
354 Journal of Digital Information Management � Volume 5 Number 6 � December 2007

A Real Time S-Box Construction Using Arithmetic Modulo Prime Numbers

Eltayeb Salih Abuelyman
CCIS, Prince Sultan University, Riyadh 11586, Saudi Arabia
abuelyaman@cis.psu.edu.sa

Mohammed Ahmed El-Affendi
CCIS, Prince Sultan University, Riyadh 11586, Saudi Arabia
affendi@cis.psu.edu.sa

an encryption algorithm that would become the first choice for
most situations requiring a block cipher”. Consequently,
several algorithms were submitted and Rijndael was chosen
by the American National Institute of Standards and Technology
(NIST)[3].

1.2 The Rijndael Algorithm

For Rijndael, the length of both the block to be encrypted and
the encryption key are not fixed. They can be independently
specified to 128, 192 or 256 bits. The number of rounds,
however, varies according to the key length. It can be equal to
10, 12 and 14 when the key length is 128 bits, 192 bits and
256 bits, respectively [4]. The basic components of Rijndael
are simple mathematical, logical, and table lookup operations.
The latter is actually a composite function of an inversion over
Galois Field (GF) with an affine mapping. Such structure
makes Rijndael suitable for hardware implementation [2].
Nevertheless, both hardware and software implementations
have their own drawbacks. Hardware implementation is rigid
as the block and key sizes must be held at fix values. However,
the running time is better compared to its software counterpart.
All in all, Rijndael is considered to be the fastest algorithm in
terms of critical path between plaintext and cipher-text [2].
This paper proposes the design of a modulo prime-number
based AES algorithm. The design will be simulated in a VHDL
environment to confirm its superiority. The VHDL modules
will not be included in this paper. The rest of the paper is
organized as follows: In section 2, a literature survey is
presented; in section 3, three modulo arithmetic based
techniques are analyzed; the conclusion is given in section 4.

2. Literature Survey

Ichikawa, Kasuya, and Mastui evaluated in “Hardware
Evaluation of AES finalists” [5]. The paper evaluates hardware
implementations of the AES finalists; Twofish [13], Serpent
[14], RC6 [15], Mars [16], and Rijndael [17]. Commenting on
Mars, the authors stated two problems: the keyed
transformations take a long time and, the algorithm is very
complex. They also concluded that RC6 gives poor
performance since the critical path is long. The RC6, according
to them, did not satisfy the need for fast encryption. They believe
Serpent has the best security but it requires the largest circuit.
They also believed that Twofish has quite a long critical path.
In their paper titled “Comparison of the Hardware Performance
of AES candidates using reconfigurable hardware” Pawel
Chodowiec and Kris Gai gave data supporting Rijndael [6].
The throughput of Rijndael came second. However,

ABSTRACT: This paper proposes an implementation of the
inverse function of the Advanced Encryption Standard using
the field of prime numbers instead of the Galois Field originally
proposed by Rijndael. The paper will show that the former
approach is simpler and requires less execution time and
implementation circuitry compared to the latter. The authors
analyzed several implementations of the inverse function for
the S-Box using various approaches in search for an optimal
one. In particular, simulation was used to analyze
performances of algorithms for computing the inverse function
based on: the arithmetic modulo a power-of-two; arithmetic
modulo a power-of-two plus one; and arithmetic modulo a
prime number. The simulation revealed that the modulo
a prime number approach has the best performance.
Furthermore, the analysis revealed that using this approach
may enhance security relative to the original approach. The
proposed implementation will provide a better alternative that
can be embedded in many systems.

Categories and Subject Descriptors
E.3 [Data Encryption]; F.2 [Analysis of Algorithms and Problem
Complexity] G.1 [Numerical Analysis]; Computer arithmetic

General Terms
Encryption, Prime number, Cryptographic algorithms

Keywords: Modulo Prime Arithmetic, VHDL, Hardware Implemen-
tation, Diffusion, Pipelining, Parallel Execution

Received 12 Dec. 2006; Revised and accepted 17 Feb. 2007

1. Introduction

The need for encryption continues to grow directly
proportional to the amount of data transmitted in plaintext.
The situation is worsened by the incredible time spent in
hacking and the sophistication of the tools used in the
process. On the other hand, software-based implementations
of cryptographic algorithms fall short of achieving the
expected performance for lower ranges of transmission
speeds. The significance and applicability of hardware-
based implementations of cryptographic algorithms is
therefore of interest to researchers including members of
the VHDL design community [1]. In the next subsections, a
brief introduction to the AES committee’s criteria that lead
to the Rijndael algorithm will be reviewed.

1.1 The Advanced Encryption Standard

In Reference [2] the authors stated that “The Advanced
Encryption Standard (AES) committee solicited proposals for

 Journal of Digital
 Information Management

Journal of Digital Information Management � Volume 5 Number 6 � December 2007 355

considering all the other criteria, Rijndael was found to be the
best. Ian Harvey discussed the selection of encryption
algorithm in practical situations in his paper titled “The Effects
of Multiple Algorithms in the Advanced Encryption Standard”
[7]. AES finalists are compared based on the factors considered
for algorithm selection. Bryan Weeks etal presented an
overview of the methods and architectures used for the AES
hardware comparison in their paper titled “Hardware
Performance Simulations of Round 2 Advanced Encryption
Standard Algorithms” [4]. In general, throughput, area and
latency are the characteristic considered for design tradeoffs
in hardware engineering. The five finalists were examined
from the standpoint of minimum area and maximum
throughput. Interested readers may consult reference [4] for
further details. A. Satoh, S. etal presented an AES hardware
implementation they considered to be efficient in their paper
“A Compact Rijndael Hardware architecture with S-Box
Optimization” [8]. However, the main drawback of their
architecture is the critical path time. The SubBytes,
MixColumns and AddRoundKey transformations are done for
one column within one clock cycle. This increases the critical
path time. In the next subsection a survey of some of the
VHDL implementations is presented.

2.1 VHDL implementations

Algotronix AES Core [9] represents the second generation of
their AES VHDL technology. It is a stable implementation of
the entire algorithm. It offers competitive density and
performance on all the main Field Programmable Gate Arrays
(FPGA) families from Xilinx, Altera and Actel. It is supplied as
synthesizable source code to allow for customer code review
in security sensitive applications. The core is highly
configurable with many implementation options but unlike
most competitive products, this is achieved using VHDL
generic parameters and does not require customizing the
VHDL code.

In their paper “Configurable Design and Implementation of
the Rijndael Algorithm-AES”, Arda Yurdakul etal [10] discussed
the design and implementation of three configurable and
flexible cores of Rijndael. The three cores are; an encryptor, a
decryptor and a combined encryptor-decryptor. These cores
support not only the AES, but also the whole Rijndael algorithm.
Another feature of the cores is that they are all designed using
Electronic Code Book (ECB) mode meaning that every single
data block is encrypted and decrypted independently from
each other. Since ECB is the basic element of all other main
modes such as Cipher Block Chaining (CBC), Cipher
Feedback (CFB) and Output Feedback (OFB), it is easy to
extend their design and implement the other modes. All the
modules in these flexible cores are realized using VHDL
language. Some modules are designed by using behavioral
style and some are designed using Register Transfer
Language. In the next section the implementation of the
modulo arithmetic based AES is presented.

3. AES Implementation using modulo arithmetic

Generally speaking, for the hardware implementations of
Rijndael, Ian Harvey [2] states that the average time for one
lookup table is 3.2 nanoseconds for Rijndael (8x8). If one is
able to optimize the S-Box lookup process, then the speed of
Rijndael can be greatly increased. The S-Box computation is
the most time-consuming operation in Rijndael. Such is the
case because it is required in every round. Current

implementations pre-compute the S-Box and store it on a
Read Only Memory (ROM). However, there is a chance that in
a highly sensitive data environment, storing such information
may pose a threat to its security. To circumvent such
vulnerability, the S-Box values must be computed on a real-
time basis. However, using the Galois Fields (GF) renders
this option undesirable. To speed up real-time S-Box
construction, an environment other than the GF must be used.
The reason real time computation of the S-Box is
advantageous is two fold: first, when the lookup table is stored
for future reference, it is vulnerable to attacks; hence, it is a
security concern. Second, if a device doesn’t have enough
resources, real-time computation of inverses of numbers for
the S-Box in Galois Field environment becomes a bottleneck.
To overcome these limitations, real time computations of these
inverses can be performed using arithmetic modulo some
number. The proof that the modulo arithmetic approach is
efficient and takes significantly less time and space compared
to the GF can be found in reference [11]. Legitimate candidates
for the modulo arithmetic are numbers that are powers of two
and prime numbers. Henceforth, arithmetic modulo a power
of two will be referred to as AM(2n), and arithmetic modulo a
prime will be referred to as AM(P). In the next three subsections
we will present analysis of AM(2n), analysis of AM(2n+1), and
analysis of AM(P).

3.1 Computing inverses modulo (2n)

The program in appendix ‘A’ is a Java Script version of one of
the VHDL modules for computing the S-Box values. It is
intended to give interested readers an idea about the
complexity of one member of a suite of modules for the
complete process. Without loss of generality, the program
was used to compute the inverses of all numbers that are
less than 24 using modulo 24. For convenience, the output is
rearranged in table 1 below. The table shows an AM(24)
mapping of numbers less than 24.

Number Inverse Modulo 16

1 1

2 -

3 11

4 -

5 13

6 -

7 7

8 -

9 9

10 -

11 3

12 -

13 3

14 -

15 15

Table 1. Inverses Modulo 16 mapping the first 15 integers

Only odd numbers on the first row have inverses modulo 16.
The inverses are shown in the second row, which also shows

356 Journal of Digital Information Management � Volume 5 Number 6 � December 2007

a ‘-’ for numbers without inverses. In this case all the even
numbers do not have inverses, as expected. The following is
a generalization of the relationship between numbers and
their multiplicative inverses modulo a power of 2.

Lemma 1

Given any integer n and any number ‘a’ that is less than 2n, if
‘a’ has a multiplicative inverse modulo 2n , then both ‘a’ and
its multiplicative inverse must be odd numbers.

Proof

If ‘a’ and ‘b’ are multiplicative inverses of each other modulo 2n,
then for some integer z less than 2n the following equation holds:

 a * b = (z * 2n) + 1 (1)

Since the right hand side is an odd number, it follows that ‘a’
must be an odd number and ‘b’ must also be an odd number.
This proves that there are no multiplicative inverses for even
numbers modulo 2n. The Eueler’s Totiet [12] will be used to
prove that every odd number has a multiplicative inverse modulo
2n. In general, mathematicians use Euler’s Totiet function ‘�’
to compute the number of integers that are relatively prime (or
multiplicative inverses) to a particular integer n. The function,
denoted �(n), is given by the following product:

� (n) =

[(p
1
 – 1)* p

1
k1-1] * [(p

2
 – 1) * p

2
k2-1]

* … * [(p
m
 – 1)*p

m
km-1] (2)

Where n in this case is expressed in term of its prime factors
[p

1
, p

2
, … p

k
].

A special case of the Euler’s function can be used to find the
number of integers that are relatively prime to 2n. Since a
power of 2 has the number 2 as its only prime factor then
replacing “n” with “2n”; “p

1
”with the number 2; “k1” with “n” we

reach equation 3 .

 � (2n) = (2-1)(2n – 1) = 2n – 1 (3)

The formula shows that half of the numbers less than 2n are
relatively prime to it. Since no even number is relatively prime
to 2n and there are exactly 2n-1 odd number less that 2n , it
follows that all the odd numbers less than 2n have multiplicative
inverses. This completes the proof.

Lemma 2

For any integer n, if we divide the sequence of odd numbers
from 1 to “2n-1” into two disjoint subsets where the first contains
the sequence of the all odd numbers that are less than 2n-1

and the second contains the rest in ascending order as well,
as shown below.

 [1, 3, …, 2n-1 – 1] , [2n-1 + 1, 2n-1 + 3, … , 2n – 1]

Then we can say that the first and last number in each subset
is the multiplicative inverse of itself modulo 2n.

Proof:

The proof will be divided into four parts for the four boundary
conditions:

 {1, (2n-1 – 1), (2n-1 +1) and (2n – 1)}.
a) The proof for 1 as the multiplicative inverse of itself is trivial.
b) The proof for (2n – 1) as the multiplicative inverse of itself can

be given as follows for some integer z that is less than 2n:

(2n – 1) * (2n – 1) = 22n - 2n+1 + 1 = 2n (2n -2) + 1 = 2n (z) +
1 = 1 mod (2n)

c) The proof for (2n - 1 – 1) is simple:
(2n - 1 – 1)*(2n - 1 – 1) = 22n - 2 – 2n + 1 = 2n * (2n-2 – 1) +1 =
1 mod (2n)

d) The proof for (2n - 1 + 1) is also simple:
(2n - 1 + 1)*(2n - 1 + 1) = 22n - 2 + 2n + 1 = 2n * (2n-2 + 1) +1 =
1 mod (2n)

We will also show that for any power of 2, there are only four
numbers that are inverses of themselves modulo the power
of 2.

Corollary 1

There are exactly four numbers that are the inverses of
themselves modulo a power of 2.

Proof

For any number 2n we proved in Lemma 1 that each of the
numbers in the set S = {1, (2n-1-1), (2n-1+1), (2n -1)} equals its
inverses modulo (2n). We need to show that if a number “a”
equals its inverse then “a” must be equal to one of the numbers
in the set S. Let us assume “a” to be the inverse of itself and
that the value of “a” is not equal to any of the elements in the
set S, we conclude the following four inequalities:

(i) a < (2n -1)
(ii) a > 1
(iii) a is not equal to (2n-1 – 1)
(iv) a is not equal to (2n-1 +1)

We will prove that if “a” satisfies conditions (i) and (ii), then “a”
must be equal to (2n-1 – 1) or (2n-1 +1), thereby contradicting
statements (iii) and (iv) and proving that the value of “a” can
only be equal to one of the members of the set S.

Case (i) a < (2n -1)

Therefore: a = (2n – 1) – 2*r

 for any r > 0 (4)

and a2 = (2n – 1) 2 – 4 *r (2n – 1) + 4* r2

a2 = 22n – 2n+1 + 1 – 4*r*2n + 4*r+ 4 * r2

a2 = 2n (2n – 2 – 4*r)

 + 4 * r2 + 4*r + 1 (5)

Given the fact that a2 is congruent to 1 modulo 2n equation (5)
implies that:

 (4 * r2 + 4*r) mod (2n) = 0

Therefore (4 * r2 + 4*r) = t * 2n

 for 0 < t < 2n

Rearranging the terms results in equation (6)

r*{(r+1)/t}=2n-2 (6)

Equation (6) implies that both “r” and “{(r+1)/t}” are powers of
2. Since the numerator (r+1) must be an odd number, it follows
that {(r+1)/t} must be equal to 1. Therefore “r” will be equal to
2n-2. Consequently, using equation (4), “a” will satisfy the
following equation:

a = (2n – 1) – 2*r

= (2n – 1) – 2*2n-2

= (2n-1 – 1)

Journal of Digital Information Management � Volume 5 Number 6 � December 2007 357

Case (ii) a > 1

 Therefore a = 1 + 2*r

 for any r > 0 (7)

 and a2 = 1 + 4*r + 4 * r2

 since “a” is congruent to 1 modulo 2n it follows that:

(4 * r2 + 4*r) mod (2n) = 0

and eventually we find the value of “r” to be equal to 2n-2

following the same steps in case (i,. Plugging this value in
equation (7) will lead to:

 a = 1 + 2 * 2n-2 = (2n-1 + 1)

which completes the proof.

This ends the proof for Corollary 1.

Since mapping of the boundary conditions results in numbers
that are inverses of themselves, AM(2n), and for that matter
GF(2n), may look vulnerable through the S-Box Values. We
used corollary 1 to show that regardless of the value of n, the
number of integers which are equal to their inverses modulo
(2n) will be exactly four. However, that is not the only concern
we have with this approach. AM(2n) also suffers from another
disadvantage, that is, even numbers have no inverses
modulo(2n). The question that may be asked is whether or not
modifying the modulo (2n) arithmetic will lead to a better
approach. In the next subsection AM(2n +1) will be examined.

3.2 Computing inverses modulo (2n +1)

As stated in the previous subsection, AM(2n) results in exactly
four integers that are equal to their inverses and all the even
numbers have no inverses. A reasonable approach is to try
only modulo odd integers because modulo even integers will
always limit the number of multiplicative inverses as shown
in the case of AM(2n). An interesting odd number is (2n +1),
which is chosen as the nearest odd number greater than 2n.
Figure 1 below shows plotting of three curves for: the powers
of 2; AM(2n); and AM(2n +1).

Figure 1. Plotting 2n, AM(2n) and AM(2n +1)

It is clear from the figure that the number of multiplicative
inverses under AM(2n) is equal to 2n-1 for all values of n as
expected. The figure also shows the number of multiplicative
inverses for AM(2n+1) to be as high as (2n – 1). The following
lemma gives both upper and lower limits for AM(2n+1).

Lemma 3

The number ‘r’ of integers that are relatively prime to (2n+1) is
given by the relationship

 2n-1 < r < (2n +1)

Proof

The proof for the upper bound is obvious since (2n+1) can be
equal to a prime number. The proof that all numbers less
than a prime number are relatively prime to that prime number
is obvious, hence, the maximum value for ‘r’ is 2n. To prove the
lower bound, consider expressing (2n+1) by the product of its
prime factors as follows:

 (2n+1) =

 p1
k * p2

 k2 * …* pm
 km > 2n (8)

where “m” is less than “n” .

Rewriting equation 4a we get:

p1
k1 * p2

 k2 * … * pm
 km > 2L1 * 2L2 * …. * 2Lm (9)

where L1+L2+ … +Lm = n

Each side of inequality (9) has m terms. Since every pi (i = 1,
…, m) in the left hand side is greater than, or equal to 2, and
all of the p

i
’s cannot be equal to 2, then applying Euler’s Totiet,

function (equation 8) to the left hand side of equation (9) we
get:

[(p
1
 – 1) * p

1
k1-1] * [(p

2
 – 1) * p

2
k2-1] * … * [(p

m
 – 1)

* p
m

km-1] > 2n-1 (10)

This completes the proof.

Simulation results also confirm the lower bound showing the
number AM(2n+1) consistently higher than AM(2n) for all value
of n. AM(2n+1) would have qualified for S-Box computation
had it not been for one problem. That is, the distance between
two consecutive powers of 2 increases exponentially making
both AM(2n) and AM(2n+1) less attractive. Another possibility is
to use a Brute Force (BF) method in finding a class of
reasonably distributed numbers. Each of these numbers
should be Relatively Prime (RP) to most of the integers that
are less that it. In the next subsection we will discuss the BF
approach.

3.3 Computing inverses modulo a number using BF

method

The plotting on figure 2 shows the distribution of relatively
prime numbers for each of the numbers from 1 to 200.

Figure 2. Multiplicative inverses for numbers between 1 and 200

One interesting observation is that the lowest points (minima)
on the graph are of the form (3*m) and the highest points
(maxima) are of the form (6*m +1) or (6*m-1). Although the
graph shows only the plotting for number from 1 to 200, the
observation is valid for larger numbers as well. The number

358 Journal of Digital Information Management � Volume 5 Number 6 � December 2007

of RP integers for a maxima point “M” is, in most cases, equal
to “M-1” but always greater than “M/2”. A closer look at the
maxima points on the graph reveals that each takes one of
the two forms { (6*m +1) or (6*m-1) where m is an integer.
Either of the forms is in general equals to a prime number. In
the next subsection arithmetic modulo a prime number, AM(P),
will be discussed.

3.4 Computing inverses using AM(P).

Since every number less than a prime number P is relatively
prime to P, it follows that every number less than P has a
multiplicative inverse modulo P. Such is the case because
the set of modulo a prime numbers define a field, a known
mathematical set with the property that every element in it has
a multiplicative inverse.

An obvious concern is that going for the less complex AM(P)
may render cryptanalysis easier! The answer to this concern
is given in the next subsection.

3.5 Security of the AM(P) approach.

Since the only change in the modified AES is the replacement
of the GF with AM(P), it is sufficient to show that the use of
AM(P) will not adversely affect security. Given the fact that the
inverse of an integer Q in GF is equal to the remainder when
Q is divided by a specific number, it is clear that the degree of
difficulty of finding inverses in GF is relatively comparable to
that of finding inverses using AM(P). Nevertheless, the
approach that is taken for the purpose of this research adds
more confusion to the process. One can therefore argue that
the resulting AES would be more secured than the original
Rijndael proposal. The tradeoff for extra security will be the
addition of one bit to the size of the S-Box entry. To illustrate
this fact, the output of a Java Script program in appendix ‘a’ is
given in table 3 below for a prime number 19 on the second
row. The first column shows the prime numbers 19, 23, 29
and 31 as row headers. The first row shows the numbers 2
through 18 as column headers. Each entry in the second row
shows the multiplicative inverse for the column header
obtained using modulo 19 (the row header). The choice of
small numbers here is only for simplicity of illustration.

19 23 29 31

2 10 12 15 16

3 13 8 10 21

4 5 6 22 8

5 4 14 6 25

6 16 4 5 26

7 11 10 25 9

8 12 3 11 4

9 17 18 13 7

10 2 7 25 28

11 7 21 8 17

12 8 2 17 13

13 3 16 9 12

14 15 5 27 20

15 14 20 2 29

16 6 13 20 2

17 9 19 12 11

18 18 9 21 19

Table 3. Inverses of the numbers 2-18 using AM(P)
for P = 19, 23, 29 and 31

In general, the process of finding inverses using AM(P) gives
a mapping that can be defined as one-to-one onto. This may
appear as a weakness for AM(P) and for that matter it may
also be thought of as a weakness for GF. How can AM(P) then
be made more secure? The answer is simple, by adding
more confusion. That is, instead of considering only the prime
number P for computing the inverses of the numbers 2 through
(P-1), one can compute the inverses for the same numbers
but modulo any prime number that is greater than P. To further
clarify this concept, rows 3, 4, and 5 of table 3 show the
inverses of the numbers 2 through 18 using modulo 23, 29
and 31 respectively. It can easily be seen that the inverses for
the same number modulo different prime numbers are
different. For example, table 3 shows the inverses for the
number 11 to be 7, 21, 8 and 17 in modulo 19, modulo 23,
modulo 29 and modulo 31 respectively. The only restriction
here is that the prime number chosen should not result in
inverses that require more than one extra bit to encode.

4. Conclusion

An implementation of Advanced Encryption Standard that uses
the field of prime numbers instead of the Galois Field originally
proposed by Rijndael has been investigated. The former is
simpler and requires less execution time and implementation
circuitry compared to the latter. The strategy for the proposed
modulo prime arithmetic adds more confusion to the S-Box
computation by allowing the user to choose a prime number
from a set of possible candidates. It also adds security by
allowing the computation of the S-Box to take place on real
time basis. Testing and comparison of simulation
performances of the inverse function of S-Box computation
using modulo a power-of-two, modulo a power-of-two plus
one, and modulo a prime number reveals that the modulo a
prime number approach has the best performance. The
proposed implementation will provide a better alternative that
can be embedded in many systems.

References

[1] Swankoski, E.J., Brooks, R.R. Narayanan, V., Kandemir,
M., Irwin, M.J (2004). A Parallel architecture for Secure FPGA
Symmetric Encryption.

[2] Harvey, Ian (2005). The Effects of Multiple Algorithms in
the Advanced Encryption Standard, nCipher Corporation Ltd.,
4’Th January 2000 Retrieved on November 6, 2005

[3] Daemen, J., Rijmen, V (2005). AES Proposal: Rijndael,
Document vers on 2, Date: 03/09/99. Retrieved on October
20, 2005.

[4] Weeks, Bryan., Bean, Mark., Rozylowicz, Tom., Ficke,
Chris (2005). Hardware Performance Simulations of Round
2 Advanced Encryption Standard Algorithms, National Security
Agency. Retrieved on November 8, 2005

Journal of Digital Information Management � Volume 5 Number 6 � December 2007 359

[5] Ichikawa, Tetsuya., Kasuya, Tomomi., Matsui, Mitsuru
(2005).Hardware Evaluation of AES Finalists, Kamakura Office,
Mitsubishi Electric Engineering Company Limited. Retrieved
on October 30, 2005

[6] Chodowiec, Pawel., Gaj, Kris (2002). Comparison of the
Hardware Performance of AES candidates using
reconfigurable hardware.

[7] Advanced Encryption Standard Development Effort. http://
www.nist.gov/aes.

[8] A. Satoh, A., Morioka, S., Takano, K., Munetoh, S (2001). A
Compact Rijndael Hardware Architecture with S-Box
Optimization, In: Proc.Advances in Cryptology—ASIACRYPT
2001, p. 239-254.

[9] http://www.algotronix.com/engineering/aes1.html

[10] http://www.cmpe.boun.edu.tr/~yurdakul/papers/
OzpinarDSD03.pdf

[11] Abuelyaman, E (2005). Alternative S-Box Computation
Method for AES Environments. Technical Report, School of
Information Technology, Illinois State University, Normal, IL.

[12] Guy, R. K. “Euler’s Totient Function,” “Does __(n) Properly
Divide n–1,” “Solutions of __ (m)=__ (n),” “Carmichael’s
Conjecture,” “Gaps Between Totatives,” “Iterations of __and _,”
“Behavior of _ (_ (n)) and _ (_ (n)).” §B36-B42 in Unsolved
Problems in Number Theory, 2nd ed. New York: Springer-
Verlag, pp. 90-99, 1994.

[13] B. Schneier,B., Kelsey, B., Whiting, J., Wagner, D., Hall,
D., Ferguson, N, (1998). “Twofish: A 128-Bit Block Cipher”.

[14] Ross Anderson, Ross., Biham, Eli., Knudsen, Lars
(2000). The Case for Serpent.

[15] Ronald L. Rivest1, M.J.B. Robshaw2, R. Sidney2, and
Y.L. Yin2, “The RC6 Block Cipher”, August 20, 1998

[16] IBM MARS Team (2000). MARS and the AES Selection
Criteria.

[17] Daemen, J., Rijmen, V. “AES Proposal: Rijndael”
Document version 2

Appendix A

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.0
Transitional//EN”>

<!-- saved from url=(0085)file://C:\Documents and
Settings\user\Desktop\calc_PrimeFactors\calc_PrimeFactors.htm
-->

<HTML><HEAD>

<META http-equiv=Content-Type content=”text/html;
charset=windows-1256">

<STYLE>.clr {

FONT-SIZE: 8pt; FONT-FAMILY: verdana, Arial, sans-serif }

</STYLE>

<SCRIPT language=VBSCRIPT>

sub cmdcalc_onclick()

 Dim inival, pcnt, retval, totval, pval, retstr

 Dim parr()

 pval = Cint(txtval.value)

 if pval <= 0 then

 Msgbox “Please enter a valid Prime Number”

 exit sub

 end if

 inival = pval - 1

 ReDim parr(inival, 2)

 For pcnt = inival To 2 Step -1

 For i = pcnt To 2 Step -1

totval = (pcnt * i) - 1

If (totval Mod pval) = 0 Then

parr(pcnt, 0) = pcnt

parr(pcnt, 1) = i

End If

 Next

Next

 For i = inival To 2 Step -1

if parr(i, 0) = “” then

 parr(i, 0) = i

 parr(i, 1) = GetFactor(parr, inival, i)

end if

if parr(i, 0) <> 0 then

 retval = retval + CStr(parr(i, 0)) + “ <-> “

 + CStr(parr(i, 1)) + “|”

end if

 Next

 if retval <> “” then

 lblText.innerHTML = “ Valid factors for the

 Prime Number “ + Cstr(pval) + “

 are:
”

 lblresult.innerhtml = cstr(retval)

 end if

end sub

function GetFactor(parr, inival, srcval)

360 Journal of Digital Information Management � Volume 5 Number 6 � December 2007

 dim retval

 For i = inival To 2 Step -1

if parr(i, 1) = srcval then

GetFactor = i

exit function

end if

 Next

end function

</SCRIPT>

<META content=”MSHTML 6.00.2900.2802"
name=GENERATOR></HEAD>

<BODY bgColor=#ffff99>

<H2>

<CENTER>Valid Factors for Prime Numbers </CENTER></H2>

<TABLE>

 <TBODY>

 <TR>

 <TD><LABEL class=clr>Please Enter a valid Prime
Number:</LABEL> </TD>

 <TD><INPUT class=clr size=3 value=0 name=txtval> </TD>

 <TD><INPUT class=clr type=button value=Calculate
name=cmdcalc> </TD></TR>

 <TR>

 <TD align=middle colSpan=3 height=10><LABEL
class=clr></LABEL></TD></TR>

 <TR>

 <TD vAlign=top align=left colSpan=2><LABEL class=clr

id=lblText></LABEL></TD>

 <TD align=left><LABEL class=clr

id=lblresult></LABEL></TD></TR></TBODY></TABLE></
BODY></HTML>

