
368 Journal of Digital Information Management � Volume 5 Number 6 � December 2007

A Method of Reduction of the Microinstructions of Synchronous Digital Systems

of the combined addressing because of the large number of
unconditional transfers that must be entered to insure the
correct function of the automaton [4, 5, 7, 8]. The present
method is based on dividing the MI into subsets to minimize
the MI numbers.

2. Existing Scheme

The Combined Microinstructions (CMI) are used in
MicroProgram Memory (MPM). The control words can be stored,
with the following format, in various devices such as
Programmable Logic Array (PLA), read only memory (ROM)
and others. See Figure 1 below:

Al-Dahleh M. Z., Shehabat I. M.
Philadelphia University, Jordan.
ishehabat@yahoo.com

ABSTRACT: In this paper, the author presents a method to
synthesize the Algorithm State Machines (ASM) for synchronous
digital systems using Combined Addressing. In This proposed
method, the microinstructions are divided into subsets, and thus
the Numbers of microinstructions are apparently minimized and
the throughput time of the automation is reduced.

Categories and Subject Descriptors
C.5 [Computer System Implementation]; B.4.3 [Interconnections];
Asynchronous/synchronous operation

General Terms
Synchronous Digital Systems,Algorithm state machines

Keywords: Digital Systems, Microinstruction (MI), Synchronized
Systems, Combined Addressing, Throughput.

Received 11 Nov. 2006; Revised and accepted 17 Feb. 2007

1. Introduction

In the late 1940’s Maurice Wilkes of Cambridge University
started work on a stored program computer called EDSAC
(Electronic Delay Storage Automatic Calculator). During this
effort, Wilkes recognized that the sequencing of control signals
within the computer was similar to the sequencing actions
required in a regular program and that he could use a stored
program to represent the sequences of control signals. Since
Maurice Wilkes proposed the principle of Microprogramming
in his paper published In 1951[1], several methods of
designing Micro-Programmed Automata (MPA) have been
developed based on Micro-Program and Hardware design
[2, 3, 4, 5]. Various methods have been developed as Logical
Scheme Algorithm, Transition Array and Algorithm State
Machines (ASM). The ASM have been widely used in practice
[2, 3, 6, 8] as a convenient way of specifying the sequence of
procedural steps and decision paths of an algorithm.

Designing MPA by using ASM can be realized on Micro-
Programmed as well as Hardware programmed logic [2, 3, 6,
9, 10]. In Micro-Programmed logic, several types of
addressing have been used as Compulsory, Combined and
Natural addressing [5, 6, 10]. The 1980’s proved to be crucial
turning point for traditional microprogramming. Without
exception, modern-day RISC microprocessors are hardwired.
The MC68000 macroinstruction set has also downsized, so
that the implementation of the remaining core macroinstruction
set can be hardwired [11]. Even recent processors for IBM
System/390 mainframes are hardwired [12]. Microcode is still
used, however, in the numerous Intel x86 compatible
microprocessors like the Pentium 4 and AMD K6-2 [13].

The Combined addressing of Microinstructions is used in
Micro-Programmed logic devices because it is a convenient
and easy way of writing the MicroPrograms as well as the
small size of the microinstruction [6, 9, 10].

This work presents a new method to minimize the number of
the MI. The quantity of MI is considered a major disadvantage

 Journal of Digital
 Information Management

The microinstruction format shown in Figure 1 has the
following fields [4, 6, 8]:

a. Field of Micro-Operation (FMO) contains the codes of
executed Micro- Operations yn Yyn ∈ = {y1 ,..., yN}
1withword length N.

b. Field of Logical Conditions (FLC) contains the code of
logic conditions (LC) �

��
��X = {�

�
�,...,��

L
}, Which defines

the transitions of the MicroProgram With word length L.
c. Field of False Addresses (FFA) contains the False Ad-

dresses of transition, which is initiated, if the LC equals
zero, with word length R.

The automaton with combined addresses presented in Figure
2 below includes thefollowing structure [2, 3, 4, 8]:-

a. The Address Circuit (CA), which analyses the fields
FLC depending on the value of LC �

��
��X = {�

��
,...,��L}

forms one of the two signals �1 or According to .1and .2
the Register Address MicroProgram Memory (RAMPM)
responds by transferring either FFA or by adding one to
the current address.

b. RAMPM gives the first address of the MicroProgram on
signal �0.

c. MicroProgram Memory (MPM) contains the
MicroProgram with the word length r = int (log2m)

d. The Control Signals Circuit (CSC) forms the micro-op-
eration Yyn ∈ = {y

1
 ,..., y

N
} depending on field FMO,

as well as the stop signal Z.

With the start signal, the automaton gives the 0ϕ -signal which
gives the first address of the MicroProgram according to the LC
and the input X. The CA determines whether to pass the FFA or
to add one to the current address by accessing �

�
 or �

�
 signals.

The RAMPM determines the next address and passes the
FMO field to the CSC. The CSC defines the output
microcommand and the stop signal Z.

To design the MPM, a sequence of conditions must be
considered [5, 8, 9, 10], as the sequence of the LC according

Figure 1. Microinstruction Format

Journal of Digital Information Management � Volume 5 Number 6 � December 2007 369

to the ASM. In case of a sequence of operational node transfers
to the same decision node, an unconditional transfer must
be added to the MPM, which leads to expand and complicate
the micro-program.

To reduce the number of microinstructions a new additional
addressing circuit is suggested based on dividing the logical
conditions into two subsets. This leads to expand the
microinstruction format but decreases the number of
microinstructions stored in the MPM.

The additional circuit CA2 contains all the logical conditions
that depend only on one logical condition while the address
circuit CA1 formulates all the transitions that depend on more
than one logical condition.

Therefore the main idea is to divide the microinstructions into
two subsets as below:

1. T1 contains all the possible transitions that contain more
than one logical condition x

1
��X1 and will be stored in

CA1.
2. T2 contains all the remaining transitions x

1
��X2 including

the unconditional transitions and will be stored in CA2.

3. The Proposed Method

To reduce the number of microinstructions, an additional
addressing circuit is proposed. This leads to a new format of
microinstruction as shown in Figure 3 below as well as a new
structure of the automata as shown in Figure 4 below.

The additional field in the microinstruction format will be called
henceforth the Flag Field and will be assigned as FF. This field
determines the output of circuit one CA1 or circuit two CA2.

Figure 3. Proposed Microinstruction Format

Figure 4. Modified Structure Automaton with Compulsory Addressing

I give the following algorithm DMI to divide the microinstruction
set T into two disjoint subsets T1 and T2

Algorithm DMI (T, n,T1, T2)

1. input T = {i1,i2,..., in} :: input MI set T
2. input n :: input the cardinality
3. T1 = ������= �� :: initialize with null set
4. for j = 1 to n do
 4.1. if ij contains two or more logical conditions.
 4.2. then T1 = T1 U {ij}
5. T2 = T – T1

6. Stop
7. End

Moreover, the synthesis of ASM is derived as in the example in
G1 Figure 7 below:

Figure 5. Existing Strategy (CA)

Figure 6. Dividing Strategy (CA1 + CA2)

Figure 7. Example of ASM G1

Figure 2. Standard Structure Automaton with Combined Addressing

370 Journal of Digital Information Management � Volume 5 Number 6 � December 2007

To synthesize the given example we have to build a State
Table (ST) [2, 3, 7, 9] that includes the following columns:-
1. a

m
 is the present initial conditional state MPA, a

m
��A, where

A = {a
1
,…, a

M
} the set of state conditions.

2. K(am) the corresponding conditional state code am has the
length of R = int {log2M}.

3. as, K(as) are the next state and its corresponding code
respectively.

4. x
l
 is the Logical conditions that determine the transfer from
(am, as), and it is an element of the logical conditions
(LC) X = {x1,…,xL}.

5. Yn is the output signal transfer by (am, as), yn ��Y; where Y
= {y1,...,yN}

 set of micro-operations (MO).
6. h=I,H is the number of transfers. From the ASM in Figure

5, the following states A={a1,...,a11}can be defined, to code
these states the logical conditions must be taken in con-
sideration to insure the correct work of the model. The
states will be coded in a way that if there is a sequence of
states following LC that equals to one the code between
these states are increased by one. From the ASM we can
notify the following states <a3,a7,a10>, as well as <a6,a9>,
it should be mentioned that the start and the end states
have the same code. The remaining states are coded
sequentially starting from the last code. In this case, the
following codes are designated: a

1
-0000; a

3
-0001; a

7
-

0010; a
10

-0011; a
6
-0100; a

9
-0101; the remaining sets are

designated with the following codes:
 a2-0110; a4-0111; a5-1000; a8-1001; a11-1010. After that,

the ST Table 1 is built, analyzed and divided into two sub-
tables: T1 contains all the possible transition states that
have more than one logical condition. T2 contains the
remaining conditions.

The circuit CA2 is shown in Figure 6. Signals �1 and �2are
realized by the CA2, Signal �

3
 can be defined from the field

FF. If FF equals zero, signal �
�
 is enabled And CA2 is

activated otherwise the contents of fields FLC and FFA are
ignored and CA1 is activated. The contents of the micro-
program memory MPM are shown in Table 3 below. It is
worth mentioning that the unconditional transition works on
the Negative value of FF.

Through, analyzing Table 1 the following sets can be defined:

1. T1 = { T(a2), T(a7), T(a8) } that includes the following logical
conditions X1 = {x

1
,x

2
,x

3
,x

4
,x

5
,x

6
}.

2. T2 = { T(a
1
), T(a

3
), T(a

4
), T(a

5
), T(a

6
), T(a

9
), T(a

10
), T(a

11
) }

includes the following logical conditions X2 = {x
3
, x

7
}.

From these subsets, the ST for CA1 and CA2 are built. For the
realization of CA1 a PLA can be used, and a direct PLA table
must be built [2, 3, 4, 9, 10] as shown in Table 2 below.

To realize MPM, the field FLC of microinstructions should
contain only three codes 01, 10 and 00 corresponding to X7,
X3 and the unconditional transition (UnT) respectively.

The modified automaton operates as follows:

Signal �0 gives the first address to the MPM. According to the
FF the multiplexer M1 selects either CA1 or CA2. If �3 equals
zero, CA

2
 is selected and depending on the FLC either .1 or .2

is activated. On the other hand, when �
3
equals one, CA

1
 is

activated and FLC and FFA are ignored.

Table 2. Direct PLA Table for Circuit CA1

Table 3. Modified Contents Table of MPM for Automaton with
Combined Addresses

In analyzing the classical method of synthesizing the
automaton with combined addressing microinstructions
using the ASM G1, the following parameters can be stated:

Table 1. State Table of ASM G1

Figure 8. The Logical Circuit CA2

Journal of Digital Information Management � Volume 5 Number 6 � December 2007 371

References

[1] Wilkes, M.V (1951). The Best Way to Design an Automated
Calculating Machine, Machester University Computer
Inaugural Conf., 1951, 16-18.

a. Reprinted In: MV Wilkes,”The Genesis of
Microprogramming, IEEE Annals of the History of
Computing, 8 (3) 1986. 116-126.

[2] Rafiquzzaman, M., Chandra, R.(1988). Modern Computer
Architecture, West Publishing Company.

[3] Mano, M. M (2002). Digital Design, Third Edition, New
Jersey: Prentice-Hall International Inc.

[4] Barkalov, A.A (1990). Synthesis of Control MicroProgram
Device with ImplicitRepresentation of Logic Conditions, USiM.
#1. 38-41.

[5] Baranov S.I., Sklarov V.A (1986) Digital Devices on
Programmed LSIC with Array Structure, Moscow: Radio and
Communication, 272.

[6] Barkalov A. A (1992). Synthesis of MicroProgram Control
Devices. Donetsk: Donetsk State Technical University, Ukraine.

[7] Chao, H., Ong, S (1992).Design Optimization for Control
Units Realized with PLA’s, IEEE transactions on Computers,
3. 1091-1112.

[8] Jain R.P (1986). Modern Digital Electronics, McGraw-Hall.

[9] Majorov S.A., Novikov G.I (1974). Principles of Organization
Digital Machines, Moscow: Engineering.

[10] Palagen, A. V (1993). Micro Processors Systems
Manipulating Information. Kiev: Science.

[11] Motorolla ColdFire manuals. Available on-line at http://
www.freescale.com/

[12] Web, C.F, Liptay, J.S (1997). A high-Frequency Custom
CMOS S/390 Microprocessor, IBM Journal of Research and
Development, 41 (4/5) 463-473.

[13] Shriver, B., Smith, B (1998). The anatomy of High-
Performance Microprocessor: A System Perspective. Los
Alamitos, CA .IEEE Computer Society Press.

– The number of microinstructions = 17 bits;
– The word length fields of FMO = 7 bits, FLC = 3 bits and

FFA =5 bits;
– The word length of microinstructions = 15 bits;
– The capacity of MPM = 17x15 = 255 bits.

Using the modified method for synthesizing ASM G1, the
following parameters can be stated:

– The number of microinstructions = 11 bits;
– The word length fields of FMO = 7 bits, FLC = 2 bits, FFA =

4 bits and FF = 1 bit;
– The capacity of MPM = 11x14 = 154 bits.

4. Conclusion

In this work, a new method of reducing the microinstructions
of synchronous digital systems is proposed. The main
advantages of this design can be listed as follows:

– Reducing the number of microinstructions and the executed
time of the micro-program occur according to the addi-
tional circuit of addresses the additional circuit of addresses
minimizes the number of microinstruction that leads.

– To decrease the executed time of the algorithm.
– Reducing the capacity of the micro-program memory and

the number of chips needed for its realization.

On the other hand, there are some points that must be taken
in consideration:

– The cycle time of microinstruction is increased because
of the additional multiplexers But, in general, as the
number of microinstructions is decreased the general
throughput of the algorithm is also decreased. In other
word, as the new circuit CA

2
 has been added the time

cycle required to execute MI increases. In contrary, as
long as the new method reduces the general number of
MI, the time required to execute the algorithm decreases.

– The CA1 looses its universality, as each ASM needs
special design for the CA

2
.

Such combination of advantages and defects permit us to
generalize the method to be applied for realizing resident
firmware, including high-branched micro-programs.

