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ABSTRACT: Computational approaches can be applied to solve different biology challenges. Tools based on traditional
computation methods have shown, however, to be limited to approach complex biological problems in many situations. In
the present study, a machine learning environment (GASNP), based on Genetic Algorithms, is proposed as a tool to extract
classification rules from biological dataset. The main goal of the proposed approach is to allow the discovery of concise,
and accurate, biological high-level rules which can be used as a classification system. More than focusing only on the
classification accuracy, the proposed GASNP model aims at balancing prediction precision, comprehensibility and
interpretability. The obtained results show that the suggested approach has great potential and is capable of extracting
useful high-level knowledge that could not be extracted by traditional classification methods such as Decision Trees, One
R, Single Conjunctive Rule Learner, BFTree, Decision Table, JRIP, PART, among others, using the same dataset.
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1. Introduction

Molecular Biology field has interesting areas that allows the development and application of computer techniques [1]. Due
to the great amount and complexity of the involved information, tools based on conventional computation have shown to be
limited when dealing with complex biological problems. Computational intelligence techniques, such as genetic algorithms,
have been increasingly used to solve problems in Molecular Biology. The applicability of these techniques comes from their
capacity to learn automatically, processing initially a great volume of data and based on it producing useful hypotheses [2].
Identifying the genes conferring susceptibility or resistance to common human diseases should become increasingly feasible
with improved methods for finding DNA sequence variants on a genome-wide scale. To locate genes affecting these rare
disorders, researchers perform linkage analysis on families, which requires 300 to 500 highly informative genetic markers
spanning the entire human genome. However, it has been considerably harder to locate the genes contributing to the risk of
common diseases such as diabetes, heart disease, cancers, and psychiatric disorders, because these phenotypes are affected
by multiple genes, each with small effect; environmental contributions are also important. Instead of linkage analysis on
families or classes it may be much more efficient to perform association analysis on many affected and unaffected individuals,
which would require hundreds of thousands of variants spread over the entire genome. About 90% of sequence variants in
humans are differences in single bases of DNA, called single nucleotide polymorphisms (SNPs) and these SNPs can be in the
coding regions of genes or in regulatory regions [11]. New techniques for the large-scale identification of SNPs in the human
population [12] are resulting in an exponential expansion in the number known, and already the National Institute of Health
(NIH) SNP database (http://www.ncbi.nlm.nih.gov/SNP) contains approximately 2.8 million cases. There are high hopes that
knowledge of an individuals SNP genotype will provide a basis for assessing susceptibility to disease and the optimal choice
of therapies [13]. A major challenge in realizing these expectations is understanding how and when the variants cause disease
[14]. Thus, the study of the SNPs and these variants will allow researchers to identify the genetic basis for common diseases
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and to improve the efficacy of drugs and other therapies [11]. In the present study, the main objective is to mine accurate and
short high level rules that will be associated to each class individually, reducing the problem to few features per class. Also,
a value will be associated to each feature that composes the rule. The results generated in this work may help researchers to
understand the alteration mechanisms in the SNP of Anopheles gambiae. A Genetic Algorithm was elaborated to obtain IF-
THEN rules from dbSNP database of A. gambiae.

2. Database - dbSNP

Sequence variants are differences in single bases of DNA, called single nucleotide polymorphisms (SNPs). Sequence variations
exists at defined positions within genomes and are responsible for individual phenotypic characteristics, including a person
propensity to suffer from complex disorders such as heart disease and cancer [7]. The Single Nucleotide Polymorphism
database (dbSNP) is a public-domain archive of broad collection of simple genetic polymorphisms. This collection of
polymorphisms includes single-base nucleotide substitutions (SNPs) [7]. This evolutionary environment was applied in SNP
database (dbSNP) of A. gambiae.

The major goal is to search for relations between six fields (orientation SNP scaffold, SNP position, value of allele 1, number
of observations of allele 1, value of allele 2 and number of observations of allele 2) and three types of SNP (intergenic, intronic
and silent mutation). The database has 495 records (intergenic - 80%, intronic - 15.75% and silent mutation - 4.25%).

3. Evolutionary Environment

3.1 Genetic Algorithms (GA)
GA are computational search methods based on natural evolution and genetic mechanisms, simulating the Darwins’s natural
selection theory [3]. The GA implemented in our evolutionary environment was adapted from [9]. GA in [9] was elaborated
with the goal of obtaining IF-THEN classification rules in clinical databases. Another evolutionary environment, also based
on [9], was applied in cancer cells gene expression database [6], measured by microarray [5].

3.2 Individual representation
The individual used on our GA is composed by six (6) genes. The first gene of the individual corresponds to the orientation
SNP scaffold, the second corresponds to the SNP position, the third corresponds to the value of allele 1, the fourth corresponds
to the number of observations of allele 1, the fifth corresponds to the value of allele 2 and the sixth corresponds to the number
of observations of allele 2. The individual is illustrated in Figure 1.

Gene1 ... ... Gene6

W1 O1 V1 ... ... W6 O6 V6

Figure 1. Individual representation

All genes of the GA individual is subdivided into three fields: weight (Wi), operator (Oi) and value (Vi), as illustrated in Figure
1. Each GA gene corresponds to one condition in the antecedent part of the rule (IF) and the whole individual is the previous
rule. The weight field is an integer variable and its value is between 0 (zero) and 10 (ten). It is important to say that this weight
field determines the insertion or exclusion of the correspondent gene in the previous rule. If this value is lesser than a
boundary-value, this gene will not appear in the rule, otherwise the gene appears. In this work, the value 7 (seven) was used
as the boundary-value. The operator field can be < (minor), > (larger), = (equal) or ! (diferent). The value of orientation SNP
scaffold is + (forward) or - (reverse). The value of SNP position is an integer variable which can vary between the minor and
the larger value found in the database. The value of alleles 1 and 2 are: A (adenine), G (guanine), C (cytosine) or T (thymine).
The value that represents the number of observations of allele 1 and 2 is an integer number that can vary between the minor
and the larger value found in the database.

3.3 Fitness function
In general, the individual fitness quantifies its quality as a solution for the target problem. In this work, FF evaluates the
quality of the rule associated to each individual. Some concepts must be explained before defining our FF. When a rule
defined for the classification of a specific class C is applied to a known case, four different types of results can be observed,
depending on the class predicted by the rule and the true class of the case [8]:
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•  True Positive (tp) - The rule classifies the case as class C and the case really belongs to class C;
•  False Positive (fp) - The rule classifies the case as class C, but the case does not belong to class C;
•  True Negative (tn) - The rule does not classify the case as class C and the case does not belong to class C;
•  False Negative (fn) - The rule does not classify the case as class C, but the case really belongs to class C;

Based on the four possible results of a rule, the fitness function used in our evolutionary environment applies two indicators
commonly used in medical domains, called Sensitivity (Se) and Specificity (Sp), which can be defined as follows:

Se =
tp

(tp + fn)

tnSp =
(tn + fp)

(1)

(2)

Using the sensitivity and specificity concepts, FF is defined as the combination of these two indicators, Se and Sp, as
follows:

          Fitness =(Se + Sp)/2 (3)

The goal is to maximize, at the same time, Se as well as Sp. In each execution, the GA works in a binary classification problem,
that is, when the GA is searching for rules associated to a given class C, all the other classes are grouped in one unique class
(not C).

3.4   Genetic Operators and Parameters
Stochastic tournament with Tour of size 3 was used as the selection method for crossover. One-point crossover with
probability equal to 100% is applied to each couple of selected individuals, generating two new ones. Mutation is applied to
the new individuals. A specific mutation operator is used to each type of gene field with a rate of 30%. During the mutation
of the weight field, the new value is given by the increment or the decrement of one unit to the original value. The mutation
changes the current operator field to other valid operator. In this work we have used four operators (<, >, = or !). The
population for the next generation is formed by selecting the best individuals among the components of parents and children
populations. To define the best GA configuration, we chose the configuration that achieved the best test results for all
classes.

We used 200 individuals, evaluated our GA per 200 generations and set the weight field to 7. This environment was obtained
after testing various configurations, such as:

• Population size: 100, 200 and 400;

• Generations: 100 and 200;

• Selection method: Roulette and Stochastic tournament;

• Weight field: 6, 7 and 8;

To show that chosen configuration is robust, we ran 35 times using different random seeds and compared the obtained
results considering a significance test using

α = 0:05. The Table 1 present these obtained results with 95% of significance. For the intergenic class, the lowest value
obtained is 0.855842286, and the highest is 0.878957714 (with difference 1.8%). For the intronic class, the lowest value
obtained is 0.800512661, and the highest is 0.818573053 (with difference 2.3%). The best result was obtained for the silent
mutation class. The lowest value obtained is 0.75966427, and the highest is 0.772678587, with difference 1.3%.

4. Results

We split the database in three partitions. All partitions have 165 records (132 records of intergenic class, 26 records of intronic
class and 7 records of silent mutation class).  In this work, we used two partitions in training and one partition in test. The
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1 0.795 0.888 0.783
2 0.795 0.892 0.768
3 0.79 0.789 0.761
4 0.79 0.892 0.785
5 0.86 0.787 0.783
6 0.795 0.888 0.795
7 0.795 0.89 0.705
8 0.866 0.897 0.761
9 0.854 0.897 0.807
10 0.79 0.892 0.751
11 0.795 0.854 0.756
12 0.871 0.892 0.797
13 0.822 0.816 0.761
14 0.795 0.865 0.772
15 0.862 0.892 0.795
16 0.79 0.876 0.768
17 0.795 0.892 0.761
18 0.809 0.876 0.763
19 0.82 0.796 0.776
20 0.795 0.892 0.745
21 0.822 0.875 0.759
22 0.79 0.892 0.745
23 0.795 0.863 0.761
24 0.795 0.847 0.757
25 0.786 0.876 0.766
26 0.795 0.868 0.745
27 0.79 0.897 0.779
28 0.79 0.853 0.756
29 0.866 0.885 0.771
30 0.822 0.892 0.785
31 0.83 0.81 0.776
32 0.795 0.882 0.77
33 0.795 0.882 0.771
34 0.784 0.789 0.737
35 0.795 0.885 0.745
SD 0.027257317 0.034886539
0.019641621
AV 0.809542857 0.8674
0.766171429

Seed Intergenic Intronic Silent Mutation

Table 1. Significance Test

Table II presents the best rules discovered by our GA and shows their evaluations in the training and test sets.

In Table 2, observe that our environment found a low number of attributes per class (only 3) and a low number of used
attributes in all rules (only 4). Furthermore, the atributes number of obs of allele 1 and 2 appeared in all rules. The result
obtained for intergenic class is very good because we found a test result better than a training result (0.864 against 0.795, a
difference of 0.069 or 6,9%). The remaining results were good too. For the intronic and silent mutation classes, we obtained
test results very near of the training result. For intronic class the difference was 0.073 or 7.3% and for silent mutation class the
difference was 0.023 or 2.3%.

We found an average fitness of 82.2% in the training set and an average fitness of 81.3% in the test set. This values shows
that we found good fitness for all classes and shows that our method is very general, ie, it wasn’t affected by overfitting. In
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order to better evaluate the empirical results obtained using our proposed AG, a comparative analysis was conducted
considering the accuracy of other fourteen traditional classification algorithms present into Weka Suite [10]. They are: J48,
BFTree, UserClassifier, DecisionStump, FT, OneR, ConjuctiveRule, Decision Table, DTNB, JRIP, NNge, PART, Ridor and
ZeroR. All methods are used to build highlevel knowledge. This classification methods were divided in two groups: the first
uses as output the trees and the second, rules. The tree group is: J48, BFTree, UserClassifier,

DecisionStump and FT. The rule group is: OneR, ConjuctiveRule, Decision Table, DTNB, JRIP, NNge, PART, Ridor and
ZeroR. The table III presents the comparison between our environment with others traditional classification algorithms. In all
methods aforementioned, we used 3-fold cross validation.

Type of SNP (class) Rule Fitness Training Fitness Test

Intergenic If(orientation SNP scaffold = +) 0.795 0.864
AND (number of obs of allele 1 ! 7)
AND (number of obs. of allele 2 > 6)

Intronic If(orientation SNP scaffold = -) 0.888 0.815
AND (SNP position < 9385)
AND (number of obs. of allele 2 ! 8)

Silent Mutation IF (SNP position < 2095) 0.783 0.76
AND (number of obs of allele 1 ! 5)
AND (number of obs. of allele 2 < 3)

Table 2.  Best rules discovered for each class

Method Intergenic Intronic Silent Mutation

GASNP 0.864 0.815 0.76
J48 0.885 0.535 0.875
BFTree 0.885 0.575 0.88
UserClassifier 0.5 0.5 0.5
Decision Stump 0.895 0.665 0.885
OneR 0.85 0.5 0.895
Conjuctive Rule 0.85 0.5 0.895
Decision Table 0.88 0.54 0.875
DTNB 0.9 0.58 0.905
JRIP 0.87 0.57 0.885
NNge 0.84 0.625 0.84
PART 0.9 0.695 0.895
Ridor 0.905 0.735 0.905
ZeroR 0.5 0.5 0.5

Table 3. Comparison between our method and other traditional
methods using the fitness function described by the expression (3)

Our environment obtained the best result for the intronic class with difference of 0.08 or 8% for the second best result (Ridor
method with 0.735). When we compared the three classes, intergenic, intronic and silent mutation, our environment is better
than two methods: UserClassifier and ZeroR. Both methods obtained results of 0.5 in three classes. This happened because
this methods obtained excellent results for specificity (100%) but obtained worst results for sensibility (0%) or vice versa.
When we applied these results in (3) function, the result is not so good. For the intergenic class, our method is better than
DecisionStump, OneR, ConjuctiveRule and ZeroR. Even to intergenic class, we obtained equivalent results with other 4
methods: J48, BFTree, Decision Table and JRIP.

In classification problems, however, prediction accuracy should not be the only metric to be used when analyzing the
performance of a specific method. The complexity of the final classification model has great influence in the interpretability
and comprehensibility of the achieved results. When focusing in the complexity of the final model and in the capability of
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each method to explain the classification results, our proposed method presented better results than all traditional algorithms.
Although our results are worse, the knowledge built by our method is more interpretable and understandable than the one
produced by those. J48 built a tree with 12 leaves and size 21. BFTree built a tree with size 37 and 19 leaf nodes. Our rule set
is composed by only 3 rules with 3 attributes, each. When we use this rule set as a black-box classifier, we used only 4
attributes.

For methods that generated rules as classification method, the JRIP classifier build a rule set with 7 rules, Decision Table built
a rule set with 10 rules, DTNB build a rule set with 16 rules and PART generates a rule set with 17 rules. The GASNP generates
a rule set  with only 3 rules. When we compared the rule set length the GASNP generates a rule set 134% less than the rule
set build by JRIP, 234% less than Decision Table, 434% less than DTNB and 467% less than PART. When we compared
GASNP with NNge, the difference is enormous. The rule set built by the GASNP is 4,567% less than NNge. The rule set
generated by NNge is formed by 140 rules, with 100 rules for Intergenic class, 28 for Intronic class and 12 for Silent Mutation
class.

The OneR, Conjuctive Rule and Ridor methods do not build rules for all classes. OneR and Ridor built rules for Intergenic and
Intronic classes and Conjuctive Rule only for Intergenic class. In this sense, the Silent Mutation class will never be assigned
to any instance. In addition, the only information given to the user (besides the classification) is related to Intergenic and
Intronic. The GASNP, on the other hand, built an IF-THEN rule for each class, building knowledge per each class, and
presented acceptable prediction accuracy.

When we project a classifier, it has to classify with high hit rates, but high hit rates only for some classes is not sufficient -
it has to classify all classes with high hit rates. The Table 4 shows the mean and standard deviation of methods evaluated in
this work. Although our method has the fourth best average (only 0.04 or 4% worse than the best result), when we analyzed
the standard deviation our environment had the best result. Thus, our method can be considered the most balanced, with
good results in all three classes, unlike the other evaluated methods.

Method Mean Standard Deviation

GASNP 0.81 0.05
J48 0.77 0.20
BFTree 0.78 0.18
DecisionStump 0.75 0.22
FT 0.82 0.13
OneR 0.75 0.22
ConjuctiveRule 0.75 0.22
Decision Table 0.77 0.19
DTNB 0.8 0.19
JRIP 0.78 0.18
NNGE 0.77 0.12
PART 0.83 0.12
Ridor 0.85 0.1

Table 4. Comparison between our method and other traditional
methods using the fitness function described by the expression (3)

5. Final Remarks

Many complex biological problems have received more attention from part of the computational intelligence community
mainly because of the great amount of information available in electronic repositories and their complexity. In this work, we
proposed an evolutionary environment to extract high-level knowledge (IF-THEN rules) from a specific SNP database
subset. Considering that a classification system should go beyond prediction accuracy, we have implemented a fitness
function based on features which can help obtaining comprehensible and interpretable results while keeping acceptable
classification accuracy. In general the proposed method allowed to obtain simple classification rules with a low number of
attributes per class. It obtained good convergence rates and presented more informative and comprehensive results than
other traditional classification methods also used in our comparative analysis.
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Therefore, it is possible to conclude that the use of the proposed evolutionary environment is indicated mainly when
classifying real problems, where the discovery of high-level knowledge about the domain is crucial. The future for this area
of research is bright. It is clear from the initial research efforts that bioinformatics methods that predict molecular effects of
mutation will continue to improve. A word of caution must be added, however, that bioinformatic scientists building these
methods will have the most success if they choose their learning tools carefully and their training sets to best represent the
spectrum of predictions they will be making [15]. As future works, we hope to improve the results obtained for the three
classes, especially silent mutation, vastly increasing the competitiveness of our environment.
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