
                   Journal of Intelligent Computing   Volume   5   Number  4    December   2014                                 135

A Heuristic Scheduling Algorithm for Distributed Systems with Workflow Constraints

Nasi Tantitharanukul, Juggapong Natwichai, Pruet Boonma
Data Engineering and Network Technology Laboratory
Department of Computer Engineering, Faculty of Engineering,
Chiang Mai University, Chiang Mai 50200, Thailand
n.tantitharanukul@gmail.com, {juggapong, pruet}@eng.cmu.ac.th

ABSTRACT: Distributed systems become one of the most important computing platform because they can efficiently handle
large amount of data with a high computing workload. However, the job scheduling in the distributed systems is not a trivial
issue. It can be even more complex when dealing with workflow-based composite jobs, i.e., each job has multiple tasks with
dependencies between them. As the job scheduling problem has been proven to be an NP-hard, we propose a trail-based
algorithm; Large Trail First (LTF), which is an effective heuristic approach for scheduling problem in the distributed systems
when workflows exist. In this paper, “trail” of each task is the number of remaining tasks in each workflow. Thus, the idea of
the algorithm is that, for each workflow job, the task with the largest size of the trail will be executed earliest. The experimental
results show that the proposed approach is more effective and efficient than the other three approaches including a well-
known 2-approximation algorithm.

Keywords: Distributed system, Job scheduling, Workflow

Received: 20 June 2014, Revised 26 July 2014, Accepted 8 August 2014

© 2014 DLINE. All Rights Reserved

1. Introduction

Distributed systems such as P2P, cloud computing, and computational grid have been widely used as platforms for high
performance computing[2]. There has been a dramatic increase in the popularity of cloud computing and a reason of this
increasing usage of the distributed system is thedevices in this system do not have any specific limitations to access resources.
In particular, cloud environments provide an abstraction of infinite computing resources to their users so that the users can
increase or decrease their resource consumption rate accordingly to the demands.

 Although the distributed system has the aforementioned advantage, the job scheduling in the system is an challenging aspect.
This is because the resources and computing tasks are distributed on many computing devices in the distributed system. Thus,
assigning a job to a resource is not a trivial work; particularly for composite jobs, i.e., jobs with multiple sub-processes or tasks
[6, 7]. In composite jobs, the tasks in the jobs can have dependencies, i.e., a task requires the outcome of another task as its
input; thus, some tasks are prohibited to be executed concurrently. As a consequence, the jobs must be executed under valid
flow-constraints, so called workflow templates. A workflow template is represented by a directed acyclic graph where the tasks
are represented by nodes and the dependencies between tasks are represented by edges. In Figure 1, a few examples of



   136                       Journal of Intelligent Computing   Volume   5   Number  4    December   2014

workflow template are presented, where t
i
 represents a task with index i and w

j 
represents a workflow template with index j.

From Figure 1, it can be seen that in order to execute a job with workflow template w
1
, the tasks must be executed in the order of

t
1
, t

2
, and t

3
. For workflow template w

2
, the tasks t

2
 and t

3
 can be executed in parallel after task t

1
 is completed. In workflow

template w
3
, tasks have no dependency with the others; in this case, any arbitrary schedule can be applied.

There have been several attempts to effectively schedule jobs in distributed systems, especially in the past decade, such as [3],
[4], [5], [8], and [11]. For example, in [11], a scheduling algorithm for web services using “linear” workflow is presented. The goal
of this work is to minimize the response time. In such work, such type of workflow allows only one incoming edge for each node.
Thus, this work might not be practical in the real world where a task normally requires multiple input.

As finding the minimum execution time of multiple jobs from multiple workflows has been proven to be an NP-complete problem
[8]. In this paper, we propose a novel heuristic scheduling algorithms, namely, Large Trail First (LTF). The algorithm assigns the
task that has largest set of remaining tasks into a resource first. In addition, we present the experiment results that compare the
effectiveness and efficiency of the proposed algorithm with other two heuristic algorithms; Maximum-Degree First (MDF) [8]
and Lowest-Level First (LLF), where MDF and LLF use the degree of successors and the level of task dependency to be the
criterion of tasks assignment, respectively. As the work has been published in [10], in this paper, we report additional experiment
results in which the proposed algorithm is compared with the classical 2-approximation algorithm, Coffman- Graham algorithm
[1]. Such algorithm will be used as a baseline for our work.

The rest of this paper is organized as follows. Section 2 formulates the resource scheduling problem for workflow templates. In
Section 3, LTF algorithm is proposed. Experimental results are presented in Section 4. Finally, Section 5 concludes this paper.

2. Problem Definition

In this section, we introduce the basic notations and concepts used in this paper. Then, the the minimum length time-slot
problem is formulated.

Definition 2.1 Distributed System
A distributed system D is presented by an undirected graph where each node corresponds to a machine in the system. The finite
set N (D) denotes the set of nodes in D, and the finite set E (D) is the set of edges where each edge corresponds to a non-directed
connection between two nodes.

Definition 2.2 Resource
 Let n

i 
be a node in D, i.e., n

i
 ∈ N (D). The resources of n

i
 are the computing units that n

i 
 can use to execute computing processes.

The set of the resources of n
i
 is denoted as R (n

i
) whereas the set of resources of D is denoted by Ω , i.e.,  Ω = ∪ R (n

i
). Based

on the definition of distributed systems and resources , tasks, workflow templates, and jobs are defined as follows,

Definition 2.3 Task
 Let D be a distributed system, a task in D is a unit of computing process that a node in D can complete execution in a unit of time.

A set of all tasks that can be executed by the resources in Ω is denoted by T.

Definition 2.4 Workflow Template
Workflow templates in D are directed acyclic graphs where each node corresponds to a task, t

i
, and each edge indicates the

dependency between two tasks. Given a workflow template w
x
 in the set of all workflow templatesW, N (w

x
) denotes the node set

of wx where N (w
x
) ⊆ T. On the other hand, E (w

x
) denotes the directed edge set in the workflow template.

Definition 2.5 Predecessor and Successor
For any workflow template w

x
, task t

l
 is called a predecessor of task t

l′, if and only if, the order pair (t
l
, t

l ′ ) ∈ E (w
x
). This indicates

that task t
l
 must be executed and completed before execution of task t

l ′ . Conversely, task t
l ′ is called a successor of task t

l
.



                   Journal of Intelligent Computing   Volume   5   Number  4    December   2014                                 137

Definition 2.6 Start Task and End Task
Let w

x
 be a workflow template, the node in w

x
 without incoming edges is called the start task. On the other hand, the node without

outgoing edges to other nodes is called the end task.

Definition 2.7 Job
 Let W be the set of workflow templates, a job  j

k
 is an instance of a workflow template w

k
 in W. The task t

l
 of  job j

k
 is denoted by

t k
l
 and T is the set of all tasks from J, where J is the set of all jobs in D.

Based on the definition of jobs and resources, time slot which is a basic notation for job scheduling on resources is defined as
follows.

Definition 2.8 Time-slot
Let J be a set of current jobs in D, the time-slot of J on Ω is the function S : I + × Ω → T ∪  {null} where I + is the set of natural
numbers.

The domain of S is the order pair of time sequence α 
q
, α

q
 ∈ I +, and resource r

p
, r

p
 ∈ Ω. The range of S, S (α

q
, r

p
), is the executed

task that uses resource r
p
 at time sequence α 

q
. When there is no task to be executed on resource r

p
 at time sequence α

q
, S (α

q
,

r
p
) is null.

For any S (α
q
, r

p
) and S (α

q ′  ,  rp ′ ), where p ≠ p′ , if q = q′  then S (α
q
, r

p
) and S (α

q ′ , rp ′ ) are executed in parallel. If q < q ′  then

S (α
q
, r

p
) is executed before S (α

q ′  , rp ′ ), also, S (α
q
, r

p
) is executed before S (α

q ′ , rp
).

Subsequently, we introduce the length of the time-slot to precisely define the problem as follows.

Definition 2.9 Length of Time-slot
The length of time-slot S is the maximum value of time sequence α

q
 which is S (α

q
, r

p
) is not null, ∃ r

p
 ∈ Ω .

Finally, the minimum length time-slot (MLT) problem can be formulated as follows.

Problem 1 MLT. Given a set of jobs J in a distributed system D that belongs to a set of workflow templates W, find a minimal time-
slot S of J on the set of resources Ω .

w1 w3

w
2

t1                        t2              t3

t4

t
5

t6

t
7

t8 t9

t10 t11

Figure 1. Examples of workflow template

3. A Heuristic Algorithm for MLT Problem

In this section we present the proposed algorithm, LTF algorithm.

3.1 LTF Algorithm



   138                       Journal of Intelligent Computing   Volume   5   Number  4    December   2014

Algorithm 1 LTF algorithm.

Input: a set of resources Ω  of a distributed system D and a set of jobs J with a set of workflow templates W.

Output: a potentially minimal length Time-slot S.

taskSet  ← ∅, usableT ask ← ∅, and timeSlotLength = 0

for in each job j
x
 ∈ W do

Determine the number of tasks in the trail of each task t
y
 in j

x
.

Determine the set of predecessors of each task t
y
 in j

x

as pdr x
y
 .

pdrDegx
y
 ←| pdrx

y
 |.

taskSet ← taskSet ∪ {tx
y
} where tx

y
 is t

y
 from j

x

end for

while taskSet ≠ ∅  do

usableT ask ← ∅

for each task t x
y
 ∈ taskSet do

if pdrDegx
y
 = 0 then

usableT ask ← usableT ask  ∪ {t x
y
}

end if

end for

Determine the set of tasks with largest size of the trail from usableT ask and select task t g
h
 from this set

Determine preAssignedTime which is max ({assignedTime (t ) |t is the predecessor of t g
h
}),

if t g
h
 is the start task, preAssignedTime = 0.

usableSlot ← ∅
while usableSlot = ∅ do

usableSlot ←  {S (α
q
, r

p
) | S (α

q
, r

p
) = null, and α

q
= preAssignedTime + 1}

preAssignedTime ← preAssignedTime + 1

end while

Select slot S (α
q′  ,  rp′ ) in usableSlot.

S (α
q′  ,  rp′ )  ← t g

h

assignedTime (t g
h
)  ←  α

q′

taskSet ← taskSet ⎯ {t g
h
}

if α
q′ > timeSlotLength then

timeSlotLength  ← α
q′

end if

for each successor t g′
h′ of t g

h
 do

pdrDeg g′
h′ ←  pdrDeg g′

h′− 1

end for

end while

return S and timeSlotLength



                   Journal of Intelligent Computing   Volume   5   Number  4    December   2014                                 139

In [8], MLT (minimum length time-slot) problem is proven as an NP-Complete problem by reducing the problem from the subset
sum problem.Therefore, we propose a heuristic algorithm which is both effective and efficient. The basic idea of the proposed
algorithm can be separated into two parts; the task selection and the resource selection. In the latter part, i.e. resource selection,
we apply the idea proposed in [9]. That is, when there are two or more available resources for executing the task, this method
selects the resource that allows the earliest execution. This is because the dependency of the resource waiting can be relaxed
and can consequently reduce the time-slot length.

For the task selection which is our focus in this paper, we propose a trail-based concept, i.e. Large Trail First (LTF) task selection.
First, LTF determines the trail size of each task, which is the cardinality of the set of all tasks that depend on such task. Then, the
algorithm selects the task with the largest size of trail to be selected into the resource first. Because the task with large trail can
have many tasks depend on it; therefore, if this task is executed lately, the trail of it will be executed lately too. Eventually, this
will increase the time-slot length.

The proposed work is shown in Algorithm 1. First, the algorithm begins with determination of the size of the trail of each task for
all jobs j

x
∈ W. Also, the set of predecessors, pdr, of each task is determined. Note that the size of pdr, denoted as |pdr x 

y
 |, is the

degree of predecessors of any task t
y
 in job j

x
. Then, the task is added to taskSet set, which it represents all the tasks in the

system.

Subsequently, while the taskSet is not empty, the algorithm iterates through the taskSet. For each task that its predecessor has
been assigned, i.e., pdrDeg = 0, it is added to another set, called useableT ask. This set represents the candidate tasks that is
ready to be assigned into the time-slot. Then, the task with the largest trail, in the other words, the task with the highest number
of remaining tasks depended on it, is selected to be executed. For example, in Figure 1, tasks t

5
, t

6
, and t

7
 are the trail of t

4
 so, the

trail size of t
4
 is 3 while t

2
 and t

3
 are the trail of task t

1
, so the trail size of t

1
 is 2. If we are given two jobs that are the instance of

workflow templates w
1
 and w

2
, our approach will select the task t

4
 before t

1
 to be assigned to a resource.

After selecting the task, the resource for its execution has to be decided. It begins with determining the preAssignedTime of the
task. Next, the algorithm determines the slots of the resources that can execute the task where preAssignedTime+1 is the
beginning time of the valid slot. The usableSlot set therefore contains the resources that can execute the task. Then, the
algorithm selects a single slot S (α

q′  ,  rp′  ) from usableSlot.

Finally, the algorithm assigns the selected task to the selected resource. Also, it updates the assignedTime of this task, and the
length of the time-slot. The pdrDeg of each successor of the assigned task is reduced by one. Such algorithm keeps repeating
this described procedure until all the tasks are assigned to the time-slot.

The computational complexity of Algorithm 1 is O (n 2m), where n is the number of all tasks, and m is the number of all resources.
The main cost comes from the usableSlot determination, i.e. the set of slots that can assign the selected task into it. For each
task, it takes O (nm) to determine the usableSlot. Since, such computing is required until all tasks are completely assigned, thus,
the cost is O (n 2m).

3.2 Baseline Algorithm: Coffman-Graham Algorithm
In this paper, we extend the experiments as reported in [10] by comparing our proposed algorithm with a well-known 2-
approximation algorithm named Coffman-Graham algorithm. Coffman-Graham algorithm is the one of classical list scheduling
algorithms, introduced in [1]. The basic idea of this approach is to construct the priority list of tasks, then select the task one by
one to be assigned in to the resource that can execute the selected tasks earliest. The list construction of this method is based
on tasks labeling. That is, the labels are assigned to the tasks, from the end task to the starting task of each workflow template.
While labeling the task, a list of tasks is constructed from the end of the list to the head of the list. On the other hand, the labels
on these lists are ordered decreasingly. The complexity of this algorithm is also O (n 2m) as our proposed one.

Remark 3.1
 Int (t) denotes the decreasing sequence of integers formed by ordering of the set {label (t

x′)| tx′ ∈ Suc (t)} where Suc (t) is the set
of successors of task t.



   140                       Journal of Intelligent Computing   Volume   5   Number  4    December   2014

The list construction of Coffman-Graham algorithm can be shown as follows.

Algorithm 2 Coffman-Graham list construction algorithm.
Input: a set of jobs J with a set of workflow templates W.

Output: a list of tasks L.

Choose an arbitrary task t
k
 from T such that |Suc (t

k
)| = 0, and assign label (t

k
) = 1

for i = 2 to |T| do

Let R = {t
x 
| t

x 
 be the unlabeled tasks with no unlabeled successors }

Let t
x* 

 be the task in R such that Int (t
x*  

) is lexicographically smaller than Int (t
x 
) for all t

x
 in R

Let label (t
x * 

) = i

end for

Construct a list of tasks L = < t′
n
, t′

n ⎯ 1, , t′2, t′
1
 > such that label (t′

i
) = i for all i where 1 ≤ i ≤ |T|

t4

t
5

t6

t7

3
4

1

2

Figure 2. The example of tasks labeling

To construct a list of tasks by Coffman-Graham list scheduling algorithm, firstly an arbitrary task t
k
 in j′ is selected such that its

|Suc (t
k
)| = 0, and its label is set at one. For the unlabeled tasks where their successors are all labeled, the algorithm labels a task

that the label of its successors are smaller than the successor’s label of the other tasks. Noe that the comparison is based on
function Int (). The algorithm continues the execution of this procedure until all tasks are labeled. Then, a list L is constructed
using the label of each task. The task that has the maximum value of label will be put at the head of the list. This process is
executed until all the tasks are inserted into the list.

For example, if we have a job that is an instance of workflow template w
2
 in Figure 1, the task labeling of this job can be assigned

as in Figure 2. Then, the list that is constructed by such labels is shown in Figure 3. From the list, Coffman - Graham algorithm
selects the task with label 4 to the task with label 1, in the other words from the head of the list to the end, to be assigned to the
resources. In which, the resource selection algorithm as in [9] can be applied.

4. Experiment Results

In this section, we present the experiment results to evaluate our proposed work. The impact of three variables on the time-slot
length and computation time of each algorithm, i.e. the number of jobs, the maximum degree of tasks, and the maximum length of
workflow templates, are evaluated.

4.1 Simulation Setup
Our proposed work is evaluated using synthetic datasets from a workflow synthetic-data generator as in [8]. The generator
takes the number of workflow templates, number of minimal and maximal tasks per job, and number of jobs as the inputs, and



                   Journal of Intelligent Computing   Volume   5   Number  4    December   2014                                 141

Label

Task

4                      3                     2                 1

t
4 

                      t
5 

                   t
6                          

t
7

Figure 3. The example of tasks labeling

generates the jobs based on such inputs with uniform randomization. In the experiments, the number of resources, and the
number of workflow templates are fixed at 100 resources, and 10 workflow templates respectively. The number of tasks of each
workflow is fixed between 45 - 60 tasks. The workflow template for each job is selected uniform randomly where the number of
jobs form each workflow template is 10% of the number of all jobs.

We compare our work in Algorithm 1 with three algorithms, i.e. Coffman- Graham algorithm which is explained in the previous
section, MDF and LLF algorithms. The MDF and the LLF are very similar to the proposed LTF algorithm. The differences is that
MDF selects the task with maximum degree of successors to be executed earlier, meanwhile LLF selects the task with the lowest
level to be executed earlier, considering the start task as the 0th level. All the algorithms are implemented using Java SE 7. The
experiments are conducted on a computer with a Core 2 Duo 2.4 GHz processor and 4 GB RAM running Mac OS X. The resulting
numbers are ten times average.

4.2 Results
First, to evaluate the impact of the number of jobs on the performance of the algorithms, the maximum degree of each task is fixed
at 4, while the number of tasks in the longest path of each workflow template is fixed between 10 - 15 tasks.

Figure 4 shows the time-slot length and the computation time of each algorithm where the x-axis is the number of jobs, the left
y-axis is the length of time-slot and the right y-axis is the computation time.

Average      4.20       9.00    13.50     18.10    23.70   27.80   33.00   38.00    42.30   48.10    52.20      57.30

SD               0.92       1.05     1.78       2.18      2.26     3.36     3.30     2.87    3.27      2.88        3.74       3.53

Max-path      5           10         15         20          25        30       35        40       45         50             55        60

Table 1. The average and the standard derivation of the longest path in all workflow templates

From Figure 4, it can be seen that the computation time of all algorithms are very close, and they are increased when the number
of jobs is increased. Meanwhile the computational time of LLF algorithm is slightly lower than the other algorithms for all the job
numbers. Also, it can be seen that the computational time of Coffman- Graham algorithm is slightly more than the other
algorithms.

The reason behind this is that the LLF algorithm uses less time for the process of level determination of each task in any
workflow template. Since, the level determination consumes only O (k) where k is the constant number of the tasks in a workflow
template. Meanwhile, the degree determination of each task in the workflow template, and finding the tasks number in the trail
of any task, for MDF and LTF consume O (k2) and O (k3) respectively. For Coffman- Graham algorithm, its higher computation

time comes from its process to determine t
x*

 .

However, in term of the quality of the solution, the time-slot length, the proposed LTF algorithm along with MDF and Coffman-
Graham algorithms can generate the solution with less time-slot length significantly. This comes from the fact that in this typical
problem setting, taking the dependency into account can help reducing the time-slot length effectively.

Then, we evaluate the performance of the proposed algorithm when maximum degree of each task is varied. In this experiment,
the number of jobs is fixed at 200. Figure 5 shows such experimental results. It can be seen that the time-slot length of our
proposed LTF is not higher than the other three algorithms for all the maximum degree values. It means that prioritizing the task
with larger trail size can effectively help its depended tasks to be executed earlier. For MDF algorithm, when the maximum degree



   142                       Journal of Intelligent Computing   Volume   5   Number  4    December   2014

Computation time(Sec.)

LLF - Computation time

MDF - Computation time

LTF - Computation time

Coffman-Graham - Computation time

LLF - Time-slot length

MDF - Time-slot length

LTF - Time-slot length

Coffman-Graham -Time-slot length

180

160

140

120

100

  80

  60

  40

  20

   0

T
im

e-
sl

ot
 le

ng
th

50        75          100        125        150       175        200       225       250        275        300

5.00

4.50

4.00

3.50

3.00

2.50

1.50

1.00

0.50

0.00

2.00

Figure 4. The time-slot length and the computation time of each algorithm when the number of jobs is varied

of each task in the workflow template is less (1-2), its performance is rather poor because of the limitation of the choice to select
the task. For the computational time, it can be seen that the computation time is increased when the maximum degree of each task
is increased for all algorithms. This is because, when we assign any task with higher degree of successors, its depended tasks
can be assigned in the next time slot. So, higher maximum degree means that higher input for all the algorithms eventual.
Additionally, it can be seen that the computational time of Coffman- Graham algorithm still higher than other algorithms.

In the last experiment, we evaluate the impact of the maximum number of tasks in the longest path of each workflow template. We
fix number of jobs at 200. Meanwhile, in order to justify the result clearly, we also report the average and the standard derivation
of the longest path of workflow templates for each setting in Table 1. In Figure 6, the result is shown. Obviously, when the
number of the longest path of each workflow template is increased, the time-slot lengths from all algorithms are also increased.
It is clear that our proposed LTF algorithm can generate the solution with less time-slot length, particularly when maximum
length is set at 45-60. The reason behind this is there are 45 - 60 tasks in each workflow template, when the number of tasks in the
longest path of each workflow template is increased, the degree of successors of each task is eventually decreased. So the result
is similar to the previous experiment in Figure 5. Comparing with the Coffman- Graham algorithm with 2-approximation factor, it
can be seen that our proposed work is very effective with less computation time.

From all of the experiment results, it is seen that LTF algorithm is as efficient as the other comparing algorithm, i.e. its computa-
tion time is not high. Also, it is highly effective as we can see from the performance in various settings.

5. Conclusion and FutureWork

In this paper, we have addressed a scheduling problem in distribted systems when the jobs have dependency among them; so
called MLT problem. As it is an NP-Complete problem, thus, the heuristic algorithm, LTF, is proposed instead of aiming at the
optimal solution. The idea of the LTF algorithm is to choose a task with the most number of tasks in its tail first. This aims at
unblocking the depended tasks of a long-trail task from being executed effectively. In order to evaluate the proposed work, the
experiment results are presented. The results show that the LTF algorithm is very effective, i.e. it can generate the solution with
less time-slot length, for every kind of workflow template. Meanwhile, its computation time is close to the other three comparing
algorithms. Thus, it is efficient to the number of tasks.

Number of Jobs



                   Journal of Intelligent Computing   Volume   5   Number  4    December   2014                                 143

Computation time(Sec.)
130

125

120

115

110

105

100

LLF - Computation time

MDF - Computation time

LTF - Computation time

Coffman-Graham - Computation time

LLF - Time-slot length

MDF - Time-slot length

LTF - Time-slot length

Coffman-Graham -Time-slot length

T
im

e-
sl

ot
 le

ng
th

Degree of successors
1              2               3             4           5             6              7             8             9            10

12.0

11.0

10.0

9.0

3.0

2.0

1.0

8.0

7.0

6.0

5.0

4.0

0.0

Figure 5. The time-slot length and the computation time of each algorithm when the maximum degree of each task is varied

References

[1] Jr. Coffman, E. G.., Graham, R. L. (1972). Optimal scheduling for two-processor systems. Acta Informatica, 1 (3) 200–213.

[2]  Kondo, D.,  Andrzejak, A., Anderson, D. P. (2008). On correlated availability in internet-distributed systems. In : Proceedings
of the 9th IEEE/ACM International Conference on Grid Computing, p. 276–283, Washington, DC, USA.

[3] Kevin Lai., Bernardo  Huberman., A., Leslie  Fine, R. (2004). Tycoon: A distributed market-based resource allocation system.
Computing Research Repository, cs.DC/0404013.
[4] Geoffrey Mainland., David Parkes., C. (2005). Matt Welsh. Decentralized, adaptive resource allocation for sensor networks.
In : Proceedings of the 2nd conference on Symposium on Networked Systems Design & Implementation -  2, p. 315–328, Berkeley,
CA, USA.

[5] Tetsuya Masuishi., Hisayuki Kuriyama., Yasuyuki Oki., Kinji Mori. (2005). Autonomous decentralized resource allocation for
tracking dynamic load change. In: Proceedings of the International Symposium on Autonomous Decentralized Systems, pages
277–283.

[6] Al-sakib Khan Pathan., Mukaddim Pathan., Hae Young Lee. (2011). Advancements in Distributed Computing and Internet
Technologies: Trends and Issues. Information Science Reference - Imprint of: IGI Publishing, Hershey, PA, 1st edition.

[7] Stelios Sotiriadis, Nik Bessis., Fatos Xhafa., Nick Antonopoulos. From meta-computing to interoperable infrastructures: A
review of meta-schedulers for hpc, grid and cloud. Advanced Information Networking and Applications, International Confer-
ence on, 0:874–883.

[8] Nasi Tantitharanukul, Juggapong Natwichai, and Pruet Boonma. Workflow-based composite job scheduling for decentral-
ized distributed systems. In: Proceedings of the Sixteenth International Conference on Network-Based Information Systems
(NBiS), p 583–588, 2013.



   144                       Journal of Intelligent Computing   Volume   5   Number  4    December   2014

LLF - Computation time

MDF - Computation time

LTF - Computation time

Coffman-Graham - Computation time

LLF - Time-slot length

MDF - Time-slot length

LTF - Time-slot length

Coffman-Graham -Time-slot length

T
im

e-
sl

ot
 le

ng
th

Computation time(Sec.)

Maximum length of each workflow

130

125

120

115

110

105

100

  95

  90

  85

  80
5              10            15           20           25           30           35            40         45            50          55            60

7

6

5

4

3

2

1

0

Figure 6. The time-slot length and the computation time of each algorithm when the maximum number of tasks in the longest
path of each workflow template is varied

[9] Nasi Tantitharanukul, Juggapong Natwichai, and Pruet Boonma. (2014). A heuristic algorithm for workflow-based job sched-
uling in decentralized distributed systems with heterogeneous resources. Studies in Computational Intelligence, page to be
appeared.

[10] Nasi Tantitharanukul, Juggapong Natwichai, and Pruet Boonma. (2014). On correlated availability in internet-distributed
systems. In Proceedings of the 9th International Conference on Digital Information Management, Bangkok, Thailand.

[11] Efthymia Tsamoura, Anastasios Gounaris, and Yannis Manolopoulos. (2011). Decentralized execution of linear workflows
over web services. Future Generation Computer Systems, 27(3), March.


