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ABSTRACT: Distributed systems become one of the most important computing platform because they can efficiently handle
large amount of data with a high computing workload. However, the job scheduling in the distributed systemsis not a trivial
issue. It can be even more complex when dealing with wor kflow-based composite jobs, i.e., each job has multiple tasks with
dependencies between them. As the job scheduling problem has been proven to be an NP-hard, we propose a trail-based
algorithm; Large Trail First (LTF), which is an effective heuristic approach for scheduling problemin the distributed systems
when wor kflows exist. In this paper, “ trail” of each task isthe number of remaining tasks in each workflow. Thus, the idea of
thealgorithmisthat, for each workflow job, thetask with the largest size of thetrail will be executed earliest. The experimental
results show that the proposed approach is more effective and efficient than the other three approaches including a well-
known 2-approximation algorithm.
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1. Introduction

Distributed systems such as P2P, cloud computing, and computational grid have been widely used as platforms for high
performance computing[2]. There has been a dramatic increase in the popularity of cloud computing and a reason of this
increasing usage of the distributed system isthedevicesin this system do not have any specific limitations to access resources.
In particular, cloud environments provide an abstraction of infinite computing resources to their users so that the users can
increase or decrease their resource consumption rate accordingly to the demands.

Although the distributed system has the af orementioned advantage, the job scheduling in the system is an challenging aspect.
Thisis because the resources and computing tasks are distributed on many computing devicesin the distributed system. Thus,
assigning ajob to aresourceisnot atrivial work; particularly for compositejobs, i.e., jobswith multiple sub-processes or tasks
[6, 7]. In composite jobs, the tasks in the jobs can have dependencies, i.e., atask requires the outcome of another task as its
input; thus, some tasks are prohibited to be executed concurrently. As a consequence, the jobs must be executed under valid
flow-constraints, so called workflow templates. A workflow templateisrepresented by adirected acyclic graph wherethetasks
are represented by nodes and the dependencies between tasks are represented by edges. In Figure 1, a few examples of
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workflow template are presented, wheret, represents atask with index i and w represents aworkflow template with index j.

From Figure 1, it can be seen that in order to execute ajob with workflow template w,, the tasks must be executed in the order of
t,, t,, and t,. For workflow template w,, the taskst, and t, can be executed in parallel after task t, is completed. In workflow
template w,, tasks have no dependency with the others; in this case, any arbitrary schedule can be applied.

There have been severa attemptsto effectively schedulejobsin distributed systems, especially in the past decade, such as[3],
[4],[5],[8],and [11]. For example, in[11], ascheduling algorithm for web servicesusing “linear” workflow is presented. Thegoal
of thiswork isto minimizethe responsetime. In such work, such type of workflow allows only oneincoming edgefor each node.
Thus, thiswork might not be practical in the real world where atask normally requires multiple input.

Asfinding the minimum execution time of multiplejobsfrom multiple workflows has been proven to be an NP-compl ete problem
[8]. Inthis paper, we propose anovel heuristic scheduling algorithms, namely, Large Trail First (LTF). Thealgorithm assignsthe
task that has largest set of remaining tasksinto aresourcefirst. In addition, we present the experiment results that compare the
effectiveness and efficiency of the proposed algorithm with other two heuristic algorithms; Maximum-Degree First (MDF) [8]
and Lowest-Level First (LLF), where MDF and LLF use the degree of successors and the level of task dependency to be the
criterion of tasks assignment, respectively. Asthework hasbeen published in[10], in this paper, we report additional experiment
resultsinwhich the proposed algorithm iscompared with the classical 2-approximation algorithm, Coffman- Graham algorithm
[1]. Such agorithm will be used as abaseline for our work.

Therest of thispaper isorganized asfollows. Section 2 formul ates the resource scheduling problem for workflow templates. In
Section 3, LTF algorithm is proposed. Experimental results are presented in Section 4. Finally, Section 5 concludesthis paper.

2. Problem Definition

In this section, we introduce the basic notations and concepts used in this paper. Then, the the minimum length time-slot
problemisformulated.

Definition 2.1 Distributed System

A distributed system D is presented by an undirected graph where each node correspondsto amachinein the system. Thefinite
set N (D) denotesthe set of nodesin D, and thefinite set E (D) isthe set of edgeswhere each edge correspondsto anon-directed
connection between two nodes.

Definition 2.2 Resour ce

Letn beanodeinD,i.e, n.e N(D). Theresourcesof n, arethe computing unitsthat n, can useto execute computing processes.
The set of the resources of n, is denoted as R (n) whereas the set of resources of D isdenoted by Q , i.e., €=U R(n). Based
on the definition of distributed systems and resources, tasks, workflow templates, and jobs are defined as follows,

Definition 2.3 Task
Let D beadistributed system, atask in D isaunit of computing processthat anodein D can complete execution in aunit of time.
A set of all tasksthat can be executed by the resourcesin Q is denoted by T.

Definition 2.4 Workflow Template

Workflow templates in D are directed acyclic graphs where each node corresponds to a task, t;, aﬂd each edge indicates the
dependency between two tasks. Given aworkflow templatew, inthe set of all workflow templatesw, N (w,) denotes the node set
of wxwhereN (w,) < T. On the other hand, E (w,) denotes the directed edge set in the workflow template.

Definition 2.5 Predecessor and Successor B
For any workflow templatew,, task t, iscalled a predecessor of task t,,, if and only if, the order pair (¢, t,,) € E(w,). Thisindicates
that task t, must be executed and completed before execution of task t,, . Conversely, task t,, is called a successor of task t,.
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Definition 2.6 Sart Task and End Task

Letw, beaworkflow template, the nodeinw, without incoming edgesis called the start task. On the other hand, the node without
outgoing edges to other nodes is called the end task.

Definition 2.7 Job
L et Whethe set of workflow templates, ajob j, isaninstance of aworkflow templatew, in W. Thetask t, of jobj, isdenoted by
t "I and T isthe set of all tasks from J, where J isthe set of all jobsin D.

Based on the definition of jobs and resources, time slot which is a basic notation for job scheduling on resourcesis defined as
follows.

Definition 2.8 Time-dot

Let Jbeaset of current jobsin D, thetime-slot of Jon Q isthefunction S: 1 *x Q —Tu {null} where| *isthe set of natural
numbers.

Thedomain of Sistheorder pair of time sequence o0 € I *, and resourcer ,r e Q. Therangeof S, S(aq, rp), isthe executed
task that uses resource r 0 at time sequence o o When thereis no task to be executed on resourcer 0 at time sequence o, S (aq,
r p) isnull.

For any S(ocq, rp) and S(aq, , rp,),wherep;tp’,ifq=q’ then S(aq, rp) and S(ocq,,rp,)areexecutedin paralel. If g<q” then
S(aq, rp) isexecuted beforeS(aq, , rp,), also, S(ocq, rp) isexecuted beforeS(ocq, , rp).

Subsequently, we introduce the length of the time-slot to precisely define the problem as follows.

Definition 2.9 Length of Time-slot
Thelength of time-slot Sisthe maximum val ue of time sequence ocqwhich isS(ocq, rp) isnot null, 3 r,€ Q.

Finally, the minimum length time-slot (MLT) problem can beformulated asfollows.

Problem 1 MLT. Given aset of jobsJin adistributed system D that belongsto aset of workflow templatesW, find aminimal time-
slot Sof J on the set of resources Q2 .
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Figure 1. Examples of workflow template

3.AHeuristicAlgorithm for MLT Problem
In this section we present the proposed algorithm, LTF algorithm.

3. 1LTFAIlgorithm
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Algorithm 1LTF algorithm.

Input: aset of resources Q of adistributed system D and a set of jobs J with a set of workflow templates W.
Output: apotentially minimal length Time-slot S

taskSet « &, usableT ask « &, and timeSotLength =0

for ineachjobj, e Wdo

Determine the number of tasksin thetrail of each task ty inj,.

Determine the set of predecessors of each task ty inj,

as pdr Xy .

perenge| pdrxy |-

taskSet « taskSet U {txy} where tXy isty fromj,

endfor

whiletaskSet # & do

usableT ask « &

for eachtask t Xye taskSet do

if pereng= Othen

usableT ask < usableT ask U {t Xy}

endif

end for

Determine the set of tasks with largest size of the trail from usableT ask and select task t gh from this set
Determine preAssignedTime which ismax ({ assignedTime (t) |t is the predecessor of t gh} ),

if t9, isthe start task, preAssignedTime = 0.

usableSot « &

whileusableSot = & do

usableSot « {S(aq, rp) | S(ocq, rp) =null, and o= preAssignedTime + 1}

preAssignedTime < preAssignedTime + 1

end while

Select slot S(ocq, o Ty ) in usableSot.

S(o

assiSned‘ﬁme(t %) « o
taskSet « taskSet —{t 9}
if > timeSotLength then
timeSotLength « oy
endif

for each successor t g'h, of t gh do

g
,,rp,)<—th

pdrDeg ¥, « pdrDeg? -1
endfor

endwhile

return Sand timeSotLength

138
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In[8], MLT (minimum length time-slot) problem is proven as an NP-Compl ete problem by reducing the problem from the subset
sum problem. Therefore, we propose a heuristic algorithm which is both effective and efficient. The basic idea of the proposed
algorithm can be separated into two parts; the task selection and the resource selection. Inthelatter part, i.e. resource selection,
we apply the idea proposed in [9]. That is, when there are two or more available resources for executing the task, this method
selects the resource that allows the earliest execution. This is because the dependency of the resource waiting can be relaxed
and can consequently reduce the time-slot length.

For the task selection which isour focusin this paper, we propose atrail-based concept, i.e. Large Trail First (LTF) task selection.
First, LTF determinesthetrail size of each task, whichisthe cardinality of the set of all tasksthat depend on such task. Then, the
algorithm selects the task with thelargest size of trail to be selected into the resourcefirst. Because the task with largetrail can
have many tasks depend on it; therefore, if thistask isexecuted | ately, thetrail of it will be executed lately too. Eventually, this
will increase thetime-slot length.

The proposed work isshown inAlgorithm 1. First, the algorithm beginswith determination of the size of thetrail of each task for
al jobsj e W.Also, the set of predecessors, pdr, of each task is determined. Note that the size of pdr, denoted as |pdr * y |, isthe
degree of predecessors of any task ty injob j.. Then, the task is added to taskSet set, which it represents all the tasks in the
system.

Subsequently, while the taskSet is not empty, the algorithm iterates through the taskSet. For each task that its predecessor has
been assigned, i.e., pdrDeg = 0, it is added to another set, called useableT ask. This set represents the candidate tasks that is
ready to be assigned into the time-slot. Then, thetask with thelargest trail, in the other words, the task with the highest number
of remaining tasks depended onit, is selected to be executed. For example, inFigure 1, taskst,, t, andt, arethetrail of t, so, the
trail sizeof t,is3whilet,andt, arethetrail of task t , so thetrail sizeof t, is2. If we are given two jobsthat are the instance of
workflow templates w, and w,, our approach will select the task t, beforet, to be assigned to aresource.

After selecting the task, the resource for its execution has to be decided. It begins with determining the preAssignedTime of the
task. Next, the algorithm determines the slots of the resources that can execute the task where preAssignedTime+1 is the
beginning time of the valid slot. The usableSot set therefore contains the resources that can execute the task. Then, the
algorithm selectsasingle slot S(ocq, Ty ) from usableSot.

Finally, the algorithm assigns the selected task to the selected resource. Also, it updates the assignedTime of thistask, and the
length of the time-slot. The pdrDeg of each successor of the assigned task is reduced by one. Such algorithm keeps repeating
this described procedure until all the tasks are assigned to the time-slot.

The computational complexity of Algorithm 1isO (n?m), where nisthe number of all tasks, and misthe number of al resources.
The main cost comes from the usableS ot determination, i.e. the set of slots that can assign the selected task into it. For each
task, it takes O (nm) to determine the usableS ot. Since, such computing isrequired until all tasks are compl etely assigned, thus,
the cost is O (n °m).

3.2BasdlineAlgorithm: Coffman-Graham Algorithm

In this paper, we extend the experiments as reported in [10] by comparing our proposed algorithm with a well-known 2-
approximation algorithm named Coffman-Graham al gorithm. Coffman-Graham algorithmisthe one of classical list scheduling
algorithms, introduced in [1]. The basic ideaof thisapproach isto construct the priority list of tasks, then select the task one by
one to be assigned in to the resource that can execute the selected tasks earliest. The list construction of this method is based
on taskslabeling. That is, the labels are assigned to the tasks, from the end task to the starting task of each workflow template.
Whilelabeling the task, alist of tasksis constructed from the end of thelist to the head of thelist. On the other hand, the labels
on these lists are ordered decreasingly. The complexity of this algorithmis also O (n 2m) as our proposed one.

Remark 3.1
Int (t) denotes the decreasing sequence of integersformed by ordering of the set {1abel (t,)[t, € Suc (t)} where Suc (t) isthe set
of successors of task t.
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Thelist construction of Coffman-Graham algorithm can be shown asfollows.

Algorithm 2 Coffman-Graham list construction algorithm.
Input: aset of jobsJwith aset of workflow templates W.

Output: alist of tasksL.

Choose an arbitrary task t, from T such that |Suc (t)1=0, and assign label (t,) =1
fori=2to[T|do

LetR={t |t  be the unlabeled taskswith no unlabeled successors }

Lett, bethetaskinRsuchthat Int (t,, ) islexicographicaly smaller thanInt (t ) foral t inR
Letlabel (t,,) =i

endfor

Construct alist of tasksL =<t , t’ t',, t', >suchthat label (t) =i foral i wherel<i< [T

n—1'"’

|
=[] |
b i

—_—_———,e—,—,—,—eee e —_———eee e e — 4

Figure 2. Theexample of taskslabeling

To construct alist of tasks by Coffman-Graham list scheduling algorithm, firstly an arbitrary task t, i nj’ isselected such that its

|Suc (t)| =0, anditslabel isset at one. For the unlabeled taskswheretheir successors are all labeled, the algorithm labels atask
that the label of its successors are smaller than the successor’s label of the other tasks. Noe that the comparison is based on
function Int (). The algorithm continues the execution of this procedure until all tasks are labeled. Then, alist L is constructed
using the label of each task. The task that has the maximum value of 1abel will be put at the head of the list. This processis
executed until al the tasks are inserted into the list.

For example, if we have ajob that isaninstance of workflow templatew, in Figure 1, the task |abeling of thisjob can be assigned
asinFigure 2. Then, thelist that is constructed by such labelsis shown in Figure 3. From thelist, Coffman - Graham algorithm
selectsthe task with label 4 to the task with label 1, in the other words from the head of thelist to the end, to be assigned to the
resources. In which, the resource selection algorithm asin [9] can be applied.

4. Experiment Results

In this section, we present the experiment results to evaluate our proposed work. Theimpact of three variables on the time-slot
length and computation time of each algorithm, i.e. the number of jobs, the maximum degree of tasks, and the maximum length of
workflow templ ates, are eval uated.

4.1 Simulation Setup
Our proposed work is evaluated using synthetic datasets from a workflow synthetic-data generator as in [8]. The generator
takes the number of workflow templates, number of minimal and maximal tasks per job, and number of jobs astheinputs, and
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Figure 3. The example of taskslabeling

generates the jobs based on such inputs with uniform randomization. In the experiments, the number of resources, and the
number of workflow templatesare fixed at 100 resources, and 10 workflow templates respectively. The number of tasks of each
workflow isfixed between 45 - 60 tasks. The workflow templatefor each job is selected uniform randomly where the number of
jobsform each workflow templateis 10% of the number of all jobs.

We compare our work in Algorithm 1 with three algorithms, i.e. Coffman- Graham algorithm which isexplained in the previous
section, MDF and LLF algorithms. The MDF and the LL F are very similar to the proposed LTF algorithm. The differencesisthat
MDF selectsthe task with maximum degree of successorsto be executed earlier, meanwhile LLF selectsthetask with the lowest
level to be executed earlier, considering the start task asthe Oth level. All the al gorithms areimplemented using Java SE 7. The
experimentsare conducted on acomputer with aCore 2 Duo 2.4 GHz processor and 4 GB RAM running Mac OS X. Theresulting
numbers are ten times average.

4.2 Results
First, to eval uate theimpact of the number of jobs on the performance of the algorithms, the maximum degree of each task isfixed
at 4, while the number of tasksin thelongest path of each workflow template isfixed between 10 - 15 tasks.

Figure 4 shows the time-slot length and the computation time of each algorithm where the x-axisis the number of jobs, the | eft
y-axisisthelength of time-slot and the right y-axisisthe computation time.

Max-path| 5 10 15 20 25 | 30 | 35 | 40| 45 50 55| 60

Average (420 [9.00 [13.50 |18.10 [23.70 27.80 33.00 |38.00| 42.30 48.10| 52.20 | 57.30
SD 092 |105 [1.78 |218 |2.26 |3.36 |3.30 |2.87 |3.27 | 288 | 3.74 | 3.53

Table 1. The average and the standard derivation of the longest path in all workflow templates

From Figure4, it can be seen that the computation time of all algorithmsare very close, and they areincreased when the number
of jobsisincreased. Meanwhile the computational time of LLF algorithmisdlightly lower than the other algorithmsfor all thejob
numbers. Also, it can be seen that the computational time of Coffman- Graham algorithm is slightly more than the other
algorithms.

The reason behind this is that the LLF algorithm uses less time for the process of level determination of each task in any
workflow template. Since, thelevel determination consumesonly O (k) wherek isthe constant number of the tasksin aworkflow
template. Meanwhile, the degree determination of each task in the workflow template, and finding the tasks number in the trail
of any task, for MDF and LTF consume O (k?) and O (k%) respectively. For Coffman- Graham algorithm, its higher computation

time comes from its processto determinet,, .

However, interm of the quality of the solution, thetime-slot length, the proposed LTF algorithm along with MDF and Coffman-
Graham algorithms can generate the solution with lesstime-slot length significantly. Thiscomesfrom thefact that in thistypical
problem setting, taking the dependency into account can help reducing the time-slot length effectively.

Then, we eval uate the performance of the proposed al gorithm when maximum degree of each task isvaried. In thisexperiment,
the number of jobs is fixed at 200. Figure 5 shows such experimental results. It can be seen that the time-slot length of our
proposed LTF isnot higher than the other three algorithmsfor all the maximum degree values. It meansthat prioritizing the task
with larger trail size can effectively help its depended tasksto be executed earlier. For MDF al gorithm, when the maximum degree
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Figure 4. The time-slot length and the computation time of each algorithm when the number of jobsisvaried

of each task intheworkflow templateisless (1-2), its performanceisrather poor because of the limitation of the choiceto select
thetask. For the computational time, it can be seen that the computati on timeisincreased when the maximum degree of each task
isincreased for all algorithms. Thisis because, when we assign any task with higher degree of successors, its depended tasks
can be assigned in the next time slot. So, higher maximum degree means that higher input for all the algorithms eventual.
Additionally, it can be seen that the computational time of Coffman- Graham algorithm still higher than other algorithms.

Inthelast experiment, we eval uate theimpact of the maximum number of tasksin thelongest path of each workflow template. We
fix number of jobsat 200. Meanwhile, in order to justify theresult clearly, we al so report the average and the standard derivation
of the longest path of workflow templates for each setting in Table 1. In Figure 6, the result is shown. Obviously, when the
number of thelongest path of each workflow templateisincreased, thetime-slot lengthsfrom all algorithms are al so increased.
It is clear that our proposed LTF algorithm can generate the solution with less time-slot length, particularly when maximum
lengthisset at 45-60. Thereason behind thisisthere are 45 - 60 tasksin each workflow template, when the number of tasksinthe
longest path of each workflow templateisincreased, the degree of successors of each task iseventually decreased. So theresult
issimilar to the previous experiment in Figure 5. Comparing with the Coffman- Graham algorithm with 2-approximation factor, it
can be seen that our proposed work is very effective with less computation time.

From all of the experiment results, it isseen that LTF algorithm is as efficient asthe other comparing algorithm, i.e. itscomputa-
tion timeisnot high. Also, it is highly effective as we can see from the performance in various settings.

5. Conclusion and FutureWork

In this paper, we have addressed a scheduling problem in distribted systems when the jobs have dependency among them; so
called MLT problem. Asit isan NP-Complete problem, thus, the heuristic algorithm, LTF, is proposed instead of aiming at the
optimal solution. The idea of the LTF algorithm isto choose a task with the most number of tasksin itstail first. Thisaims at
unblocking the depended tasks of along-trail task from being executed effectively. In order to eval uate the proposed work, the
experiment results are presented. The results show that the LTF algorithmisvery effective, i.e. it can generate the solution with
lesstime-slot length, for every kind of workflow template. Meanwhile, its computation timeis close to the other three comparing
algorithms. Thus, it is efficient to the number of tasks.
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