Singularity Analysis and Illustration of Inverse Kinematic Solutions of 6 DOF Fanuc 200IC Robot in Virtual Environment

Kamel Bouzgou, Zoubir Ahmed - foitih
Laboratory of Power
Systems, Solar Energy and Automation L.E.P.E.S.A
USTO. MB.Oran-Algeria
bouzgou_kamel@hotmail.fr, zfoitih@yahoo.fr

Abstract

In this paper, we demonstrate the analytical method for the solving of the inverse kinematics of 6 DOF manipulator arm, the FANUC 200IC, those solutions can be chosen after analysis of the Jacobian matrix, simplification and decomposition of this matrix leads us to solve a nonlinear equation with two variable, that we will limit the number of solution found, and that will give us the real workspace of robotaccessible by the end-effector. We validate our work by conducting a simulation software platform that allows us to verify the results of manipulation in a virtual reality environment based on VRML and Matlabsoftware, integration with the CAD model.

Keywords: Forward Geometric Model, Inverse Kinematic Model, Singularity, Jacobian Matrix, 6 DOFmanipulator Arms, VRML, Matlab, Nonlinear Equation

Received: 10 June 2014, Revised 28 July 2014, Accepted 4 August 2014
© 2014 DLINE. All Rights Reserved

1. Introduction

In telerobotic, the current problem of robotic systems has resulted in the reduction of physical workload of the operator, coupled with an increase in mental load.

To carry out a teleoperation action, it's necessary to provide the operator in the command/control situation, information on the progress of the task in the worksite, i.e. An assistance to the operator for perception, decision and control. That largely explains the development of the current artificial assistance techniques.

The purpose of this paper, is to present the results of a graphical simulation of robot control industrial manipulator Fanuc 6 DOF in an environment with a synthetic representation of the scene (virtual world), which consists of all relevant objects models from the task site.

Updating and animating of this virtual world, based on new mathematical techniques resulting from human reasoning field.
Initially, the robot was programmed and modeled by the manufacturer, with opaque and limited software for possible extensions.
For our use,we will try to develop a software model to an open system using the Matlab mathematical software in a virtual reality
(VRML).We will determine the boundaries of the work-space of the robot arm, that are defined by the mechanical articulation limits and by singularities [1, 2], several studies on this subject have been made [10, 11], For this we proceed by a theoretical study of the robot in order to identify geometric parameters, to determine the geometric and kinematic models required to our study.

2. Description of the Geometry of Fanuc 200ic Robot

The kinematics of the wrist is a RRR type, has three revolute joints with intersecting axes, equivalent to a ball socket (Figure 1).

Figure 1. Dimension of the robot and the workspace. [4]
$d 2=75 d 3=400 d 4=75$
$R 4=410 R 6=80$
From a methodological viewpoint, firstly we place Z_{j} axes on the joint axes, then the X_{j} axes, the geometric parameters of the robot are determined. The placement of frames is shown in Figure (Figure 2).

Figure 2. Real and complete architecture of FANUC robot

Axes 4,5 et 6 are concurrent axes, they presented the orientation of the end-effector, and they don't affect its position, for this, we can be defined a E matrix that represents the translation of the coordinate system frame of the end-effector relative to the R_{6} frame, this translation along the z axis is equal to $R_{6}+r$, such that is the length along the same axis of the terminal member attached to the tool (e.g. A clamp) figure 3.

So, we get the modified following sck

Figure 3. Architecture of the FANUC robot with Intersecting Axes

- The Passing from $Z_{1} \rightarrow Z_{2}$ is done with a $\frac{\pi}{2}$ rotation angle, around x_{1} axis,therefore the angle $a_{2}=\frac{\pi}{2}$
- The passing from $x_{1} \rightarrow x_{2}$ is done with $\frac{\pi}{2}$, around Z_{2} axis [1]. These passages are illustrated in the figure Figure 4 .

Thus:
The initial position of x_{2} (the robot is in rest) corresponds to $\frac{\pi}{2}+\theta_{2}$ angle (with $\theta_{2}=0$ in rest) therefore θ_{2} (in motion) becomes: θ_{2} receives $\theta_{2}+\frac{\pi}{2}$.

joint \boldsymbol{j}	$\boldsymbol{\sigma}_{\boldsymbol{j}}$	$\boldsymbol{\alpha}_{\boldsymbol{j}}$	$\boldsymbol{d}_{\boldsymbol{j}}$	$\boldsymbol{\theta}_{\mathbf{2}}$	$\boldsymbol{R}_{\boldsymbol{j}}$
1	0	0	0	θ	0
2	0	90	$d 2$	$\frac{\pi}{2}+\theta_{2}$	0
3	0	0	$d 3$	θ_{3}	0
4	0	90	$d 4$	θ_{4}	R 4
5	0	-90	0	θ_{5}	0
6	0	90	0	θ_{6}	0

Tableau 1. Modified geometric parameters D-H of the FANUCrobot. [8]

3. Geometric Model of the FANUC Robot

The homogeneous transformation matrices:

Figure 4. Elementary Rotation of axes

$$
\begin{aligned}
& { }^{0} T_{1}=\left[\begin{array}{cccc}
C 1 & -S 1 & 0 & 0 \\
S 1 & C 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \quad{ }^{1} T_{2}=\left[\begin{array}{cccc}
-S 2 & -C 2 & 0 & d 2 \\
0 & 0 & -1 & 0 \\
\mathrm{C} 2 & \mathrm{~S} 2 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \\
& { }^{2} T_{3}=\left[\begin{array}{cccc}
C 3 & -S 3 & 0 & d 3 \\
S 3 & C 3 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \\
& { }^{3} T_{4}=\left[\begin{array}{cccc}
C 4 & -S 4 & 0 & d 4 \\
0 & 0 & -1 & -S 4 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \\
& { }^{4} T_{5}=\left[\begin{array}{cccc}
C 5 & -S 5 & 0 & 0 \\
0 & 0 & 1 & 0 \\
-S 5 & -C 5 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \\
& { }^{5} T_{6}=\left[\begin{array}{cccc}
C 6 & -S 6 & 0 & 0 \\
0 & 0 & -1 & 0 \\
S 6 & C 6 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \\
& E=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & R 6 \\
0 & 0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

Where: $C_{i}=\cos \left(\theta_{i}\right)$
And $S_{i}=\sin \left(\theta_{i}\right)$

3.1 Direct Geometric Model

The direct geometric model (DGM) is the set of relations which express the position of the end-effector, i.e. operational coordinates of the robot, according to its joint coordinates. In the case of a simple open-chain, it can be represented by the transformation matrix ${ }^{0} T_{k}$.

$$
\begin{equation*}
{ }^{0} T_{k}=\prod_{i=1}^{k}{ }^{i-1} T_{i}\left(q_{i}\right) \tag{2}
\end{equation*}
$$

Realizing the composition of transformations universal frame R_{0} until frame R_{6} of equation (2) we obtain:
${ }^{0} T_{6}={ }^{0} T_{1} \cdot{ }^{1} T_{2} \cdot{ }^{2} T_{3} \cdot{ }^{3} T_{4} \cdot{ }^{4} T_{5} \cdot{ }^{5} T_{6}$ Let us note: ${ }^{f} T_{E}={ }^{0} T_{6} . E$

$$
{ }^{f} T_{E}=\left[\begin{array}{cccc}
s_{x} & n_{x} & a_{x} & p_{x} \tag{3}\\
s_{y} & n_{y} & a_{y} & p_{y} \\
s_{z} & n_{z} & a_{z} & p_{z} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

$E={ }^{0} T_{E}$: Transformation matrix of tool frame in the end-effector frame.
That is: $T={ }^{0} T_{6} . E$
With:

$$
\left\{\begin{array}{l}
P_{x}={ }^{f} T_{E}(1,4) ; \tag{5}\\
P_{y}={ }^{f} T_{E}(2,4) ; \\
P_{z}={ }^{f} T_{E}(3,4)
\end{array}\right.
$$

After calculation and identification of the terms of two matrices of the equation (3) (4), we will have:

$$
\begin{gather*}
{ }^{f} T_{E}(1: 3,4)=T(1: 3,4) \\
\left\{\begin{array}{c}
P_{x}=C 1 d 2+R 6[C 5 C 1 C 23+S 5(S 1 S 4-C 4 C 1 S 23)]-d 4 C 1 S 23+R 4 C 1 C 23-C 1 S 2 d 3 \\
P_{y}=d 2 S 1-d 4 S 1 S 23+R 6[C 5 S 1 C 23-S 5(C 1 S 4+C 4 S 1 S 23)]+R 4 S 1 C 23-d 3 S 1 S 2 \\
P_{Z}=C 2 d 3+d 4 C 23+R 4 S 23+R 6[C 5 S 123+C 4 S 523]
\end{array}\right. \tag{6}
\end{gather*}
$$

2. Inverse Kinematic Model

The inverse problem is to calculate the joint coordinates corresponding to a given situation of the end-effector. When it exists, the form which gives all the possible solutions constitutes what one calls the inverse kinematic model (IKM). We can distinguish three methods of calculating of:

- Paul's method. [10]
- Pieper's method. [9]
- General method of Raghavan\& Roth.

Several iterative methods to find the IKM [6, 7] have been made, in our case, and analytical methods such as in [13], Pieper's method is suitable for manipulator arms with concurrent wrist axes are used.

2.1 Inverse Kinematic Model of FANUC Robot

$$
U_{0}=\left[\begin{array}{cccc}
& & & \overline{P_{x}} \tag{7}\\
& { }^{0} A_{E} & & P_{x} \\
& & & P_{x} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

With ${ }^{0} A_{E}$ orientation matrixof frame R_{E} / R_{0}

2.1.1 Calculation of $\boldsymbol{\theta}_{1,} \boldsymbol{\theta}_{2}$ and $\boldsymbol{\theta}_{3}$

$$
\begin{aligned}
& U_{0}={ }^{0} T_{6} \cdot E \\
& U_{0} \cdot E^{-1}={ }^{0} T_{6} \\
& U_{0}=U_{0} \cdot E^{-1}
\end{aligned}
$$

With \grave{U}_{0} a new orientation matrix

$$
{ }^{1} T_{0} \cdot \grave{U}_{0} \cdot\left[\begin{array}{llll}
0 & 0 & 0 & 1
\end{array}\right]^{T}
$$

Implies:

$$
{ }^{1} T_{0} \cdot \grave{U}_{0} \cdot\left[\begin{array}{llll}
0 & 0 & 0 & 1
\end{array}\right]^{T}={ }^{1} T_{6} \cdot\left[\begin{array}{llll}
0 & 0 & 0 & 1
\end{array}\right]^{T}
$$

And

$$
{ }^{1} T_{0} \cdot \grave{U}_{0} \cdot\left[\begin{array}{llll}
0 & 0 & 0 & 1
\end{array}\right]^{T}
$$

Implies:

$$
{ }^{1} T_{6} \cdot\left[\begin{array}{llll}
0 & 0 & 0 & 1
\end{array}\right]^{T}={ }^{1} T_{4} \cdot\left[\begin{array}{llll}
0 & 0 & 0 & 1
\end{array}\right]^{T}
$$

Because we have a three intersecting axes While using Matlab mathematical software we found:

$$
\left\{\begin{array}{l}
C 1 P_{x}+R 6 C 1+P_{y} S 1=d 2-d 3 S 2-d 4 S 23+R 4 C 23 \tag{8}\\
R 6 S 1+C 1 P_{y}-P_{x} S 1=0 \\
P_{z}=C 2 d 3+d 4 C 23+R 4 S 23
\end{array}\right.
$$

With:

$$
\begin{aligned}
& C 23=\cos \left(\theta_{2}+\theta_{3}\right) \\
& S 23=\sin \left(\theta_{2}+\theta_{3}\right)
\end{aligned}
$$

By using the $2^{\text {nd }}$ equality of (8)

Thus:

$$
-S_{1}\left(P_{x}-R 6\right)+C 1 P_{Y}=0
$$

$$
\left\{\begin{array}{l}
\theta_{1}=\operatorname{ATAN} 2\left(P_{y}, P_{x}-R 6\right) \tag{9}\\
\theta_{1}=\theta_{1}+\pi
\end{array}\right.
$$

From a $1^{\text {st }}$ equality of (8) we make:

$$
C 1 P_{x}-R 6 \mathrm{C} 1+P_{y} S_{1}-d 2=A
$$

And the all became

$$
\left\{\begin{array}{l}
A=d 3 S 2-d 4 S 23+R 4 C 23 \tag{10}\\
P_{z}=C 2 d 3+d 4 C 23+R 4 S 23
\end{array}\right.
$$

From a $1^{\text {st }}$ equality of (10) we draw $S 2$

$$
\begin{equation*}
S 2=\frac{R 4 C 23-\mathrm{d} 4 \mathrm{~S} 23-A}{d 3} \tag{11}
\end{equation*}
$$

From a $2^{\text {nd }}$ equality of (10) we draw: $C 2$

$$
\begin{equation*}
C 2=\frac{P_{z}-d 4 C 23+R 4 S 23}{d 3} \tag{12}
\end{equation*}
$$

Therefore:

$$
\begin{aligned}
& d 3^{2} S 2^{2}=R 4^{2} C 23^{2}+d 4^{2} S 23^{2}-25 R 4 d 4 C 23 S 23+A^{2}-2 A R 4 C 23+2 A d 4 S 23 \\
& d 3^{2} S 2^{2}=P_{z}^{2}+d 4^{2} C 23^{2}-2 P_{z} d 4 C 23+R 4^{2} S 23^{2}+2 P_{z} R 4 S 23+2 R 4 D 4 C 23 S 23 \\
& d 3^{2}=C 23^{2}\left[R 4^{2}+d 4^{2}\right]+S 23^{2}\left[R 4^{2}+d 4^{2}\right]+C 23\left[-2 A R 4-2 P_{z} d 4\right]+S 23\left[2 A d 4-2 P_{z} R 4\right]+P_{z}^{2}(13)
\end{aligned}
$$

We pose

$$
\begin{gathered}
X=-2 A R 4-2 P_{z} d 4 \\
Y=2 A d 4-2 P_{z} R 4 \\
H=R 4^{2}+d 4^{2}+P_{z}^{2}-d 3^{2}+A^{2}
\end{gathered}
$$

We replace in (13):

$$
\begin{gathered}
X C 23+Y \mathrm{~S} 23+H=0 \\
-Y \mathrm{~S} 23=X C 23+H \\
Y^{2}-Y^{2} C 23^{2}=X^{2} C 23^{2}+2 X H C 23+H^{2} \\
\left(X^{2}+Y^{2}\right) C 23^{2}+2 X H C 23+\left(H^{2}-Y^{2}\right)=0
\end{gathered}
$$

Equation (According to C23) of the second degree admits two real solutions if $\Delta \geq 0$ with:

$$
\begin{gathered}
\Delta=(2 X H)^{2}-4\left(X^{2}+Y^{2}\right)\left(H^{2}-Y^{2}\right) \text { Thus: } \\
C 23=\frac{-2 X H \pm \sqrt{\Delta}}{2\left(X^{2}+Y^{2}\right)} \\
S 23=\sqrt{1-C 23^{2}}
\end{gathered}
$$

We replace its in (11) and (12) we find:

$$
\left\{\begin{array}{l}
\theta_{2}-\operatorname{ATAN} 2(S 2, C 2) \tag{14}\\
\theta_{3}=\operatorname{ATAN} 2(S 23, C 23)-\theta_{2}
\end{array}\right.
$$

2.1.2 Calculation of $\boldsymbol{\theta}_{\mathbf{4}}, \boldsymbol{\theta}_{5}$ and $\boldsymbol{\theta}_{6}$

We have found θ_{1}, θ_{2} and θ_{3}; therefore the matrix ${ }^{0} T_{3}$ is known:

$$
\begin{gathered}
U_{0}={ }^{0} T_{6} \Rightarrow{ }^{3} T_{0} U_{0}={ }^{3} T_{6} \\
{ }^{4} T_{3}{ }^{3} T_{0} U_{0}={ }^{4} T_{6}=\left[\begin{array}{cccc}
{ }^{4} A_{6} & & P \\
0 & 0 & 0 & 1
\end{array}\right] \\
{ }^{3} T_{6} U_{0}=\left[\begin{array}{cccc}
V_{11} & V_{12} & V_{13} & V_{14} \\
V_{21} & V_{22} & V_{23} & V_{24} \\
V_{31} & V_{32} & V_{33} & V_{34} \\
0 & 0 & 0 & 1
\end{array}\right] \\
M=\left[\begin{array}{c}
{ }^{4}={ }^{4} T_{3}{ }^{3} T_{0} U_{0} \\
C 4 V_{33}-S 4 V_{13}-C 4 V_{32}+S 4 V_{12} \\
{ }_{31}+S 4 V_{31}-S 4 V_{11}-C 4 V_{12}-S 4 V_{32} \\
-V_{22}
\end{array}\right]-V_{21}+S 4 V_{31} \\
-V_{23} \\
V_{6}=\left[\begin{array}{|ccc}
C 5 C 6 & -C 5 C 6 & S 5 \\
S 6 & C 6 & 0 \\
-C 6 C 5 & S 5 S 6 & C 5
\end{array}\right]
\end{gathered}
$$

$$
{ }^{0} A_{6}=(2,3)=0 ; M(2,3)=C 4_{31}-S 4 V_{11}
$$

So by identifying:

$$
\begin{align*}
& C 4 V_{31}=S 4 V_{11} \\
& \frac{S 4}{C 4}=\frac{V_{33}}{V_{11}} \\
& \left\{\begin{array}{l}
\theta_{4}=\operatorname{ATAN} 2\left(V_{31}, V_{11}\right) \\
\theta_{4}=\theta_{4}+\pi
\end{array}\right. \tag{15}\\
& M(3,3)=-V_{21} \\
& { }^{0} A_{6}(3,3)=C 5
\end{align*}
$$

Figure 5. Tree structures of solutions of the IKM

Figure 6. Main Interface

$$
\begin{gather*}
M(1,3)=C 4 V_{11}+S 4_{31}{ }^{4} A_{6}(1,3)=S 5 \tag{16}\\
\theta_{5}=\operatorname{ATAN} 2(M(1,3), M(3,3)) \\
M(2,1)=C 4 V_{33}-S 4 V_{13}{ }^{4} A_{6}(2,1)=S 6 \\
M(2,2)=-C 4 V_{32}-S 4 V_{12}^{4} A_{6}(2,2)=C 6
\end{gather*}
$$

Thus

$$
\begin{gather*}
\frac{S 6}{C 6}=\frac{M(2,1)}{M(2,2)} \\
\theta_{6}=\operatorname{ATAN} 2(M(2,1), M(2,2)) \tag{17}
\end{gather*}
$$

We will have up to 8 solutions outside the singular positions; some of these configurations may not be accessible because of joint limits. An illustration of these 8 solutions is represented by Figure 5.

2.1.3 Eight Solutions Corresponding to a Given Configuration

We developed for this study a graphical interface with Matlab, where we integrated the robot designed with CAD [5] in the application under VRML for visualizing well and to handle the arm, figure 6 shows the general pace of this interface.
We choose as a configuration of demonstration, the initial position of the arm manipulator such as: $p_{x}=565, p_{y}=0, p_{z}=475$.

3. Singularities of FANUC Robot

We can find singularities from any Jacobian matrix, but we often choose the projection of the ${ }^{6} J_{6}$ matrix in the R_{i} reference frame which gives us the simplest ${ }^{i} J_{6}$ matrix. [1]
Sothe $\mathrm{J}^{\text {th }}$ column of ${ }^{6} J_{6}$ Jacobian matrix is:

$$
\begin{align*}
& { }^{6} J_{j}=\left[\begin{array}{c}
{ }^{6} A_{j}\left[\begin{array}{l}
\left.\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right){ }^{j^{j} P_{n}}\right] \\
{ }^{6} A_{j}\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
\end{array}\right] \\
{ }^{6} J_{j}=\left[\begin{array}{c}
-\left[\begin{array}{l}
s_{x} \\
n_{x} \\
a_{x}
\end{array}\right] \cdot P_{y}+\left[\begin{array}{l}
s_{y} \\
n_{y} \\
a_{y}
\end{array}\right] \cdot P_{x} \\
s_{z} \\
n_{z} \\
a_{z}
\end{array}\right]
\end{array}\right]
\end{align*}
$$

Figure 6. Illustration of the 8 solutions of IK in the VRML interface
In our case this matrix will be the projection of ${ }^{3} J_{6}$ in the R_{3} reference frame, thus we will obtain the Jacobian matrix ${ }^{3} J_{6}$ which defines R_{6} the reference frame in the R_{3} frame.
The ${ }^{3} J_{6}$ matrix has particular form as:

$$
{ }^{3} J_{6}=\left[\begin{array}{ll}
A & 0_{3} \tag{19}\\
B & C_{-}
\end{array}\right]
$$

Where: A, B, C and 0_{3} are matrices of (3×3) dimension.
$\operatorname{det}\left({ }^{3} J_{6}\right)=\operatorname{det}(A) \cdot \operatorname{det}(C)$
In order to calculate ${ }^{3} J_{6}^{-1}$, It is necessary that $\operatorname{det}(J) \neq 0$ Therefore:

$$
\begin{align*}
\operatorname{det}(A) \cdot \operatorname{det}(C)=0 \Rightarrow & \left\{\begin{array}{c}
\operatorname{det}(A)=0 \\
o u \\
\operatorname{det}(C)=0
\end{array}\right. \tag{21}\\
& \operatorname{det}(C)-S 5 C 4^{2}-S 5 S 4^{2} \\
& \operatorname{det}(C)=0=>S 5=0
\end{align*}
$$

Figure 7. Singularity of wrist

Thus: $\theta_{5}=0$ or $\theta_{5}=\pi$
$\theta_{5}=\pi$, because of obstinate mechanics, θ_{5} angle can be taking a first solution only, so $\theta_{5}=0$ Thus: det $(C)=0 \Rightarrow \theta_{5}=0$
With this configuration, the two articulations and have their confused axes, which makes lose a degree of freedom to the robot, the rotation of the end-effector can be done is by the rotation ofor, the robot thus has practically 5 DOF.

$$
\begin{gather*}
\operatorname{det}(A)=d 3[C 3 R 4-d 4 S 3][d 2+d 3 S 2+C 2 C 3 R 4-C 2 d 4 S 3+C 3 d 4 S 2+R 4 S 2 S 3] \\
=d 3[C 3 R 4-d 4 S 3][d 2+d 3 S 2+C 2(R 4 C 3-d 4 S 3)+S 2(R 4 S 3+d 4 C 3)] \\
\operatorname{det}(A)=0\left\{\begin{array}{c}
d 3[C 3 R 4-d 4 S 3]=0 \\
\text { or } \\
d 2+d 3 S 2+C 2(R 4 C 3-d 4 S 3)+S 2(R 4 S 3+d 4 C 3)=0
\end{array}\right. \tag{23}\\
C 3 R 4-d 4 S 3=0 \Rightarrow \frac{S 3}{C 3}=\frac{R 4}{d 4}
\end{gather*}
$$

Thus:

$$
\begin{gather*}
\left\{\begin{array}{c}
\theta_{3}=\operatorname{ATAN} 2\left(R_{4}, d_{4}\right)=1.3899 \\
\theta_{3}=\theta_{3}+\pi=4.5315
\end{array}\right. \tag{24}\\
d 2+d 3 S 2+C 2(R 4 C 3-d 4 S 3)+S 2(R 4 S 3+d 4 C 3)=0 \tag{25}
\end{gather*}
$$

That it becomes to solving a non-linear equation with two unknown θ_{2}, θ_{3} analytically is difficult, we use the mathematical software Matlab to find the solutions geometrically:

We can display this result with a tablecloth of the three variables θ_{1}, θ_{2} and 3 :
This solution is purely mathematical because $\theta_{2}, \theta_{3} \in[-\pi,+\pi]$, and as we have constraints at the articular space because: $(-1.7453 \leq 02 \leq 2.2689$ et $-4.0143 \leq 03 \leq 1.5708$)
figure 8 became as follows:

Figure 8 . Branches of the singularities without butted in θ_{2}, θ_{3} plan

Figure 9. Surface of Singularities

Figure 10.Singularities branche with buttes

5. Conclusion

The inverse kinematic model gives us the eight solutions of the positions of the end-effector apart from the singularities, we could visualize them in a virtual environment by using a software other than the manufacturer's software, the space work of the
arm is limited by the articular thrusts and the branches of the singularities, which are represented in the form of curves and righthand sides while solving an equation with two unknown. Several mathematical tools are used in this study, whose validation of our work was made using Matlab. We can thereafter consider other research orientations such as the generation of motion and the planning of trajectory [3].

References

[1] Khalil, W., Dombre, E. (1999). Modelisation identification et commande des robots $2^{\text {nd }}$ edition.
[2] LALLEMAND, J. P. (1994). Robotique Aspects fondamentaux. Paris.
[3] Bouzgou, K., Bellabaci, M. A. Ahmed-Foitih, Z. Modélisation, commande et génération de mouvement du bras manipulateur FANUC 200Ic manipulateur FANUC 200iC, memoire Master informatique industrielle, 2012-2013.
[4] Récupéré sur FANUC Robotics: http://www.fanucrobotics.com.
[5] GRABCAD. Récupéré sur http://grabcad.com/
[6] Benhabib, B., Goldenberg, A. A., Fenton, R. G. (1985). A solution to the inverse kinematics of redundant manipulators, IEEE.
[7] Toyosaku, I., Nagasaka, K., Yainamoto, S. (1992). A New Approach to Kinematic Control ofSimple Manipulators, IEEE.
[8] Denavit, J., Hartenberg, R. S. (1995). A Kinematic Notation for Lowerpair Mechanisms Based on Matrices, Journal of Applied Mechanics.
[9] Pieper, D. L. (1968). The kinematics of manipulators under computer control, PhD thesis, Stanford university.
[10] Paul, R. C. P. (1981). Robot manipulators:Mathematics, programming and control, MIT press,Combridge.
[11] Vaezi, M., Jazeh, H.E.S. (2011). Singularity Analysis of 6DOF Stäubli© TX40 Robot, International Conference on Mechatronics and Automation, August 7-10, Beijing, China, IEEE.
[12] Djuric, A. M., Filipovic, M., Kevac, L. (2013). Graphical Representation of the Significant 6R KUKA Robots Spaces SISY 2013, IEEE $11^{\text {th }}$ International Symposium on Intelligent Systems and Informatics, September 26-28, Subotica, Serbia.
[13] Gan, J. Q., Oyama, E., Rosales, E. M., Hu, H. (2005). A complete analytical solution to the inverse kinematics of the Pioneer 2 robotic arm, Robotica cambrige press.

