there is an isolated node we shall
delete the same from V. The following algorithm describes
more rigorously the operations involved in obtaining different
paths which consti tute the components of the
decomposition.

ABSTRACT: Complex software systems need a precise speci-
fication of their intended behaviour. While graph theory plays
an important role in several aspects of building such software
systems, formal methods provide a rigorous mathematical
framework within which a system can be described. In this
paper, an algorithm for decomposing a graph into disjoint
paths is presented. Such decompositions are useful, particu-
larly in implementing software testing. VDM representation of
the proposed algorithm facilitates automation of testing
process without any ambiguity.

Categories and Subject Descriptors
D.2.6 [Programming Environments]; Graphical Environments: D.2.5
[Testing and debugging]; I.3.6 [Methodology and Techniques]; Graphics
data structures and data types

General Terms
Graph Theory, Software Testing, Graph Decomposition

Keywords: Vienna development method, Graphs decomposition
algorithm, VDM

1. Introduction

There are several options to describe software properties.
Natural languages are expressive but imprecise. Natural
language descriptions carry considerable noise, ambiguities
and contradictions [16], necessitating alternative techniques.
Formal methods based on mathematical specifications have
been found quite useful in this context. Extensive studies have
been conducted to analyse their potential influence in complex
and critical applications [9,10,21].

Discussing the need for and the application of formal methods
to complex systems, Alagar et al. [1] present a case study on
the specification of a robot based assembly system. Larsen
et al. [14] assess the effectiveness of employing formal
methods in different activities of the development of a
security critical system. Emphasising the need for practical
guidelines to make the best use of formal specifications,
Palshikar provides tips to be used in formal specification in
industrial applications[19].

Choice of appropriate formal method is influenced by several
factors. These are discussed by Bacherini et al. [2] for an
application in the development process of a railway signalling
manufacturer. Hui et al. [11] discuss details of two kinds of
specification languages viz., TLA and Larch in software
development. Industrial applications of the specification
language TRIO are illustrated by Ciapessoni et al. [7].

One popular formal method is the Vienna Development
Method (VDM). A rigorous approach to this model-oriented
specification method is found in [12]. VDM has been explored

 Journal of Digital
 Information Management

348 Journal of Digital Information Management � Volume 5 Number 6 � December 2007

Algorithm

Input: Graph G = (V, E)

Output: Set of components, whose disjoint union is G

1. Set G � Graph considered for
 decomposition

V � Set of nodes of G
m � 0 //path index

2. While (V � ø) do
3. Set E � Set of edges in G

 m � m + 1
4. Choose an initial node j in V

 Set Pm � < j >
 t � j
repeated � false // repeated is a boolean

variable that becomes true when any node occurs for the
second time

5. While (there is a k such that (t, k)
 is in E and repeated =
 false) do

6. If k is in Pm then
 Set repeated � true
 Else
 Add k to P

m

 Remove (t, k) from E
 Set t � k

7. EndIf
8. EndWhile
9. V� V- {isolated nodes}
10. EndWhile
11. Set Components � {P1 , P2 , …., Pm }
12. Return Components

3. An Application of the Algorithm

Testing is an important phase in any software development
life cycle. It involves a systematic approach to imagine, explore
and locate the weaknesses of a complex system and
demonstrate how it needs to be corrected [3,13]. For this
purpose software structures have to be abstracted. Graphs
have been frequently used for such abstractions. Several
authors have attempted a graph theoretic approach to testing
issues [4,15,18,23].

In large real time systems, the following scenario is common:
one or more modules call another module, or control is
passed from one module to another. Considering the number
of modules and the transfers of control from one module to
another with associated parameters, there is a need to
organise a systematic testing strategy. Such a strategy must
enumerate and represent all transfers of control as well as
find the most appropriate way to test them.

All the modules in a system along with their transfers of control
can be represented as a graph with nodes representing
modules and edges indicating transfers of control. For the
purpose of testing, it is more convenient to study all the sub
graphs of a graph than the graph itself. Hence we aim at
decomposing a graph into several sub graphs (which are
paths in the algorithm of Section 2) such that all the sub graphs
collectively represent the original graph and no two sub graphs
have an edge in common.

There are several advantages in such a decomposition viz.
a. it provides a step-by-step process to identify and
represent all the transfers of control that exist in the system

b. it ensures that no transfer of control is repeated; hence
none of the transfers of control is tested more than once c.
it provides a disjoint list of transfers of control thus facilitating
simultaneous testing of different transfers of control d. it
provides systematically the order in which the tests need to
be carried out.

4. VDM Specification for the Decomposition Algorithm

Benefits of using VDM in different areas of software
engineering are well documented. Studies on the suitability
and benefits of applying VDM for specific activities have been
carried out, illustrating the use of VDM in different stages of
software development [5,22]. Using VDM specifications,
Nadeem and Ur-Rehman [17] propose an approach to
automated testing that generates the required C code as well
as test data. In another study [8], Fenkam et al. report a
technique for constructing a CORBA-supported VDM oracle
for automated testing starting from a VDM specification.

In this section, we develop VDM specification for the
decomposition algorithm presented in Section 2. It
demonstrates how a VDM specification represents an
algorithm rigorously without ambiguity or inconsistency.

4.1 Terminology and Notations

We begin with a discussion of the data structures required for
the specification of the algorithm.

Length of the path is the number of edges in the path, denoted
by len path. The first element of a path is called its head and
the rest of the path is called its tail. In VDM, head and tail of a
path are indicated hd path and tl path respectively, whereas
the element in the ith position of the path is denoted by path(i).
If A is a set, then A-set denotes the power set of A and A*

denotes the set of all sequences of the elements of A
(including the empty sequence), where repetitions are allowed.

More precisely, A*= ø�A� A2
� A3

� … = U
∞

=0i
 Ai, where

Ai =A × A × A × … × A, the product taken i times with A0= ø.

In data structures, a variable is also referred to as an object.
Sometimes an object may contain in itself other objects. Such
an object is called a composite object which is similar to the
records of Pascal or the structures of C. More precisely, a
composite object has a number of fields, each such field is a
variable.

A make function, when applied to appropriate values for the
fields, yields a value of the composite type. A make function is
specific to a type; its name is formed by prefixing mk- to the
name of the type. Thus if D is a composite object, with fields f1,
f2, … ,fn , then mk-D: f1 × f2 ×… × fn � D.

Often we may have to impose some restrictions on the objects.
In formal specifications, such restrictions are known as
invariants. They are written as a part of the type definition with
key word (inv) followed by the character _.

A precise statement of all external characteristics of a system
used is called functional specification or implicit definition. A
direct definition of a function provides a rule for computing the
result of applying the function to its arguments. The pre-
condition of a function is a truth-valued function, which defines
the elements of the domain of a partial function (operation) for
which the existence of a result is guaranteed. The pre-condition
of a function or operation defines the state/inputs to which it

Journal of Digital Information Management � Volume 5 Number 6 � December 2007 349

can be applied. The post-condition is a truth-valued function,
which defines the required relation between the input and
output.

There are several ways of decomposing a composite object.
One method uses the name of the make function in a context
which makes it possible to associate names with the
variables. Alternatively, one can use local variables which are
introduced with the let command.

4.2 Two Composite Objects

Formal specification of the decomposition algorithm begins
with the definition of two composite objects viz. Directed graph
and Restricted graph.

The idea of a graph as a pair comprising a set of nodes and
a set of edges is brought out in the following definition of the
composite object Graph:

Graph:: nodes: Z-set

edges: (Z × Z)-set

inv_Graph(mk-Graph(n,e))�� e � n × n

The labels of the nodes have been assumed to be integers –
negative as well as positive. The invariant stipulates that the
nodes connected by the edges of the graph are only those
from the given set of nodes. For example,
({a,b,c},{<a,b>,<b,c>,<c,d>}) will not be accepted as a graph
since <c,d>Ï n × n, where n ={a, b, c}. We note that the graph,
as defined here, is actually a directed graph.

A restricted graph is a directed graph with the additional
restrictions that there is exactly one initial node as well as
exactly one final node. Hence the following definition of the
composite object RGraph:

RGraph::

nodes: Z-set

edges:: (Z × Z)-set

inv_Rgraph(mk-Rgraph(n,e)) �

e� n × n ∧

 is-unique-initial(g) ∧

is-unique-final (g)

The boolean functions testing the uniqueness of the initial
and final nodes are developed in the next section.

4.3 Functions: Uniqueness of Initial and Final Nodes

The process of checking whether the initial node is unique is
carried out in two stages. We first collect all the initial nodes,
count them, and make sure that the count is one. However,
the collection of initials assumes that there is an initial node.
For this reason we have the following specification:

exists-initial(g: RGraph) t : B

pre g � ø

post let mk-RGraph (n,e)=g in

t � � k � n
·
 (� j � n

·
 (k, j) ��e ∧

 �� r � n· (r, k) ��e)

The function exists-initial returns the value true if there is at least
one initial node. Otherwise it returns false. The post-condition

is a predicate expression for the mathematical definition of an
initial node, stated as follows: a node k is an initial node if and
only if there is an edge going out of it and there is no edge
coming into it. This boolean valued function provides the pre-
condition for the function that collects all the initial nodes given
below:

initials(g: RGraph) s: Z-set

pre exists-initial(g)

post let mk-RGraph(n,e)=g in

� k � s
·
 ($ j ��n

·
 (k, j)�� e ∧

 ���r � n· (r, k)�� e)

The definition of an initial node is used again to verify that
every element of the output set is an initial node. We are now
in a position to specify the function that examines the
uniqueness of the initial node:

is-unique-initial(g: RGraph) r : B

pre exists-initial(g)

post r � (card initials(g) =1)

The post-condition is made simpler by the use of the pre-
defined operator card that stands for the cardinality of the set.

The function is-unique-final and the associated functions can
be specified in a similar manner as follows:

exists-final(g: RGraph) t: B

pre g � ø

post let mk-RGraph(n,e)=g in

t � ��k ��n
·
 (� j ��n

·
(j, k)�� e ∧

 �� r ��n·(k, r) ��e)

finals(g: RGraph) s: Z-set

pre exists-final(g)

post let mk-RGraph(n,e)=g in

��k � s
·
(� j � n

·
 (j, k) ��e ∧

 �� r ��n· (k, r) ��e)

 is-unique-final(g: RGraph) r : B

pre exists-final(g)

post r � (card finals(g) =1)

The details are similar as in the case of testing for the
uniqueness of initial node. For the identification of the final
node, the post-condition in the exists-final function stipulates
that there exists one node k such that there is an edge coming
into it and there is no edge going out of it.

4.4 Functions: Path Extraction

As seen in Section 2, extraction of paths plays a key role in the
decomposition algorithm. VDM provides ways of manipulating
such paths. We can specify a function that extracts a path.
Once a path is extracted, there is a need to delete the edges
included in the extracted path. As a result of such a deletion
some nodes may become isolated and the structure of the
restricted graph may also be violated. To convert the resulting
graph into a restricted graph, dummy nodes and dummy edges
are introduced.

350 Journal of Digital Information Management � Volume 5 Number 6 � December 2007

Suppose, for example, there occur two initial nodes, say m
and n. A dummy node k is introduced at this stage and two
dummy edges (k, m) and (k, n) are created. To distinguish the
dummy nodes from the real nodes, negative integers are
used to label the former. Multiple final nodes are handled in
the same manner.

Once the path is extracted, the dummy nodes, if any, are
removed from the path. We use the path number to label the
dummy node consistently. If the graph used for the extraction
of kth path has multiple initials, a dummy initial node with
label –(2k –1) is added; in case the path has multiple finals,
the dummy final node added will have the label –2k. The
process then continues with the extraction of the next path.

We shall specify the function that extracts a path, starting from
the initial node of the restricted graph until either the final
node of the graph or a node already included is encountered.
The function also needs to delete the associated edges
included in the extracted path.

Central to the process of decomposition is the function create
(k, g). With the path number and the restricted graph as the
input parameters, it specifies the conditions to be satisfied by
the kth path. We shall now give the specification for create (k, g).

create(k : N
1
, g : RGraph) path : Z*

pre g � ø

post (hd path ��initials (g)

hd path = - (2*k-1)) ∧

let m = len path in

�i � {1,2,…,m}.

<path(i),path(i+1) > ��edges (g) ∧

(path (m+1) � finals (g)

 j � {1,2,…, m}. path(m+1) =

 path(j) path(m+1) = -2*k)

It is worth noting that g represents the graph after the extraction
of k–1 paths.

The process is to be terminated when g becomes empty.
Hence the pre-condition. The post condition ensures the
following: a. first node of the path is either the initial node or a
dummy node b.consecutive nodes of the path correspond to
some edge of the graph and c.the last node of the path is the
final node or a node already included in the path or a dummy
final node.

Clearly, extraction of paths requires dummy nodes, which, in
turn, depend on the path number. Thus the process of
decomposition, defined by the function decompose (g),
passes the path number 1 along with the graph to the function
decomp (m, g), which is executed recursively.

decompose: RGraph � N1
*-set

decompose (g) �

decomp (1,g)

decomp: N
1
× Graph � N

1
*-set

decomp (m,g) �

if (g = ø)

then ø

else

let p = create (m,g) ∧

path = remove-dummy (p) ∧

g
1
 = update-Rgraph (g, p) ∧

g2 = merge-initials (m, g1) ∧

g
3
 = merge-finals (m, g

2
) in

{path}� decomp (m+1,g3)

The function decomp is executed, as long as the graph is
non-empty. It performs five sub-tasks: a. extracts the mth path
p b.removes dummy initials and/or dummy finals, if any
c.updates the graph by removing the edges of p as well as the
resulting isolated nodes from g d.merges the initial nodes, in
the event of multiple initials e. merges the final nodes, in the
event of multiple finals.

Functions have been defined to carry out each of these
subtasks. Before we discuss them, it is necessary to note the
data type of the input g coming into the function decomp.
While g is a restricted graph initially, introduction of dummy
nodes produces a graph. Thus g is taken to be a graph. Also,
since the dummy nodes are removed before the path is added
to the decomposition, the output set is still of type –set.

remove-dummy: Z* � N1
*

remove-dummy(p) � let

p1 = remove-dummy-initial(p) ∧

p
2
 = remove-dummy-final(p

1
) in

p
2

remove-dummy-initial: Z* � Z*

remove-dummy-initial(p) �

if (hd p > 0)

then p

else tl p

remove-dummy-final: Z* � N
1
*

remove-dummy-final(p) �

let m= len p in

if (p(m+1) > 0)

then p

else subseq (p ,1, m)

Removal of the dummy initial is straightforward. If the first
node has a positive label, the path received is returned without
any change; otherwise the rest of the path is returned.
Removal of the dummy final involves deleting the last node.
This is achieved by the standard VDM function for
subsequence.

After the removal of the dummy initial, the path may still
have a negative node as a final. Hence the output of the
function remove-dummy-initial is a sequence of integers.
However, the removal of the dummy final will result in a
sequence of positive integers, which is the reason for the
output of the functions remove-dummy and remove-
dummy-final to be N1

*.

Once the dummy nodes are removed from the path extracted,
the path can be added to the output of decomp function.

Journal of Digital Information Management � Volume 5 Number 6 � December 2007 351

4.5 Functions: Updating the Original Graph

Now we turn our attention to the problem of updating the graph
by removing the edges of the path just extracted and the
resulting isolated nodes.

update-RGraph: RGraph × N1
* � Graph

update-RGraph (g ,p) � let

e = edges(g) ∧

n = nodes(g) ∧

e
1
= new-edges(e,p) ∧

n1 = n - isolated-nodes(n,e1) ∧

g
1
= mk-RGraph (n

1
 ,e

1
) in

g
1

Note that the selector functions edges and nodes are used to
decompose g. It is equivalent to mk-RGraph (n ,e) = g.

The function new-edges (e,p) is invoked to remove the edges
included in the path p. The set of all nodes that become
isolated as a result of such a removal are returned by the
function isolated-nodes (n,e).

new-edges: (N1× N1)-set x N1
* �

(N
1
× N

1
)-set

new-edges(e, p) �

if len p =0

then e

else let

e
1
 = e - < p(1), p(2) > ∧

p
1
 = tl p in

new-edges(e1, p1)

The function is defined recursively. We remove the first edge
of the path p from the edge set and the process is repeated
with the tail of p until there is no edge for deletion.

isolated-nodes: N
1
-set × (N

1
× N

1
)-set �

N1-set

isolated-nodes(n,e) �

if (n = { })

then { }

let x ��n in

elsif is-isolated-node(x, e)

then {x} � isolated-nodes(n-{x},e)

else isolated-nodes(n-{x},e)

is-isolated-node: N1 × (N1× N1)-set � B

is-isolated-node(x,e) �

if (e = [])

then true

let <a, b> ��e in

elsif x = a x = b

then false

else is-isolated-node(x, e-< a ,b>)

We again have two recursive functions. An arbitrary node of
the node set n is tested to see whether it is isolated. If so, it is
included along with the other such nodes to be collected from
the rest of the nodes in n; otherwise the process continues
with the selection of another arbitrary node from n. It is repeated
until there is no more node in n. The boolean function is-
isolated-node (x, e) is used to test whether a node x is isolated
by selecting an edge from e arbitrarily. If either end of the edge
is the same as x, then x is not isolated and the testing ends;
otherwise another edge is selected arbitrarily and the test is
repeated. If there is no more edge to be tried, then x is isolated
and the testing terminates.

With this, the third sub-task of the decompose() function is
completed. The problem of multiple initials and multiple finals
remain to be tackled.

merge-initials : N
1
 × Graph � Graph

merge-initials (m, g)

if is-unique-initial(g)

then g

let x = initials(g) ∧

m
1
 = - (2*m-1) ∧

n
1
 = { m

1
 } � nodes(g) ∧

e1 = add-initial-edges(m1, x) �

edges(e) ∧

g1 = mk-RGraph(n1 ,e1) in

else g1

If there is only one initial, nothing needs to be done. If not, all
the initials are collected first. A dummy node with label -
(2m–1) is created and included in the set of nodes. To the set
of edges, we add new initial edges connecting this node with
all the initial nodes. The new initial edges are created as
follows:

add-initial-edges: Z × N1-set �

 (Z × N
1
)-set

add-initial-edges(k, x) �

if (x = { })

then { }

let a ��x in

else <k,a> � add-initial-edges (k, x-{a})

The dummy initial k is connected to each of the initial nodes
which are selected arbitrarily one by one. The resulting edges
are collected recursively.

merge-finals: N
1
× Graph � Graph

merge-finals(m, g) �

if is-unique-final(g)

then g

let x = finals(g) ∧

m
1
= - 2*m ∧

n1 = { m1 } � nodes(g) ∧

e
1
 = add-final-edges(m

1
 x)� edges(g) ∧

g1 = mk-RGraph(n1 ,e1) in

else g
1

352 Journal of Digital Information Management � Volume 5 Number 6 � December 2007

add-final-edges: Z × N1-set � (Z × N1)-set

add-final-edges(k,x) �

if (x = ø)

then ø

let a � x in

else

<a, k> È add-final-edges(k, x-{a})

The two functions defined above work the same way as the
corresponding functions for merging initials. This completes
the VDM specifications and definitions of the decomposition
algorithm.

5. Conclusion

In this paper we have developed an algorithm for decomposing
a graph into disjoint paths and represented the process in
VDM. Our primary aim is to demonstrate the use of VDM in
representing a process without ambiguity. Two composite
objects, required for the VDM specification, have been defined
and discussed. Necessary function specifications and
definitions have been developed.

Representation of the algorithm using VDM has brought in
rigour and robustness, facilitating easy translation of the
algorithm into a programming language.

Acknowledgements

The authors would like to thank Middle East College of
Information Technology, Sultanate of Oman for the support
provided in making this research possible and the referees
for their valuable comments and suggestions.

References

[1] Alagar, V.S, Periyasamy, K.,Ramanathan, K (1994). Formal
specification techniques for complex software systems, In:
Proc. Of TENCON 1994. IEEE Region 10’s Ninth Annual
International Conf., V. 2 p. 1008 – 1013.

[2] Bacherini, S., Fantechi, A., Tempestini,M., Zingoni,N (2006).
A Story About Formal Methods Adoption by a Railway Signaling
Manufacturer. Lecture Notes in Computer Science, FM 2006:
Formal Methods, Springer Berlin / Heidelberg, Volume 4085/
20. p.179-189

[3] Beizer, B (1990). Software Testing Techniques. London:
Int’l Thompson Computer Press.

[4] Bertolino, A.,Mirandola, R., Peciola, E (1997). A Case Study
in Branch Testing Automation, Special issue on achieving
quality in software. Journal of Systems and Software, 38 (1)
1997. 47-59.

[5] Bjorner, D (1987). On the use of formal methods in
software development, In: Proc. of the 9th international
conference on Software Engineering, p.17-29.

[6] Chatzigeorgiou, A.,Tsantalis, N., Stephanides, G (2006).
Application of graph theory to OO software engineering, In:
Proceedings of the 2006 international workshop on

interdisciplinary software engineering research, Shanghai,
China p.29 - 36.

[7] Ciapessoni, E.,Mirandola, P., Coen-Porisini, A.,Mandrioli,
D.,Morzenti, A (1999).From formal models to formally based
methods: an industrial experience, ACM Transactions on
Software Engineering and Methodology, 8 (1) 79-113.

[8] Fenkam, P., Gall, H., Jazayeri, M (2002). Constructing
CORBAsupported oracles for testing: a case study in
automated

software testing, In: Proc. of 17th IEEE International Conference
on Automated Software Engineering, p.129-138.

[9] Gerhart, S., Craigen, D., Ralston, T (1994). Experience with
Formal methods in Critical Systems, IEEE Software, p.21-28.

[10] Hinchey, M.G., Bowen, J.P (1995). Applications of Formal
Methods.Prentice-Hall, Englewood Cliffs, N.J.

[11] Hui, J., Dong, L., Xiren, X (1997).Using formal
specification language in industrial software development,
In: Proc. of the IEEE International Conference on Intelligent
Processing Systems, 1997, V. 2 p.1847 – 1851.

[12] Jones, C.B (1986). Systematic Software Development
Using VDM. London: Prentice Hall International (UK) Ltd.

[13] Kit,E (1988). Software Testing in the Real world: improving
the process. Addison Wesley.

[14] Larsen, P.G., Fitzgerald, J., Brookes, T (1996). Applying
formal specification in industry, IEEE Software, 13 (3) 48 – 56.

[15] McCabe, T. J (1976). A Complexity Measure, IEEE Trans.
Software Eng.,2 (4) 308-320.

[16] Meyer, B (1985). On Formalism in Specification, IEEE
Software, 6-26.

[17] Nadeem, A., Ur-Rehman, M.J (2004). A framework for
automated testing from VDM-SL specifications, In: Proc. of
8th International Multitopic Conference, Dec.2004, p.428- 433.

[18] Ntafos, S.C.,Hakimi, S.L (1979).On path Cover Problems
in Digraphs and Applications to Program Testing, In: IEEE
Transactions on Software Engineering, 5 (5) 520-529.

[19] Palshikar, G.K (2001). Applying Formal Specifications
to Real-World Software Development, IEEE Software, 18 (6)
89-97.

[20] Pedersen, J.S., Klein, M.H (1988). Using the Vienna
Development Method(VDM) to formalize a communications
protocol, Technical Report CMU/SEI-88-TR-26,ESD-TR-88-
027, Software Eng.Res. Inst.,Carnegie Mellon Univ., Pittsburgh,
PA.

[21] Pfleeger, S.L.,Hatton,L (1997).Investigating the Influence
of Formal Methods, IEEE Computer, 30 (2)33-43.

[22] Plat, N., Van Katwijk, J., Toetenel, H (1992). Application
and benefits of formal methods in software development,
Software Engineering Journal, 7 (5) 335 – 346.

[23] Stickney, M.E (1978). An application of graph theory to
software test data selection, In: Proc. of the software quality
assurance workshop on Functional and performance issues,
p.111 -115.

[24] Williams, L.G (1994) Assessment of safety-critical
specifications, IEEE Software, 11 (1) 51 – 60.

Journal of Digital Information Management � Volume 5 Number 6 � December 2007 353

Abdul Huq received his PhD from
the University of Madras, India. He
is currently Head of the Department
of Computing, Mathematics and
Applied Sciences at Middle East
College of Information Technology,
Sultanate of Oman. His research
interests include Artificial
Intelligence, Software Engineering
and Syntactic Pattern Recognition.
He has published several papers
and authored books on Computing.

Narayanan T Ramachandran
received his PhD from the
University of Madras, India. He is
currently Dean of Middle East
College of Information
Technology, Sultanate of Oman.
His research interests include
Simulation studies, Optimisation
techniques and Software
Engineering. He has published
several papers and authored
books on Computing.

