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ABSTRACT:  Automatic learning systems now consider the time as the significatnt component  and it has good impact and
hence it should be considered while developing these systems. Many studies have addressed this issue and one amont them
is the  Allen’s temporal interval, based on a set of 13  relations that may hold between two time intervals. We in our study
have kept the principal notion of identifying the several of temporal relations from data, using an inductive logic
programming (ILP) system. This work addresses  a series of  automatic learning investigations. This study shows the
following: The exploration of the impact of the negative training patterns on the induced relation,  evidencing the
necessary background knowledge for inducing the exact expression of the target  concept and  investigate the viability of
ILP as a learning mechanism in real-time systems.
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1. Introduction

The representation of temporal knowledge aiming at implementing temporal reasoning is a recurrent problem in many knowledge
areas, particularly in Artificial Intelligence (AI). The temporal aspect of situations and events is extremely relevant for
implementing intelligent systems; the innumerous proposals to efficiently represent temporal information as well as surveys
bound in the literature are evidence of the importance of this issue (e.g. [1] [2] [3] [4] [5] [6] [7] [8] [9] [10]). As observed in [11],
“[Temporal representation and reasoning] are becoming increasingly important with the advent of ubiquitous computing,
grid computing and the Internet, where large amounts of information and processes are available, and where all these may be
evolving in time”. Vila in [12] mentions a few different areas of AI where representing time and implementing temporal
reasoning are essential for the development of reliable and robust systems: (i) medical diagnosis and explanation – information
about when, in what sequence the symptoms have occurred and how long they have persisted are critical in prescribing the
correct treatment; (ii) planning – in the development of a plan, not only the duration of its actions and tasks should be
carefully considered but also how they can be appropriately temporally ordered considering their many possible interaction
over time; (iii) industrial process supervision – the control of an industrial process involves many temporal aspects such as
past states, variable values evolution over time, the point of time particular sub-processes start (or end) etc. (iv) natural
language understanding – mainly focusing on the verb tense in a sentence. Particularly when the focus is on natural
anguage-based information systems, as pointed out in [13], “Applications such as information extraction, question-answering,
summarization, visualization and developments in the Semantic Web can all benefit from analysis and interpretation along the
temporal dimension.”.
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One of the most well-known and influential formalisms that deals with time representation is the Allen’s temporal interval
algebra [14] [15] [16] [17] [18] [19] [20] [21] [22] [23]. The main purpose of the work described in this paper is to explore how
some of the temporal interval logic relations which have been stated as axioms, can be automatically learnt by a relational
machine learning system. Of particular interest is to determine the influence of the negative examples on the induced concept.
The FOIL (First Order Inductive Learner) system [24] [25], which uses Horn clauses as the language for representing and
inducing knowledge, and one of the most successful ILP systems, was used in the experiments.

The paper is organized as follows: Section 2 briefly introduces the relational machine learning system FOIL in order to
provide the basic knowledge for understanding how the system works and the information it requires. Section 3 presents
some of the main concepts and the basic relations related to Allen’s temporal intervals. Particularly, the learning of seven of
Allen’s 13 basic relations will be main goal to achieve when using the relational learning system FOIL, as described in Section
4. Finally in Section 5 comments about the work and a few directions into future work are presented.

2. The FOIL System – Main Aspects

As stated in [26], “Inductive Logic Programming (ILP) is the area of AI which deals with the induction of hypothesized
predicate definitions from examples and background knowledge. Logic programs are used as a single representation for
examples, background knowledge and hypotheses. ILP is differentiated from most other forms of Machine Learning (ML)
both by its use of an expressive representation language and its ability to make use of logically encoded background
knowledge.” FOIL is an ILP system which induces function-free Horn clause representations of relations. The inductive
process implemented by FOIL is based on examples (positive and negative examples of the relation to be learnt) and a given
background knowledge (BK), known as domain theory (a set of presumably known relations which are fed to the system in
their extensional form, i.e., as ground facts). FOIL learns a description of the target relation represented in terms of the target
and, eventually, of the other relations given as BK. So, given the positive and negative examples that define the relation to be
learnt and the positive examples that define each of the relations that are part of the BK, FOIL’s task is to learn a function-free
Horn clause definition of the target relation.

“FOIL’s definitions consist of ordered clauses. These clauses are extended forms of function-free Horn clauses in that the
body literals may be negated, where the meaning of negation accords with the Prolog convention. There is an option to
exclude such negated literals if the user wishes. The head of a clause is always a literal consisting of the target relation, with
unique variables for each argument position. The literals in the body may be often forms (including negations), subject to
various restrictions. Every literal must contain at least one variable bound by the head of the clause or a preceding body
literal; such variables will be referred to as ‘previously bound’. FOIL checks whether discrete types have constants in
common and if so considers variables of such compatible types to satisfy type restrictions on relations” [25].

When learning a definition, FOIL uses a covering approach (an example is covered by a clause that proves it). FOIL
repeatedly learns a clause and then removes the positive examples that are covered by it from the set of positive examples to
be covered. Once the definition is complete (all the positive examples are covered), FOIL prunes out redundant clauses. The
whole process is much more elaborated than the brief view given above. A detailed and in-depth description of FOIL can be
found in [24], [25] [27]. As an example of how to use FOIL for learning a relation, consider the graph given in Figure 1. Suppose
the relation path(A,B) (representing that there is a path between two nodes A and B of the graph) is the target relation whose
general representation should be learnt by FOIL. Suppose also that examples of relations are known, such as (i) arc(A,B)
(expressing that there is an arc from node A to B), (ii) node(A), expressing that A is a node in the graph.

Figure 1.  A graph defined by 7 nodes and 8 arcs
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Input data to FOIL shown in Figure 2 follows the required syntax where the header of a relation, other than the target relation,
begins with an ‘*’ and consists of the relation name, argument types and optional keys, followed by a sequence of lines
containing examples. Each example consists of constants separated by commas (argument separator) and must appear in a
single line. Due to space restriction, however, the convention of placing one example per line will not be followed in this paper.
A line with the character ‘.’ indicates the end of the extensional description of the corresponding relation. Note in Figure 2 that
the negative examples of relation path/2 have not been given – if all the positive examples are known, the negative examples
can be generated under the CWA (Closed World Assumption). When referring to predicates, their arity (i.e., number of
arguments) can be omitted for the sake of simplicity, when that does not introduce ambiguity.

X: a,b,c,d,e,f,g.       a,g           f,c          *arc(X,X)         f,e                            b
path(X,X)                b,c          f,d            a,b                   f,g                            v
a,b                            b,d          f,e            b,g                  c,d                            d
a,c                            b,g          f,g            g,c                     .                              e
a,d                            c,d          g,c            f,a                   *node(X)                 f
                                  f,a          g,d            f,b                    a                              g
                                  f,b

Figure 2.  Input for FOIL to learn relation path/2 given two relations as BK. Due to space
restriction the convention of having one example per line has been abolished. The information
displayed in six columns above should be read from left to right, in sequence

Considering the input file as described in Figure 2, FOIL induces the two clauses below which are a general description that
can be used to find a path in any graph. Note that although the unary relation node/1 has been given to FOIL as background
knowledge, its contribution for representing the concept of path (in the given context) is not relevant enough and so, node/
1 is not part of the set of clauses induced by FOIL.

path(A,B) :- arc(A,B).

path(A,B) :- arc(A,C), path(C,B).

3.  A Brief Overview of Allen’s Temporal Interval Relations

The formalism known as Temporal Interval Relations (TIR) (or Allen’s Interval Algebra), based on binary interval relations to
represent and reason about temporal knowledge, was initially proposed by Allen in [14], [15]. Since then it has been the
subject of several research works particularly related to its use in different domains and possible extensions it allows [2] [28]
[29].

The information about TIR given next has been compiled from the many sources that discuss this formalism, particularly from
[21]. TIR has a simple linear model of time, having one primitive object referred to as time period and one primitive relation
named meets/2. A time period can be thought of as the time associated with some event occurring or some property holding
in the world. Although the intuitive idea associated with the meets/2 relation is very clear, its description as a formal concept
(aiming at its implementation) is not trivial, since it involves a previous definition of the adopted  granularity for time as well
as the adopted representation for time interval.

Allen in [15] discusses the appropriateness of using time points as opposed to time intervals, as the basis for temporal
representation and reasoning. As Mani and coworkers comment in [13], “Depending on the representation and the choice of
primitive (intervals or instants, or both), a variety of different temporal relations between times can be defined.”

In spite of TIR taking temporal intervals as primitive, the formalism contemplates  the possibility of, assuming a model
consisting of a fully ordered set of points of time, representing an interval T as an ordered pair of points of time < t-, t+ >,
satisfying the pre-condition of the first point being lesser than the second, i.e., t- < t+. For the purposes of this paper this was
the representation adopted, noted by [t-, t+], in spite of some inconveniences it can bring, which have been vaguely
described by Allen in [15] as “being too uniform and does not facilitate structuring the knowledge in a way which is
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convenient for typical temporal reasoning task”. Vila in [12] presents a detailed discussion related to time representations
(time points, intervals); Allen and Hayes in [17] and [18] consider extending TIR introducing the concept of time point.

 Table 1. Allen’s 5 basic binary temporal interval relations and their equivalent relations assuming intervals (time periods) are
defined by time points, i.e., A = [a”,a+] (a” < a+) and B= [b”, b+] (b” < b+), where {a”,a+, b”,b+} †” “!. In the second column
the default conditions (derived from the fact that for interval T, t” < t+ always holds) are also presented. The condition(s) in
bold face are the ones that characterize the corresponding relation. Comma represents the logical ‘and’ and semi-colon the
logical inclusive ‘or’.

Table 1. presents Allen’s 5 basic binary temporal relations between intervals, namely meets, before, overlaps, during, and
equal.

Interval Relation                 Conditions of interval endpoints           Pictorial representation
    meets(A,B)                                       a” < b”, a” < b+                                   AAAA
                                                               a+ = b”, a+ < b+                                       BBBBBBB

before(A,B)                                          a” < b”, a” < b+                            AAAA  BBBBBBB
                                                               a+ < b”, a+ < b+
overlaps(A,B)                                      a” < b”, a” < b+                                   AAAA
                                                               a+ > b”, a+ < b+                                   BBBBBBB

during(A,B)                                         (a” > b”, a+ =< b+) ;
                                                              (a” >= b”, a+ < b+)                                See Table 2

equal(A,B)                                             a” = b”, a” < b+                                  AAAAA
                                                                a+ > b”, a+ = b+                                  BBBBB

The second column of Table 1 shows the equivalent relations on endpoints; the four conditions on time points are presented
(although some of them can be logically entitled by others). According to Allen, the subdivision of the during relation into
three others namely starts, finishes and a new during, provides a better computational model. The three new temporal interval
relations are shown in Table 2. Considering the subdivision of during relation the number of basic temporal interval relations
adds up to 7.

Reminding that if R is a binary relation, the converse (reversed) relation of R, written R”1, is a relation such that yR”1x if and
only if xRy. The 7 basic relations shown in Table 1 and Table 2 can be expanded into 13, if their reversed relations are
considered (the reversed relation of equal is itself). Table 3 names the reversed relations associated to 6 basic temporal
interval relations (equal excluded).

4. Learning Temporal Interval Relations with FOIL – the Basic Learning Cases

This section describes the necessary information (positive examples and BK) for using FOIL to learn each of Allen’s 7 basic
temporal relations shown in Table 1 and Table 2. For the experiments it was used the version 5.1 of FOIL downloaded from
http://www.cs.cmu.edu/afs/cs/project/ai-repository/ai/areas/learning/systems/foil. The FOIL system runs on a Virtual Machine
with Linux Ubuntu version 10 with gcc compiler.

For each relation a table containing the positive examples (PE), the background knowledge (BK) and the induced concept (IC)
is presented. To ease the understanding of the information in each of the following tables a figure (contained in Figure 3)
explicitly representing the given knowledge is presented. There was also an attempt to minimize the number of examples of
the relation to be learnt as well as of the BK given to FOIL as input. The motivation for that was to determine the least possible
amount of information to give to FOIL that would still allow the system to induce the proper expression of the relation, as
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described in Table 1. As mentioned before, in the following tables the knowledge will not be presented according to the
syntax required by FOIL nor the combinations of different BK and sets of positive examples will be exhaustively covered. The
main goal is to show how the basic temporal relations can be learnt and how the background knowledge and positive
examples can influence the induced expression. In the experiments a time interval is represented by its two endpoints. As a
consequence, Allen’s binary relations are represented by four arguments - the first two define the first temporal interval and
the last two, the second temporal interval. It is assumed that each of these pair of values defines a proper temporal interval,
as discussed in Section 3, i.e., a valid temporal interval T is defined as an ordered pair of points of time <t-, t+>, satisfying the
pre-condition of the first point being lesser than the second, i.e., t- < t+). For the experiments described in the following
subsections, the pictorial examples of the respective relation, as shows Figure 2, have been used.

In the following tables: (a) LE identifies a number associated with a learning experiment; (b) due to space restrictions, the line
with the character “.” indicating the end of a listing of examples will be suppressed; (c) column PE lists the positive examples
of the relation to be learnt; (d) column NE lists the negative examples – if none is provided by the user, FOIL automatically
generates them under the CWA. When the CWA is used, the column informs the number of negative examples generated by
FOIL; (e) the presence of *** in column IC means that FOIL was unable to induce an expression for the concepts represented
by the positive examples, given the KB and NE examples shown in the corresponding line of the table; (f) FOIL requires the
definition of the type of data the examples represent. For all the experiments, this request has been accomplished by having,
at the beginning of the input file, the type definition: X:1,2,3,4 or X:1,2,3,4,5 or X:1,2,3,4,5,6 or  X:1,2,3,4,5,6,7, depending on
the relation to be learnt (see Figure 3).

4.1 Learning the meets/4 relation
Figure 3(a) pictorially shows the three positive examples of relation meets/4 initially given to FOIL. Table 4 shows the learning
results obtained by FOIL in three learning environments: #1: 3 positive examples, no negative examples and no BK; #2: 3
positive examples, 1 negative example and no BK; and #3: 2 positive examples, 1 negative example and no BK.

In #1 no NEs were given and FOIL used the CWA to automatically generate 253 negative examples (all possible combinations
with repeated elements of numbers 1,2,3,4, except for the three given as positive examples). Many of the negative examples

Interval Relation              Conditions of interval endpoints               Pictorial representation
  starts(A,B)                                  a” = b”, a” < b+                                          AAAA
                                                        a+ > b”, a+ < b+                                         BBBBBBB
finishes(A,B)                                a” > b”, a” < b+                                          AAAA
                                                       a+ > b”, a+ = b+                                          BBBBBBB
during(A,B)                                  a” > b”, a” < b+                                          AAAA
                                                       a+ > b”, a+ < b+                                          BBBBBBB

Table 2. Subdividing the during relation from Table 1 into three new relations: starts,
finishes and a new during. Notation and convention follow those established for
Table 1.

Interval Relation               Reversed Relation                  Equivalences
meets                                          met_by                        meets(A,B) a” met_by(B,A)
before                                         after                             before(A,B) a” after(B,A)
overlaps                                     overlapped_by          overlaps(A,B) a” overlapped_by(B,A)
starts                                           started_by                 starts(A,B) a” started_by(B,A)
finishes                                       finished_by               finishes(A,B) a” finished_by(B,A)
during                                         contains                     during(A,B) a” contains(B,A)

Table 3. Temporal basic interval relations, their correspondent reversed relations and the
equivalence relation between each pair of them.
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during(A,B,C,D)

overlaps(A,B,C,D)

equal(A,B,C,D)

finishes(A,B,C,D)starts(A,B,C,D)

meets(A,B,C,D) before(A,B,C,D)

(a) (b)

(c) (d)

(e) (f)

(g)

Figure 3. Pictorial examples used for learning the 7 basic temporal relations
were actually positive examples (e.g. 1,3,3,4 is considered a negative example under CWA, given the three positive examples).
In #2 and #3 FOIL induced the condition that should be satisfied by the upper limit and lower limit of the first and the second
temporal intervals respectively (i.e., B=C). Particularly #3 shows that it is possible to learn the concept with only 2 well-defined
Positive examples and 2 welldefined negative examples. For the learning of the meets/4 relation no BK was required.

4.2 Learning the before/4 relation
Figure 3(b) pictorially shows the situations that inspired the positive examples of relation before/4 initially given to FOIL. Table
5 shows the learning results obtained by FOIL in four learning environments described as: #1: 3 positive examples, no negative
examples and no BK; #2: 3 positive examples, no negative examples and one relation as BK; #3: 3 positive examples, 2 negative
examples and one relation as BK and finally #4: three positive examples, 3 negative examples and one relation as BK.

Similarly to what happened with meets/4, the use of CWA by FOIL (since negative examples have not been given) generates
false negatives - FOIL tries to generalize based on wrong information and does not succeed (see experiment #1). Considering
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that 3 positive examples were given, by the CWA the examples 1,2,3,5 and 2,3,4,5, for instance, are considered negative
examples when they clearly are positive examples. In experiment #2 the CWA was maintained and the relation lessthan/2 was
given as BK. Although FOIL succeeds to induce an expression for relation before/4, that definitely is not a good representation
of the concept, since it rules out many positive examples that, due to the use of the CWA, have been considered as negative
examples. The input to FOIL in #3 and #4 differs only in relation to an extra negative example given to the system in #4 which,
definitely, is critical for the system to induce the expected representation of the concept.

LE PE (meets(X,X,X,X)) NE BK IC

#1 1,2,2,3         2,3,3,4 CWA (#NE: 253) ∅ ***
          1,2,2,4
#2 1,2,2,3         2,3,3,4 1,2,3,4 ∅ meets(A,B,C,D) :- B=C.
          1,2,2,4
#3 1,2,2,3 1,2,3,4 ∅ meets(A,B,C,D) :- B=C.
          1,2,2,4                                 2,3,1,2

Table 4. Learning meets/4 based on Figure 3(a) where X: 1,2,3,4 (for FOIL)

LE PE (before(X,X,X,X))        NE         BK               IC
#1 1,2,3,4         1,3,4,5 CWA (#NE: 622)          ∅              ***
            1,2,4,5
#2 1,2,3,4         1,3,4,5 CWA (#NE: 622)    lessthan(X,X)          before(A,B,C,D) :-
            1,2,4,5                                                                 1,2         2,4             ¬lessthan(E,A),
                                                                                        1,3         2,5              lessthan(B,C),
                                                                                        1,4         3,4              lessthan(C,D),
                                                                                        1,5         3,5              lessthan(E,B),
                                                                                        2,3         4,5       ¬before(A,C,F,D).

#3 1,2,3,4         1,3,4,5     3,4,1,2     Same as #2               ***
            1,2,4,5                                2,3,3,4
#4 1,2,3,4         1,3,4,5    3,4,1,2     1,3,2,5     Same as #2        before(A,B,C,D) :-
            1,2,4,5                               2,3,3,4                                                         lessthan(B,C).

Table 5. Learning before/4 based on Figure 3(b) where X: 1,2,3,4,5 (for FOIL)

4.3 Learning the equal/4 relation
The learning of relation equal/4 was based on the situation displayed in Figure 3(f). The information given to FOIL in the
experiments is described in Table 6. The four experiments were conducted with the same positive examples and no BK. They
vary in relation to the negative examples given. In #1: no negative example; #2: 1 negative example; #3: 1 negative example and
#4: 2 negative examples (those that were individually given in #2 and #3).

In #1 the use of CWA provoked many positive examples to be considered as negative (e.g. 1,3,1,3) and FOIL ended without
learning any concept. Note that in #2 and #3 only one suitable negative example was given and only a partial definition of
the concept was induced. However in #4, when the two negative examples are given, FOIL was provided with the necessary
information to induce the conjunction of both conditions that represents the correct expression of equal/4.

4.4 Learning the starts/4 relation
The information pictorially shown in Figure 3(c) has been used for learning the relation starts/4 in four attempts, as  escribed
in Table 7. In experiment #1 the CWA was adopted by FOIL since no negative example was provided. Similarly to what
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LE PE (equal(X,X,X,X)) NE    BK IC
#1 1,2,1,2       3,5,3,5 CWA (#NE: 622)    ∅ ***
         2,3,2,3
#2 Same as #1 1,3,2,3    ∅ equal(A,B,C,D) :- A=C.
#3 Same as #1 1,2,1,4    ∅ equal(A,B,C,D) :- B=D.
#4 Same as #1 1,2,1,4   1,3,2,3    ∅ equal(A,B,C,D) :- A=C, B=D.

happened in the three previous relations, many false negatives were created and FOIL failed to induce an expression for the
concept. Experiments #2, #3 and #4 were conducted with the same set of positive examples and with the same relation given
as BK. They vary in relation to the negative examples provided. The two negative examples given in #3 were unable to
provide FOIL with sufficient information to induce a suitable expression of the concept; only when a few more negative
examples are provided (#4) FOIL induces the expected representation for starts/4.

Table 6. Learning equal/4 based on Figure 3(f) where X: 1,2,3,4,5 (for FOIL)

LE PE (starts(X,X,X,X))      NE               BK            IC

#1 1,2,1,3     1,3,1,4            CWA (#NE: 621)               ∅           ***

        1,2,1,4     3,4,3,5

#2         Same as #1    2,5,5,6                       lessthan(X,X)

                                                                                    1,2    2,3     3,5

                                                                                    1,3    2,4     3,6

                                                                                    1,4    2,5     4,5             starts(A,B,C,D) :- A=C.

                                                                                    1,5    2,6     4,6

                                                                                    1,6    3,4     5,6

#3 Same as #1  2,5,5,6      Same as #2          starts(A,B,C,D) :-

                                                2,5,2,3                                                             ¬lessthan(E,C).

#4 Same as #1 2,5,5,6     3,6,2,5

                                                2,5,2,3     3,6,4,5        Same as #2         starts(A,B,C,D) :-

                                               3,6,4,6    3,6,1,2                                             A=C, lessthan(B,D).

                                               3,6,2,6

Table 7. Learning starts/4 based on Figure 3(c) where X: 1,2,3,4,5,6 (for FOIL)

4.5 Learning the finishes/4 relation
The finishes/4 relation defines when two time intervals are such that the first starts after the second has started and both end
at the same ending point. Figure 3(d) shows a diagram of the situation used as information to FOIL, to conduct the 7 learning
experiments detailed in Table 8, all using the same set of four positive examples. The CWA was used by FOIL in #1 and, as
expected, due to the many false negatives generated, FOIL failed to induce an expression for the concept. As the only
negative example given in #2 was 2,5,2,3 when generalizing FOIL adds the literal A<>C in the body of the clause, since A=C
in the negative example given. The two negative examples given in #3 direct FOIL to include literal lessthan/2 in the induced
expression. Note in #4 that given the five negative examples (the two from #3 plus three new ones), FOIL induces the same
expression as in #3. Increasing the number of NE to 7, as in #5, FOIL includes a negative literal in the induced expression. If
FOIL is instructed via command prompt, as in #6, to ignore negative literals, the expected expression for finished/4 is
obtained. The same expression, however, can be induced without instructing FOIL, by including a carefully chosen negative
example, as done in #7.

* obtained with the –n argument when running FOIL. The parameter instructs FOIL not to consider negative literals.
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4.6 Learning the overlaps/4 relation
As can be seen in Table 1, the definition of overlaps/4 requires three conditions on interval endpoints; a careful analysis of
the appropriate examples that can direct FOIL into the direction of inducing the proper definition should be conducted. As
discussed before, the overlaps relation is true when the first temporal interval overlaps the second. Accordingly to the
semantics associated with Allen’s overlaps relation, the relation is true if (a) the first temporal interval starts earlier than the
second, (b) the second starts while the first is still going on and (c) the first interval ends while the second is still going on.

LE   PE(finishes(X,X,X,X))          NE              BK                                 IC

#1   2,3,1,3         4,5,2,5  CWA (#NE: 1292)                               ***
          4,5,3,5         3,5,2,5
#2       Same as #1    2,5,2,3     Same as #2(Table 7)            finishes(A,B,C,D) :-A<>C.
#3       Same as #1    2,5,2,3     Same as #2                          finishes(A,B,C,D) :-
                                                      2,5,3,5                          (Table 7)                              lessthan(C,A).
#4        Same as #1    2,5,2,3     2,5,3,4      Same as #2                         finishes(A,B,C,D) :-
                                                      2,5,2,6    2,5,5,6            (Table 7)                             lessthan(C,A).
                                                      2,5,3,5
#5       Same as #1    2,5,2,3     2,5,5,6     Same as #2                          finishes(A,B,C,D) :-
                                                      2,5,2,6     3,4,4,6         (Table 7)                               B=D,
                                                      2,5,3,5     3,4,1,2                                                        ¬lessthan(A,C).
                                                      2,5,3,4
#6       Same as #1     Same as #5    Same as #2                                        (*) finishes(A,B,C,D) :- B=D,
                                                                                           (Table 7)                               lessthan(C,A).
#7      Same as #1 2,5,2,3     2,5,5,6
                                                     2,5,2,6    3,4,4,6            Same as #2                            finishes(A,B,C,D) :-B=D,
                                                    2,5,3,5     3,4,1,2           (Table 7)                                 lessthan(C,A).
                                                    2,5,3,4     3,4,3,4

Table 8. Learning finishes/4 based on Figure 3(d) where X: 1,2,3,4,5,6 (for FOIL)
Figure 3(e) is a diagram of the situations given as examples to FOIL in the eight experiments detailed in Table 9. Experiments
#2 to #7 kept constant the number of positive examples and increased the number of negative examples starting with 1 (#2),
followed by 2 (#3), 5 (#4), 7 (#5) and 12 (#6), when FOIL finally gathered enough information to induce the expected
representation of overlaps/4, i.e., a conjunction of three conditions on time points of both intervals, as shown in Table 1.

The following experiments in Table 9 (i.e. #7 and #8) tried to reduce the number of positive examples used, maintaining the 12
negative examples. Experiment #7 differs from #6 in relation to the number of positive examples, which was decreased by one.
FOIL still managed to induce the approp riate expression for the concept. However,when the number of positive examples
dropped to 4, FOIL failed to find a representation for the concept consistent with the given examples and BK.

4.7 Learning the during/4 relation.
Figure 3(g) presents a diagram of the situations given as examples to FOIL as learning situations for relation during/4. Due
to space restriction Table 10 only presents 5 out of the 7 conducted experiments. Also, the examples of lessthan/2 given as
BK are those already presented in Table 7, including the following pairs: 1,7 2,7 3,7 4,7 5,7 and 6,7 since X: 1,2,3,4,5,6,7.

The experiment where no negative examples were given, no BK was given and  #PE=13, resulted in a set of 2388 automatically
created negative examples (CWA) with FOIL ending without inducing any expression. The same strategy used before was
adopted – to fix the number of positive examples and increase (per experiment) the number of negative examples. In all the
experiments, except for the one described above, BK was represented by only one relation (lessthan/2) with 21 examples.

As can be seen in Table 10, FOIL was able to induce the expected concept in experiment #2, based on #PE=13 and #NE=10
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and #NE=10 (and on the BK lessthan/2). In the following experiment (#3) the number of negative examples was reduced to 6
and FOIL only induced a partial expression of the concept. In Experiment #4 the negative examples are back to 10 and a
reduction in the number of positive examples was tried (#PE=3) – FOIL succeeds in inducing the correct expression for the
concept. The following experiment tries again a reduction in the number of negative, maintaining the reduced number of
positive as the previous experiments and FOIL ends without inducing any expression.

LE PE(overlaps(X,X,X,X))            NE          BK                IC
#1 1,3,2,4        2,4,3,6   CWA (#NE: 1290)           ∅               ***
         1,3,2,5        2,5,3,6
         3,5,4,6        2,5,4,6
#2       Same as #1     3,6,4,6        Same as #             overlaps(A,B,C,D):-
                                                                                                   (Table 7)              B<>D.
#3       Same as #1     3,6,4,6       Same as #2            overlaps(A,B,C,D):-
                                                           3,6,2,6                              (Table 7)                B<>D.
#4       Same as #1     3,6,4,6    3,6,4,5       Same as #2            overlaps(A,B,C,D):-
                                                            3,6,2,6    3,6,1,2               (Table 7)             lessthan(B,D).
                                                           3,6,2,5
#5       Same as #1     3,6,4,6     3,6,1,2       Same as #2           overlaps(A,B,C,D):-
                                                            3,6,2,6     1,2,2,4             (Table 7)               lessthan(B,D),
                                                           3,6,2,5     1,2,3,5                                           lessthan(C,B).
                                                           3,6,4,5
#6      Same as #1      3,6,4,6   1,2,3,5        Same as #2           overlaps(A,B,C,D):-
                                                             3,6,2,5   3,5,3,6             (Table 7)               lessthan(A,C),
                                                            3,6,4,5   3,5,2,4                                           lessthan(B,D),
                                                            3,6,1,2   3,5,2,6                                           lessthan(C,B).
                                                            1,2,2,4   3,5,1,2
                                                            3,6,2,6   3,5,3,4
#7   1,3,2,4   2,4,3,6         Same as #7        Same as #2           overlaps(A,B,C,D):-
           1 ,3,2,5   2,5,3,6                                                              (Table 7)             lessthan(A,C),
           3,5,4,6                                                                                                         lessthan(B,D),
                                                                                                                                lessthan(C,B).
#8   1,3,2,4   3,5,4,6         Same as #7         Same as #2                ***
           1,3,2,5   2,4,3,6                                                                (Table 7)

Table 9. Learning overlaps/4 based on Figure 3(e) where X: 1,2,3,4,5,6 (for FOIL)

5. Conclusions and Further Work

Allen’s temporal interval logic goes far beyond the basic issues discussed in this paper since it is the basis for representing
events and actions. As briefly mentioned in Section 3, Allen’s temporal theory is based on a primitive object, the time period,
and one primitive binary relation, the meets relation. Next, the theory introduces an axiomatization of the meets relation, by
establishing 5 axioms based on the following intuitive notions: (1) every period has a period that meets it and another that it
meets;  (2) time periods can be composed producing a larger time period; (3) periods uniquely define an equivalence class of
periods that meet them (4) these equivalence classes also uniquely define the periods and finally (5) periods can be ordered.
Based on both primitives i.e., time period and the meets/2 relation, and considering the five axioms, several intuitive relationships
that could hold between time periods could be defined, such as those already seen in tables 1, 2 and 3.

The work described in this paper will continue by (i) investigating the original time period representation proposed by Allen
[14][30] i.e., as a primitive concept and not as a concept represented by time points as adopted in this paper; (ii) running
automatic learning experiments with FOIL to evaluate the viability of having time period as primitive; (iii) comparatively
evaluate results obtained with both temporal period representations taking into account the necessary examples and background
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knowledge given to the system for promoting the induction of a consistent expression of the target relation to be learnt.

As it is well established in the literature and very obvious from all the experiments described in this paper, the examples given
to the learning system play a crucial role and are determinant for inducing a ‘good’ representation of the concept. Particularly
when using ILP systems, the relevance of the examples and BK seems even more crucial. As can be seen in many of the
experiments described in this paper, the use of the closed world assumption can be misleading and consequently, the ‘right’
choice of negative examples plays a fundamental role in inducing a sound and representative expression of the concept.
Choosing a suitable set of negative examples, however, can be a particularly ‘tricky’ task which, most certainly, will not be
feasible to be automatically conducted in a real time environment.

LE           PE(during(X,X,X,X))               NE                 IC
#1     3,4,2,5    3,4,1,7     3,5,1,7          2,5,2,3
             3,4,2,6    3,5,2,6     2,5,1,6          2,5,2,6            during(A,B,C,D):-
             3,4,1,6    3,5,1,6     2,5,1,7          2,5,3,6                                       lessthan(C,A).
             3,4,2,7    3,5,2,7     3,6,2,7          2,5,3,4
             3,6,1,7          2,5,6,7
#2     3,4,2,5    3,4,1,7     3,5,1,7          2,5,2,3    2,5,6,7   3,6,4,5        during(A,B,C,D):-
             3,4,2,6    3,5,2,6     2,5,1,6          2,5,2,6    3,6,4,6   3,6,1,2        lessthan(B,D),
             3,4,1,6    3,5,1,6     2,5,1,7          2,5,3,6    3,6,2,6   2,5,3,4        lessthan(C,A).
             3,4,2,7    3,5,2,7     3,6,2,7          3,6,2,5
             3,6,1,7
#3     3,4,2,5    3,4,1,7     3,5,1,7
             3,4,2,6    3,5,2,6     2,5,1,6            3,6,4,6    3,6,2,5  3,6,1,2       during(A,B,C,D):-
             3,4,1,6    3,5,1,6     2,5,1,7         3,6,2,6    3,6,4,5                        lessthan(B,D).
             3,4,2,7    3,5,2,7     3,6,2,7
             3,6,1,7
#4     3,4,2,5    3,4,2,6    3,4,1,6          2,5,2,3    2,5,6,7  3,6,4,5
                                                                   2,5,2,6    3,6,4,6 3,6,1,2      during(A,B,C,D):-
                                                                2,5,3,6    3,6,2,6                        lessthan(B,D),
                                                                2,5,3,4    3,6,2,5                        lessthan(C,A)
                          .
#5    3,4,2,5    3,4,2,6    3,4,1,6         2,5,2,3    3,6,2,5
                                                               2,5,2,6    3,6,4,5                          ***
                                                                2,5,3,6    3,6,1,2

Table 10. Learning during/4 based on Figure 3(g) where X: 1,2,3,4,5,6,7 (for FOIL)
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