An Overlap-aware Positive Selection Algorithm using Variable-size Detectors
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ABSTRACT: Classification of the test samples using positive selection is computationally expensive, as it requires compari-
sons with large number of detectors. In this paper, we propose an enhanced positive selection algorithm with variable-size
detectors to reduce the number of detectors required to cover the training sample space while resolving the issues of
ambiguity of the test samples (test samples covered by more than one detector from different classes) and exclusion (test
samples not covered by any detectors). We apply clustering in the preprocessing phase to reduce the number of detectors. We
then perform overlap checking to adjust the radiuses of the variabl e-si ze detectors aiming at reducing overlap while covering
the sample space. Furthermore, a weighted voting scheme is employed to resolve the ambiguity, and a distance-based method
is devised to resolve the issue of exclusion. e evaluate the performance of our proposed algorithm on five benchmark
datasets. The experimental results confirm the superiority of the proposed method in terms of number of detectors and
accuracy rate.
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1. Introduction

Artificial Immune Systems are soft computing techniques based on metaphor of the biological immune system. The natural
immune system exhibits many interesting characteristics like learning, pattern matching, feature extraction (Mohammadi et
al.2012) and distributed processing. The AlS algorithms mostly imitate one of the following mechanisms of theimmune system:

negative sel ection, positive sel ection and immune network. (Dasgupta, J and Gonzal ez 2003; Castro and Timmis 2003).

Inanartificial immune system (AlS), principles and processes of the natural immune system are abstracted and applied to solve
information-processing problems, such as anomaly detection. An early (and popular) immune-inspired algorithm for anomaly
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detection is negative selection. Forrest (Forrest et al. 1994) developed this algorithm. Forrest described a general method for
distinguishing self from other in the context of computational systems, and he has illustrated its feasibility as a change-
detection method on the problem of computer virus detection. The main idea of negative selection algorithm is generating
detectors in the data space, and then classifying the unseen samples as self or non-self.

Ebner et a (Ebner et al. 2002) present the main idea of generating detectorsfor continuous data. They considered the detectors
and antigens as n-dimensional vectors. Followed by Ebner, Gonzalez et al (Gonzalez and Dasgupta 2003) used real-value
representation (instead of binary values) to specify self and non-self spaces named as real-valued negative selection (RVNS).
The input of RVNS algorithm is n-dimensional vectors of self-samples. More specifically, T lymphocytes are abstracted by
means of hyper spheres. In thetraining phase, the hyper spheres (also called detectors) are (randomly) distributed in an unitary
hypercube H = [0, 1] A of dimension n, such that each self-element — also represented as a hyper sphereis not covered by any
detector.

In thetesting phase, an element p € H isclassified asaself-element, if any detector does not cover p. Thistype of hyper sphere
detection is known as instance-based learning.

Gonzalez et a in (Gonzal ez 2003) described areal-val ued representation for the negative sel ection algorithm and its applications
to anomaly detection. Gonzalez in (Gonzalez, Dasgupta and Nino 2003) proposed randomized real-val ue negative selection
algorithm based on Monte Carlo methods. This algorithm is based on solid mathematical foundation that solves some of the
drawbacks of the RVNS algorithm. Specifically, it can produce a good estimate of the optimal number of detectors needed to
cover the non-self space, and the maximization of the non-self coverage is done through an optimization algorithm with proved
convergence properties.

Ji and Dasgupta (Ji and Dasgupta 2004) proposed an extension of real-valued negative selection algorithm with a variable
coverage detector generation scheme. They called it VV-Detector. It can cover more sample space than what the RVNS doeswith
constant detectors. Moreover, experimental results demonstrated that V-Detector scheme is more effective in using smaller
number of detectors because of their variable sizes. Wu and Zheng (Wu and Zheng 2012) proposed an improved Variable-Radius
Real-valued Negative Selection Algorithm that includes two tolerance processes to generate mature detectors. Infirst tolerance
process, each candidate detector tolerates with mature-detector set and is considered as semi-mature detector when it does not
match any existing mature detector. In second process, each semi-mature detector tolerates with self-set and accepted as mature
detector when it does not match any self sample. Theoretical analysisand simulation shown that proposed algorithm has better
detector set generation efficiency and quality in comparison with RNSA and V-Detector.

RNSA and V-Detector use negative sel ection algorithm to conduct self-tolerance of training set in n-dimensionsreal value space
that leads to high false alarm rate of classification algorithm. Zheng and et all (Zheng, Zhou and Fang 2013) proposed an
algorithm named (PRR-2NSA) to solve the problems of RNSA and V-Detector. The proposed algorithm employs Antigen
Presenting Cells (APC) classifiers co-stimulation for T-Cell classifier to reduce false classification rate and time cost. The
experimental results show that the PRR-2NSA is better than V-detector and NSA in terms of efficiency and false alarm rate.

Ataser (Ataser 2013) proposed a new version of negative selection algorithm called V-shaped detector to obtain maximum
nonself coverage. The proposed algorithm focuses on two issues, self-space determination and non-self coverage. Thisalgorithm
employslocal outlier factor (LOF) and k-nearest neighbor (KNN) to determine self-boundary. In addition, the new algorithm,
allows detectors to include self-samples and the shapes of detectors with self-samples are changes using cubic spline. The
experimental resultsreveal that the accuracy of V-shaped detector is better than V-detector. However, the number of generated
detectors to cover non-self space in V-shaped detector is more than the number of detectors in V-detector.

Instead of covering the hypercube H with detectors completely, Ebner et al. (Ebner et al. 2002), and subsequently, Stibor et al.
(Stibor, Mohr and Timmis 2005) discussed adifferent hyper sphere detection form wherethereexistsno T Lymphocyte detector.
Instead, only the given self-elements are abstracted by hyper spheres. Therefore, no training phase is required. In the testing
phase, pisclassified as aself-element if p iscovered by ahyper sphere, and otherwise, as an anomalous element. This type of
hyper sphere detection isasimple instance-based |earning method, and is called real-valued positive selection (RVPS).
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Positive selection has been successfully applied to solve various problems from anomaly detection to NP compl ete optimization.
Positive selectionisalso applied to multi-class classification tasks. Its detection rate and false alarm rate are superior to that of
negative selection algorithm (Stibor, Timmis and Eckert 2005; Stibor and Timmis 2007). However, the number of generated
detectors (in the training phase) is high and it can be a challenging disadvantage of RVPS. A positive selection classification
algorithm (PSCA) based on positive selection algorithm is proposed in (Zhang and QI 2012). PSCA turns the multi-class
classification problem into a two-class classification problem: self and non-self, therefore classifiers are generated only for
selfclass samples. Also, K-nearest neighbor algorithm isused to solve hole problem (is called exclusion problem in this paper).
The experimental results demonstrated that PSCA outperformsAIRS, ANSC and some classification a gorithm.

In this paper, we introduce an enhanced version of positive selection to reduce the number of detectors while maintaining its
high detection rate. For this, after applying clustering in the preprocessing phase, we check for overlapsin the training phase
and adjust the radius of the variable-size detectors to minimize overlaps among them. In the test phase, we propose techniques
to resolve the issues of ambiguity (where more than one detector from different classes covers test samples) and exclusion
(where any detectors do not cover test samples).

Therest of the paper is organized as follows. In Section 2, we briefly describe the real-value positive selection algorithm. We
then describe our proposed algorithm in detailsin Section 3. The experimental results on the IRIS, Wine, Segment, P2Pand a
synthetic 2D dataset are presented in Section 4. The comparison between our proposed method and other classification
algorithmsin terms of accuracy, and number of detectorsare explained in this section, aswell. Finally, we conclude the paper in
thefinal section.

2. Real - value Positive Selection

Real-valued positive selection (RV PS) algorithm was informally described by Ebner et al. (Ebner et al. 2002) and formally by
Stibor et al (Stibor, Mohr and Timmis 2005). In positive sel ection algorithm, each self-sampleis covered by adetector. The self

detector classification operates on aunitary hypercube[0,1]". The Self-elements are considered as self-detectors. A self detector
d=(c,r,)hasacenter ce [0,1]" and aself-radius r.Anelement elieswithin adetector d_= (c, r ), if the Euclidean distance dist
(c,e)= (2?: ,(c—e) 22« r wherer isdetermined in training phase by means of the ROC analysis. An element is classified
asself if it lieswithin aself-detector. Otherwise, it isnon-self. Geometrical interpretation of the definitionisrepresentedin Figure

3
® o. o
3 o ®

©

Figure 1. Self - detectorsin aunitary hypercube

The positive selection algorithm includes 3 steps:
1. For training examplesse s, generate self-detectorsd with r = 0.
2. Performi training classification runsand find theradius r, whichyieldsthe minimum error.

3. Classify new examplesasself if Euclidean dist (d, x) <r_ Otherwise, consider it as non-self.
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In this algorithm, no detector generation phase is necessary. The entire training set is considered as the detector set, i.e. the
number of detectors is equal to the number of samples in the training set. However, the classification of the new sample is
computationally expensive, compared to the randomized real-valued negative selection. Stibor showed that the real-valued
positive selection outperformed the other classification methods on a large data set. However, real-valued positive selection
suffersfrom high computational complexity (Stibor, Timmisand Eckert 2005). To solvethis problem, Stibor et al. applied kmeans
clustering algorithmsto reduce the number of detectorsin the RVPS (Stibor and Timmis 2007).

Since positive selection, unlike other immune system al gorithms, can be used for multi-class classification, and its detection and
false alarm rates are superior to that of negative selection algorithm, in this research, we focus on positive selection, and
introduce some enhancements to overcome its shortcomings, and improve its performance. We introduce methods in the
training and test phases to improve the detection rate of the proposed algorithm. With the proposed approaches, we achieve
high detection rate and low incorrect rate with less number of detectors compared to the original RV PS. The proposed algorithm
isexplained in moredetailsin Section 3.

3. TheProposed Enhanced Positive Selection Algorithm

In this section, weintroduce an improved version of positive selection algorithm, called Enhanced Positive Selection (EPS),which
isillustrated in Figure 2. As shown in Figure 2, at first, the data set is normalized, then divided into two sets, training and test
sets. The training instances are clustered; the number of clustersis an input parameter for the proposed method. Although the
number of clustersis obtained by trial, its value is dependent on the size of dataset and the number of classes. In this way, we
assume doubl e or triple of number of classes as number of clustersfor small data sets. The center of each cluster is considered
as a detector. Since detectors might overlap, we apply overlap resolving to remove overlap between detectors. Then, new
detectors are generated to include uncovered training instances. In this step, we apply overlap checking to tune theradius of the
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Figure 2. Block diagram of the proposed Enhanced Positive Selection algorithm
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detectors.

In the test step, we resolve the problems of Exclusion (test samples not covered by any detectors) and Ambiguity (ambiguity in
test samples assignments to detectors) applying novel approaches that are explained in the following sub-sections in details.

3.1 Normalizing Data Set
Normalization scales numeric variablesin therange [0, 1]. After normalization, the data set isdivided into training and test sets
with the portion of 9to 1, i.e. we use 10-fold cross validation for eval uating the proposed method.

3.2ClusteringtheTraining Data Set

Whereas the distribution of the data set is not specific, the training data set is divided into k clusters by applying K-means
algorithm on the training samples. Clustering algorithm is applied into training samples to reduce the number of generated
detectors. Each detector is represented based on the four components: the covered samples by the detector, detector’s center,
detector’s label and detector’sradius. Each detector isthen represented by acluster covering all samplesin own self. Thisisto
say, instead of considering each sample as a self detector (similar to what Positive Selection does) we consider each cluster as
aself detector which coversthe entire samples within that cluster, considering the center of the detector the same asthe center
of the cluster. We then label each detector based on the label of the sample that represents the detector’s center. If the cluster
center isnot atraining sample, thelabel of the most samples of cluster with the samelabel is considered asthe detector’slabel.
In the other words, the majority voting approach on thelabel of detector’s samplesisused to determinethe detector’slabel. The
detector’s radius is the distance between the cluster’s center (detector’s center) and the farthest sample in that cluster.

3.30verlap Checking

Having established detectorsin the previous step, we check the overlap between the detectorsto reduce the number of clusters.
Needless to say, overlap is sometimes necessary to cover all instances of the training set (Figure 3 (Gonzalez 2003)) based on
which we just reduce the overlap.

Therefore, detectors with the same class label might overlap to cover the entire space, but the amount of overlap should not be
morethan agiven threshold value. Thethreshold valueis primarily dependent on the detectors’ radiuses. The overlap threshold
for small detector is smaller than the overlap threshold for large detector. In addition, the threshold should be cal culated such
that the entire spaceis covered by aminimum number of detectors. Based on the mentioned criteriawe have proposed Equation
(1) based on which the value of threshold for each cluster is calculated

Operizp = (R +R) (R +R) @

overlap

A
e ——

@ (b)

Figure 3. Complete coverage of rectangular area by circular detectors, (a) without overlap; and (b) with overlap

where R and F\’J are the radiuses of the detectors, and o, is a constant parameter used to adjust the amount of overlap between
detectorsi and j.

Having calculated the overlap threshold based on Equation (1), we resolve overlap between the detectors. The decision for
resolving overlap ismadelocally with the goal of increasing accuracy so then the proposed method worksin agreedy approach.
As greedy methods are usually fast enough to solve optimization problems, we devise a greedy method by which we reduce
amount of overlap between thelocal detectors bel onging to the same class, with the hope that the number of detectorswill lead
to adesired number at the end of run. Aswe generate detectors one-by-one, the new generated detector is compared to the two
steps to resolve overlap for the two cases:
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previous ones. Detectors, which overlap the new generated detector, are considered as its neighbors. The radius of the new
generated detector is reduced based on the amount of overlap among its neighborsin Equation (1). More detailed explanation
about the reduction process is proposed in session 3.3.1 and 3.3.2.

Overlap can be among either detectorswith the samelabel or detectorswith different labels. Therefore, we propose thefollowing
two steps to resolve overlap for the two cases:

a) Overlap among detector swith the samelabels: If two detectorswith the samelabel overlap and the overlap valueislarger
than the threshold, then the detector’s radius is reduced to the point to which the overlap value is smaller than the threshold.
Thisapproach isexplained in sub-section 3.3.1 in details.

b) Overlap among detector swith different labels: If detectorswith different labelsoverlap, then the overlap istotally removed.
The detector’s radius is reduced to the point that the boundaries of the detectors are approximately tangent. This approach is
explained in sub-section 3.3.2 in details.

3.3.1Resolving Overlap among Detector swith the Same ClassL abels
If the distance between centers of detectors (with the same class label) is smaller than the overlap threshold, the radius of the

variable-size detector should be reduced (variable size detector isthe one that was added to the pool of detectorsrecently). That
isto say, if d O pverap where d. . the distance between the centers of is overlapped detectors, and O veriap is the overlap

threshold, then the radius of the varlables ze detector R is adjusted according to Equation (2):
=(d;+Rx*(a=1)/(1-0) %)

where, o is the overlap constant. In the next section is explained resolving overlap among detectors with different labelsin
details.

3.3.2Resolving Overlap among Detector swith Different ClassL abels
In the case of overlap among detectorswith different classlabels, to achieve higher accuracy rate, theradius of the variable-size

detector should be reduced to almost zero (reduced to £ > 0). Suppose detector D, coversinstances{s,, s,...., s,} of the other
class. The following steps are taken to remove the overlap between the detectors with different labels.

Sep 1. Caculatedistance{d, ;,d, ..., d_ ;} betweenthecenter of detector D, andtheinstances{s,, s,...., s} of adifferent class
covered by detector D,

Sep 2. Findtheminimumof {d,,,d, ..., d .}, andreducetheradiusof the variable-size detector according to Equation (3):

Rjzmin(dl,i’d2,i""’dn,i)+g ©)

where, € isthe acceptable error margin for the overlap between the detectors with different classlabels.

3.4Assigning Detector sto Uncovered Samples

Having resolved overlap among detectors, we might be left with samples which do not belong to any detectors. Thisis because
reducing the radius of detectors may |eave out some samples. Thisis conceptually shown in Figure 4 where resolving overlaps
may leave samples not covered by any detectors.

We propose the following five stepsto generate new detectors. Thisalgorithm isrepeated until there are no uncovered samples
[eft:

Sep 1. Randomly select one sample from the uncovered training instances.

Sep 2. Consider the sample asthe center of anew detector with theinitial radiusr. Note that we initiate the radius of detectors
toaninitial valuethat can be reduced during resolve overlap phase. Theinitial radius can be valued among 0.9, 0.8, 0.7, 06, 0.5,
0.4,0.3,0.2,0.1,0.050r 0.01 at thefirst of each run.
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Sep 3: All theuncovered sampleswhich are surrounded in the new generated detector, will be removed from uncovered sample
set.

Step 4: Assign alabel to the new detector based on the label of center.

Step 5: Resolve overlap between new detector and its neighbor detectors, as explained in sub-section 3.3.1 and sub-section
332

3.5Test Phase
The detectors generated in the training phase will now be used to predict thelabel of instancesinthetest set. Inthisphase, three
cases could happen:

1. One or more detectors with the same class label cover the test sample. In this case, the label of the sample isthe same asthe
label of detectors.

2. Two or more detectors with different labels cover the test sample. Thisis the case of ambiguity, which is resolved by the
approach presented in sub-section 3.5.1.

3. Any detectors do not cover the test sample. This case of exclusion (or holes) is resolved by the approach proposed in sub-
section 3.5.2.

3.5.1 ResolvingAmbiguity

As shown in Figure 5, atest sample may be covered by more than one detector with different labels. In this case, thereis an
ambiguity about the label should be assigned to the sample. Here, we present an approach to assign a proper label to the
ambiguous sample.

Themainideaof thisapproach isthat the closer adetector isto an ambiguous sample, the moreinfluenceit hasto determinethe
label of the sample. Therefore, the distance between the ambiguous sample and the detectors is considered as the main
determinant. For this, we proposed a membership score based on which the ambiguous sample can be classified. For this to
happen, we cal cul ate the membership score for the ambiguous sample and each detector, which covers the sample. When the
distance between the test sample and the detector is small, the membership score should be high; Moreover, the detectors with
larger radius are more general and | ess accurate than the detectors with smaller radius, which are more specific. To consider the
inverse relationship between the membership score and the size of the detector, aswell asthe distance between the sasmple and

detector, we calcul ate the membership score for the ambiguous sample belonging to the detector D, as:

1
MS(x|D;) = —— 4
=T R @
Wherexisthetest sample, D; isith detector, d, is distance between the ambiguous sample and the detector D, , and R isradius
of i detector. This scoreis cal culated for each detector that covers the ambiguous sample. Then, the membership scorefor the
ambiguous sample belonging to the class with label @ is the maximum of the scores for al detectors with class label o as

expressed in Equation (5):

1 .
MS(X|a)j)=rinaxMS(X|Di)=rri1axdi* R i=1..n B

where, @ istheclasslabel of thedetector D, and nisthe number of detectorswith classlabel @. The scoreare calculated for each
different class 1...m. Then, the score that the ambiguous sample belongsto aclass @ MS(x | ) isthe maximum scoresfor all
detectors covering that sample:

MS(x| @) =max[MS(x| @), MS(x| @), ..., MS(x| )]

[
i=l..n j=1l.n,p=1l.n_

:Max[maxMS(x|Di),maxMS(x|Dj),...,maxMS(x|Dp)] ©)
. i D

where, n, n,and n_are the number of detectors with classlabel @, 0 and % respectively.

3.5.2 Resolving Exclusion
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If any detector does not cover atest sample, we apply aweighted K-Nearest Neighbor (KNN) algorithm to determine the | abel
of thesample. In KNN, initsbasic form, K-nearest neighbors of the test sample are specified. Then, the label for the sampleis
determined by simple majority voting. However, in cases such asthe oneillustrated in Figure 6, when thereisatiein voting, it
will bedifficult to conclude on the class |abel.

Test Sample

Figure 6. When thereisatiein simplevoting, it isdifficult
to determine the class label of the test sample using KNN

To address this issue, detectors' votes are weighted based on the distance between the test sample and the center of the
detectors. The closer the detector is to the test sample, the higher its voting weight is. Specifically, the following steps are
proposed to cal cul ate the proper weights for the KNN algorithm:

1. Calculate the distance between the uncovered sample and its k neighboring detectors.

d(x,D), i=1.k
2. Normalize the distances using:

d(x, D,
SILCL N ;

norm (X’ i)

d
where, d (x, D,) isthe distance between the uncovered sample x and the neighbor detector D, and D isthe distance between the
test sample and its farthest neighbor that isD = Max [d (x, D)), i =1.. K].

3. Sort and rank the neighbor instances based on their distances from the test sample such that the rank of the closest neighbor
isk, and that of the farthest is 1.

if D, is Closest neighbor detector then rank ;. isminimumand rank . = k
if D, is farthest neighbor detector then rank ;. isminimumand rank . =1

4. Weight neighboring instances using Equation 8.

W, = rank ./ k ®

where, rank . and k are neighbor sample rank and the number of neighbor instances, respectively. This relationship gives
higher weight to closer detectors. Equation (9) cal cul ates the membership score that the test sample belongs to detector D..
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MS(x|D,) =d

norm

(. D) * Wy, ©

The scoreis calculated for K nearest detectors to the uncovered sample. Then, the score that the uncovered sample belongs to

class with label a)j,will be the maximum of the membership scores for all detectors with label . Equation (10) states this
expression:

MS(x|@) = max MS(x|D)) = maxd, , (x,D)* Wy, i=1..n (10
| |

norm

where, w istheclasslabel and nisthe number of detectorswith classlabel w.. The scoresare calculated for all classes. Then, the
scorethat atest sample belongsto aclassis the maximum score asin Equation (11):

MS(x| @) =max[MS(x| @), MS(x| @), ... MS(x| )]

= Max [maxMS(x| D), max MS(x| D,), ..., max MS(x| D, )] 1
i i p

i=l..n j=1l.n,p=1l.n_
where, n, n,and n_are the number of detectors with classlabel @, 0 and o respectively.
4. Experimentsand Results

In this section, the proposed methods are evaluated on five datasets. In the following, we describe the data sets, evaluation
parameters and the experimental results on each data set. The evaluated methods are described in Table 1.

The version of real value positive selection, in which detectors are selected randomly from
uncovered instances.Clustering, overlap checking, resolving exclusion and ambiguity are not

included in this method.

Thefull version of the proposed algorithm (Enhanced Positive Selection)
Table 1. The evaluated methods

Table 2. Characteristics of benchmark data sets
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The Proposed algorithm (EPS) isevaluated on five datasetsincluding IRI'S, Wine, image segmentation (Segment), P2Pand 2D
dataset as listed in Table 2. The proposed methods are evaluated based on 10-fold cross validation. Therefore, the number of
training samplesis equal to 0.9 * total number of samples for each validation and the remains are considered as test samples.

One of the benchmark datasets is a synthetic data set, called 2D dataset, with the scatter plot as shown in Figure 7.
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Figure 7. The distribution of the two dimensional synthetic dataset

AsshowninFigure7, 2D dataset consists of two classes. The samples are scattered throughout nine areas with the label of each
areadifferent fromits neighbors. Therefore, none of the neighbor areasisfrom the same class. Iris, Wine and Segment datasets
can be downloaded from UCI Machine L earning Repository. The detail s of P2P dataset isexplained in (Mohammadi et al. 2011).

4.1 Evaluation Metrics

Performance of the proposed method is evaluated based on five metrics as follows:

» Number of Detectors (ND)

* Rate of test instances classified correctly (AR)

AR (Accuracy Rate) =

* Rate of test instances classified incorrectly (FR)

FR(FaseRate) =

Number of correct classified instances
Total number of instances in the test set

Number of incorrect classified instances
Total number of instancesin the test set

* Rate of test instances placed in different detectors (AmMR)

AmMR (Ambiguity Rate) =

Number of Ambiguious instances
Total number of instances in the test set

* Rate of instances which are not placed in any detectors (ExR)

4.2 Experimental Results

ExR (Exclusion Rate) =

Number of excluded instances
Total number of instancesin the test set

In this section, we present experimental results on benchmark data sets, Iris, Wine, Segment P2P and 2D data set. The schema
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of experiment results on 2D data set is shown in Figure 8. As shown in this figure, without overlap checking there are many
detectors with overlaps in the same classes or different ones. As shown in Figure 8(b), by applying overlap checking, the
number of samplesthat are placed in different detectorsis reduced significantly, which leads the final classifier to have lower
incorrect detection (false alarm) rate. Hereafter, the proposed method is compared with the other methods, mentionedin Table 1,
on different datasets separately.
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Figure 8. Theresults of RPS and EPS algorithms on 2D dataset

4.2.1 Analysisof theResultson thel RI SData Set

The experimental resultson the IRIS dataset are presented in Table 3. Each valuein this Tableisthe average of 10 different runs
for each method. Each runisevaluated with the mean of 10-fold crossvalidation that makesthe ND valueisafloat point number,
instead of integer number.

In thistable, in each column the best result among the different methodsis highlighted in bold and underline, and the second
best value is marked by underline. This notation will be used in the upcoming tables as well. As EPS and EPSL are the same
algorithm (apart from dealing with ambiguous and uncovered samples), their resultsin the ND column (Number of Detectors) are
the same. ND isan important measure, which hasadirect impact on memory complexity. Aswe devised two methodsto deal with
ambiguity and uncovered samples, number of ambiguous and uncovered samplesiszero when the EPSisapplied; thefalsealarm
classification rate for this method is about 4.5%. False alarm value for the EPSL is 2% with 4% ambiguous and 4% uncovered
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samples, which collectively are 10% of the whole samples of thetest set. By applying the EPS method, we could label all thetest
samples while the false alarm rate is increased only around 2.5%.1n term of accuracy rate (AR), the EPS outperforms other
methods significantly. Not only the EPS is a method with the minimum number of detectors among the others, but also it
performsthe best in terms of accuracy rate.

Method ND AR FR AmR ExR
RVPS 135 7733 0.67 133 2.06

RPS 36.3 76.67 267 14 6.67
EPSL 31.7 90.00 2.00 4.00 4.00
EPS 31.7 95.33 4.66 0 0

Table 3. Experiment Resultson the IRIS Dataset

4.2.2 Analysisof theResultson theWine Data Set

The experimental results on the Wine dataset are presented in Table 4. The experimental results on the Wine dataset are similar
to what we observed on the Iris dataset. Considering number of detectors, the EPS and EPSL show the best resultsin compari-
son with the other methods. In terms of accuracy rate, the EPS performsthe best. This demonstrates that our proposed method,
while employing fewer numbers of detectors, achievesthe best accuracy rate among the others. The EPSL cannot |abel around
15% of thetest samples (7.81% ambiguous samples and 6.69% uncovered samples). Thisvalueisaround 22% for the RSP, and
around 20% for the RVPS. Since the EPS can label ambiguous and uncovered samples, thefalse alarm value for thismethod is
only 2.81%.

Mehod ND AR FR AmR BR
RVPS 1602 7818 114 1013 1053
RPS 589 7694 0.55 395 18%4
EPSL 459 8387 170 781 669

EPS 459 97.18 281 O

Table 4. Experiment Results on the Wine Dataset

4.2.3Analysisof the Resultson the Segment Data Set

The experimental results on the Segment dataset are presented in Table 5. The number of detectorsfor the EPS and EPSL is149.8,
followed by the RSP with 454.4 detectors (4 times higher than that of the EPS). The difference between the number of detectors
for the EPS and RPSissignificant. Interms of uncovered and ambiguous samples, the RV PS cannot label around 24% of thetest
dataset samples. These values are about 23% and 8% for the RSP and EPSL methods, respectively. Whereas, the EPS, while
resolving the ambiguity and exclusion problems, exhibits only 4.5% false alarm value. This demonstratesthat the EPS can |abel
95% of the test dataset samples correctly, while most of the ambiguous and uncovered samples are labeled correctly.

Method ND AR FR AmR BR
RVPS 2079 7523 0.47 1805 6.23

RPS 4544 7588 082 1376 952
EPSL 149.8 89.08 129 549 212
EPS 149.8 9545 454 0 0

Table 5. Results on the Segment Dataset

4.2.4Analysisof theResultson the P2P Data Set

The experimental results on the P2P dataset are presented in Table 6. Similar to the previous experiments, the EPSL and EPS
algorithms employ the lowest number of detectors among the others, while their accuracy rates are the highest. In addition, the
ESP addresses the ambiguity and exclusion problems (i.e. zero ambiguous and uncovered samples). In overal, similar to results
on the previous evaluated datasets, the EPSis placed first or second intermsof ND, AR, AmR and ExR criteriaamong the others.
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Method  ND AR AmR BR
RVPS 20491 9172

RPS 2333 9209
EPSL 811 9523

EPS 811 98.83 116

3853
I
®
N
B

(e
lo

Table 6. Results on the P2P Dataset

In the next experiments, we compare the proposed method with some well-known classification algorithmsin terms of accuracy
rate.

4.3 Comparison of theEPSand Other Classification Algorithms

In this section, the comparison of the EPS and other classification algorithms on the benchmark datasetsis presented. Table 7
shows the accuracy rate of the various algorithms. The best result in each row is highlighted in bold and underline, and the
second best result is marked as underline.

A variety of classifierswith different attributesis considered in this experiment. For instance, Knn is a classifier, which works
based on measuring distances, and C4.5 isadecision tree. Onthe | RI S dataset, the EPSisthe best method with 97.33% accuracy
rate. Inthe case of Wine dataset, the best result belongsto Naive Bayes classifier with 98.31% followed by the EPS with 97.22%
detection rate. Similarly, for the P2P dataset, the EPS is the second best method among the others.

Knowing that the EPS algorithm performs well considering the “accuracy rate” criteria, we would also like to evaluate its
computational complexity in terms of number of detectors generated. Since the number of detectorsis only relevant for the
family of the artificial immune systems (AlS) algorithms (i.e. not in MLP or Knn), we compare the EPS with the AIRS in the
following sub-section.

4.4 Comparison of theEPSand AIRSIn Termsof Number of Detectors

Watkinsand et al (Watkins 2001; Watkins and Boggess 2002; Watkins, Timmis and Boggess 2004) presented a new supervised
learning paradigm, resource limited artificial immune classifiers, inspired by mechanisms exhibited in biological and artificial
immune systems. They called it AIRS (Artificial Immune Recognition System). Its performance has been investigated for UCI
datasets and results were remarkable. AIRS1 isthe first version of the algorithm but its algorithmic complexity ishigh. AIRS2
(Watkins and Timmis 2002) has been developed and it has lower complexity, higher data reduction percentage and a few
decreases in accuracy.

In this section, the comparison between AIRS1, AIRS2 and EPSis presented, all of which arein the family of artificial immune
based classifiers. We compared these methods according to the number of detectorsthey need. Thiscriterionisameasure of the
computational complexity such that the lower the number of detectors, the less memory space is needed.

In this experiment, the results are reported using 10-fold cross-validation. The first numbers in each cell is the number of
detectors and the second number after the ‘/’ sign is the percentage of reduction in the size of the training set.

Thereduction value for the EPSis 76.5% on the IRIS dataset, while this value is 64.4%for the AIRS2. The average number of

Naive Bayes MLP LibSVM Decision Rule Knn(k=5) AIRS EPS
Tree (C4.5) Induction

IRIS 95.33 96.67 93.67 93.33 94.67 96.00 95.33 97.33
Wine 98.31 97.19 69.10 91.01 88.76 69.10 9542 97.22
Segment 79.52  96.23 95.58 95.41 94.42 93.72 86.96 95.45
P2P 93.98 97.03 98.07 93.08 93.08 99.52 93.05 98.83

Table 7. Correct detection rate of the EPS and other classification algorithms on the benchmark datasets
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Data Set Training Set AIRS1 AIRS2 EPS

Size
IRIS 135 54/ 60% 48/ 64.4%  31.7/ 76.5%
Wine 160 92/ 42.5% 101/ 36.9% 45.9/ 71.3%
Segment 2079 375/ 81.9% 224/ 89.2%  149.8/ 92.8%
P2P 29490 673/ 97.7% 585/98.0% 811/ 97.2%

Table 8. Number of detectorsemployed in AIRS1, AIRS2, and EPS algorithms on the benchmark dataset

detectorsfor the EPSis31.7, whileit is48 for the AIRS2. The number of detectorsthe EPSrequiresisabout two timeslessthan
that of the AIRS2. The results achieved on the Wine dataset are similar to those on the IRIS dataset indicating the EPS as the
bestmethod followed by AIRS1. On the Wine dataset, the EPS shows the highest reduction value (71.3%) which is two times
more than that of the AIRS2. The number of detectorsin the EPS istwo timeslessthan AIRS2.

The same results are observed on the Segment dataset. Finally, on the P2P dataset, all the three methods show the same results
and the reduction value is around 98%.

5. Conclusions

In this paper, we presented an enhanced version of positive selection algorithm in which the number of detectorsissignificantly
reduced in comparison with the original positive selection. Not only does the proposed method produce less number of
detectors, it also outperforms other evaluated methods according to the accuracy. We applied clustering in the preprocess
phase to reduce the number of detectors, and performed overlap checking in thetraining phase in order to increase the accuracy
of the classifier. We also proposed two methods to deal with exclusion (samples not covered by any detectors) and ambiguity
(samples covered by more than two detectors from different classes). The experimental results confirm that our proposed
method outperformsother artificial immune-based algorithms (AIRS1 and AIRS2) in terms of number of detectors and accuracy
rate. We al so compared the proposed method with well-known non-artificial immune-based algorithms (C4.5 decision treeand
Knn), and the results demonstrated that our proposed method is at par with them in terms of accuracy.
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