
 74 Journal of Intelligent Computing Volume 7 Number 2 June 2016

Cooperative Integrity Verification Schemes for Cloud Storage Data

Kishor Kumar Reddy C, Anisha P R
Vardhaman College of Engineering
India
kishoar23@gmail.com, anisha1990jan@gmail.com

ABSTRACT: This paper proposes two integrity verification schemes based on Schnorr Signature Scheme, which are
named Safety Integrity Verification Scheme (SIVS) and Efficient Integrity Verification Scheme (EIVS). In the two verification
schemes, for the user’s each challenge, the cloud storage server chooses randomly the sets of file blocks and verification
blocks to generate response values, and the user uses the set of signatures to verify response values. That is to check whether
the cloud storage server preserves perfectly the user’s file or not. SIVS gives double integrity verification guarantee to cloud
storage data. EIVS has more efficient verification guarantee in computational costs than SIVS. According to the different
needs of users, EIVS cooperates with SIVS to improve efficiency when checking the integrity of cloud storage data. Compared
with other schemes, at the same level of security, the two cooperative schemes get better integrity verification guarantee, and
pay lower computational costs.

Keywords: Cloud storage, Schnorr Signature Scheme, Double integrity verification, Challenge and response

Received: 23 December 2015, Revised 28 January 2016, Accepted 5 February 2016

© 2016 DLINE. All Rights Reserved

1. Introduction

Cloud computing is a model for enabling ubiquitous, convenient, on-demand network access to a shared pool of configurable
computing resources (e.g., networks, servers, storage, applications, and services) that can be rapidly provisioned and released
with minimal management effort or service provider interaction[1]. Cloud storage is a model of networked online storage where
data is stored in virtualized pools of storage which are generally hosted by third parties. Hosting companies operate large data
centers, and users who require their data to be hosted buy or lease storage capacity from them[2]. When the users store their
data to cloud storage servers, they will gain a real convenience and save more investment. However, the users might lost control
on their own data, and they might be unclear which device their data are stored at, so they are greatly concerned about the
integrity of these data in cloud storage servers. How to verify remote data possession and data integrity, many scholars have
carried out relevant research.

In 2003, Deswarte et al. [3] proposed a data integrity verification scheme based on RSA algorithm. The scheme, intending to
check the integrity of remote data, performed exponentiation operation on entire document based on RSA algorithm. Ateniese
et al.[4] built upon a Provable Data Possession (PDP) model to allow the user to utilize RSA-based homomorphic tags to
challenge the server, which selected randomly data blocks and tags to generate the proofs to prove he stored intact the user’s
data. In a subsequent work, Curtmola et al. [5] proposed a multiple replica PDP (MR-PDP) scheme. This scheme ensured that
multiple replicas of the user’s data were stored at the untrusted storage server. In[6], Chen used homomorphic hash to present

 Journal of Intelligent Computing Volume 7 Number 2 June 2016 75

nother PDP method, and the user’s data would be preserved well in cloud storage server by the method. Juels et al.[7] described
a Proof of Retrievability (PoR) model, and this model used spot-checking and error-correcting codes to ensure both “possession”
and “retrievability” of the files on remote servers. In [8], the scheme allowed the verifier challenge the server without limit, and
the server converged the tags of all data blocks into a short tag that would be took as response message to the verifier. In [12],
Cong Wang et al. utilized the homomorphic token to ensure the integrity of erasure-coded data with additional feature of data
error localization. In a subsequent work, Qian Wang et al. [13] allowed a third party auditor to verify the integrity of the data
stored in cloud based on Merkle hash tree.

Unfortunately, the computational complexity of above some schemes is too height, such as [3], some major cause lay in the fact
that the server must exponentiate the entire file and access all of the file’s blocks. The challenge number of some schemes is limit,
such as [7]. To each check, “sentinel” must be disclosed to the server, and the verifier can’t use again leaked “sentinel”. As the
server selected randomly some of data blocks to achieve the probability of successful verification, scheme [4] and [8] remedy
partially some drawback of scheme [3] and [7]. The two schemes lower the computational requirements for the server and allow
the verifier challenge the server without limit, but the time generating authentication tags is too long. This paper will propose
two integrity verification schemes to improve above schemes in computational complexity.

2. Schnorr Signature Scheme

Schnorr signature scheme was proposed by Claus P. Schnorr, and it was patented in 1991 [9]. In order to describe our integrity
verification schemes better, we adjusted the values of the parameters of Schnorr Signature Scheme.

p and q are two big prime, p - 1 and is a multiple of q ; g is a generator of, Zp
* and g q = 1 mod p; x is a private key of Zq

*; y is a
public key and y = g x mod p; h (.) is an approved cryptographic hash function.

When the signer signs the message m, he chooses randomly a secret number and computes.

 u = g r (mod p) , e = h (m || u), s = xe + r (mod q) (1)

The signer sends the message m and the signatures (e, s) to the receiver.

When the receiver has received m and (e, s), in order to verify the validity of the signature, he first computes

u = g s y - e (mod p) (2)

Then he checks the following equation

If the equation is true, then the signature is valid. Otherwise, the signature is invalid.

3. Two Cooperative Integrity Verification Schemes

We propose two verification schemes based on Schnorr Signature Scheme, which are named safety integrity verification scheme
(SIVS) and Efficient Integrity Verification Scheme (EIVS). The parameters of the two schemes are given the same definition, and
they are phrased blow.

p is 1024-bit prime; q is 160-bit prime, and p - 1 is a multiple of q ; g is a generator of Zp
*, and g q = 1 mod p ; x is a private key of

Zq
*; y is a public key and y = g x mod p ; h(.) is an approved cryptographic hash function; f (.) is a pseudo-random function; ϕ

(.) is a pseudo-random permutation; k1 ,k2 , k3←{0, 1}k are three keys, where k is the length of the three keys.

3.1 Safety Integrity Verification Scheme (SIVS)
Safety integrity verification scheme (SIVS) and Efficient Integrity Verification Scheme (EIVS) both consist of five phases, such

(3)

 76 Journal of Intelligent Computing Volume 7 Number 2 June 2016

that Pro-processing phase, Challenge phase, Response phase, Verification phase, and Retrieve File phase. The five phases of
SIVS scheme are listed in Figure 1.

Figure 1.The proposed SIVS scheme
(1) Pro-processing phase
Before the user sends his the file F to the cloud storage server, he firstly splits file F into n blocks: F = (m1, m2, ..., mn), and the
size of each block is represented as |mi| bits. Then he uses pseudo-random function f(.) keyed with k1 to derive random sequence

 (4)

where r is an initial secret random number. To each file block mi and each random number ri (1< i < n), the user computes

 (5)

 E = h (m1 || m2 ||, ..., || mn) (6)

The user sends the set of file blocks F = (m1, m2, ..., mn) , and the set of verification blocks U = (u1, u2, ..., un) to the cloud storage
server and deletes their copies from his local storage. The user stores the set of signatures S = (s1, s2, ..., sn), and hash value E
on the local, and they will be used on the verification and retrieve file phase.

(2) Challenge phase
which storage device that the file F has been stored at? The user does not know, so he challenges the cloud storage server to
verify whether the file is preserved intact in cloud or not. The user’s challenge values are Chal(fID, c, k2, k3, y), where fID is
identity number of the file F ; c is the number of challenged blocks, 1< c < n ; k2 and k3 are chosen randomly for each challenge;
y is the user’s public key.

(3) Response phase
After the cloud storage server has received the challenge values Chal(fID, c, k2, k3, y) , he uses pseudo-random permutation ϕ
(.) keyed with k2 to generate indices of challenged blocks (1 < j < c, 1 < ij < n). Also, he uses pseudo-random function
f (.) keyed with k3 to derive coefficients . Here, a1, a2, ..., ac are randomly generated for each
challenge

In pro-processing phase, the cloud storage server holds the set of file blocks F = (m1, m2, ..., mn) , and the set of verification blocks

U = (u1, u2, ..., un). Grounded on the block indices ij (1< j <c) , he chooses the subset of file blocks

 Journal of Intelligent Computing Volume 7 Number 2 June 2016 77

and the subset of verification blocks , then computes:

The cloud storage server sends response values (T ,) to the user, and takes them as the proofs of possessing file F .

(4) Verification Phase
After the user has received response values (T,) , he also computes indices of challenged blocks and random
coefficients . Then the user chooses the subset of the signatures from the set of signatures
S = (s1, s2, ..., sn) which has been saved previously on the local. Further, the user computes:

(8)

Then he checks the following equation

 (9)

If the equation is true, then the user believes that the cloud storage server preserves well his file F. Otherwise, verification fails.

The above equation holds because:

(5) Retrieve File phase
At a later time, when the user needs his file F, he sends a request message req(fID) to the cloud storage server. After the cloud
storage server receives message req(fID), he sends back file blocks to the user. The user uses hash function
to compute

 (10)

The user compares the set of hash values E′ with E, and E has been saved on the local by himself in pro-processing phase. If
E′ = E, then, F′ = F, it means that the file blocks are intact. If E′ E , then F′ F , it means that some file blocks have been altered
in network transmitting or on cloud storage [10].

3.2 Efficient Integrity Verification Scheme (EIVS)
We simplify SIVS to attain a more efficient scheme based on Schnorr Signature Scheme, this is efficient integrity verification

 (7)

 78 Journal of Intelligent Computing Volume 7 Number 2 June 2016

3.3 Two Schemes Cooperate for Cloud Storage Data
To play its due role, cloud storage system must be able to provide a good service for all users. The users of cloud storage are
grouped into two classes: general public users and business users. As long as these users connect to Internet, they may have
different requirements of cloud storage. Some users temporarily store their data in the cloud server, after a period of time they
want the server to delete their data. Some users want to permanently store data in the cloud server. When they need these data,
these data can be retrieved from the server at any time. According to the different requirements of users, the two schemes SIVS
and EIVS will cooperate to check the integrity of users’ data in cloud.

In 3.2, EIVS substitutes hash values ei for file blocks mi to generate signatures si and v , also, all values of coefficients aj (1 <
i < c) are set to 1, so it improves operation speed and reduces computational costs. But EIVS can only verify that the cloud
storage server stores well the sum of hash values, and cannot ensure that the cloud storage server preserves intact all file
blocks. From 3.1, SIVS provides double integrity verification guarantee to cloud storage data. There will be a detailed description
on security guarantee of SIVS in 4 chapter. Therefore, in general, EIVS should be adequate for cloud data stored temporarily.
SIVS should be adequate for cloud data that need to be stored permanently and do not tolerate any loss and damage. So EIVS
should cooperate with SIVS to improve efficiency when checking the integrity of cloud storage data.

4. Security and Performance Analysis

For cloud storage data, SIVS scheme provides safer guarantee of integrity verification. EIVS is a simplified version of SIVS, and
it is more efficient in computational costs than SIVS but with weaker security guarantee. So following security analysis, we are
only aimed at SIVS scheme and ignore EIVS. To performance analysis, we consider both schemes.

4.1 Security Analysis
The security of Schnorr Signature Scheme is based on the intractability of discrete logarithm problem, and the scheme satisfies

 (11)

Here, EIVS doesn’t use file blocks mi (1< i < n) to compute signatures si (1< i < n) , but uses hash values ei (1< i < n) to compute
signatures.

In response phase, all values of aj (1< i < c) are set to 1, here, the cloud storage server computes

 (13)

Now, EIVS doesn’t add all file blocks mi (1< i < n) to generate v , but add all hash values ei (1 < i < n) to generate it.

In verification phase, all values of aj (1< i < c) are also set to 1, then the user computes

 (14)

Here, the user checks if below equation holds

 (15)

scheme (EIVS). EIVS has the same parameters as SIVS, and it also includes five phases, but each phase of EIVS is simpler than
that of SIVS. Here, only three main phases are described blow.

In pro-processing phase, the user computes

 (12)

 Journal of Intelligent Computing Volume 7 Number 2 June 2016 79

 (16)

According to our hypothesis, the verification blocks U = (u1, u2, ..., un) are stored perfectly in cloud. So when the cloud

storage server chooses challenged verification blocks from U to generate σ , the value of σ is no change with
fake challenged file blocks.

After the user has received response values (T′, σ) , he computes the value of w, and verifies the relation whether

is true or not. If the relation is true, then T = T′ (mod p), this means .

If we could find out to let y- A = y- B (mod p), then (mod p), but this is impossible. So in verification phase,
when the cloud storage server substitutes fake file blocks for original file blocks, he can’t succeed on the user’s integrity
verification.

In retrieve file phase, we suppose the cloud storage server has lost original file blocks ml, ..., mt. When the cloud storage
server substitutes fake file blocks bl, ..., bt for file blocks ml, ..., mt and send them to the user, the user first computes hash
value E′ = h (m1 || , ..., || bl || , ..., || bt || , ..., || mn) . Then he takes out E = h (m1 || m2 ||, ..., || mn) on the local, and checks below equation
whether is true or not.

the security notions in the random oracle model. The scheme has a shorter length of signature than RSA and ElGamal signature
scheme at the same level of security. SIVS is proposed based on Schnorr Signature Scheme, so it also satisfy the security
notions in the random oracle model.

SIVS gives double integrity verification guarantee to cloud storage data. One guarantee, in response and verification phase, the
user checks response values (T, σ) to judge whether all file blocks are preserved intact in the cloud storage server. The other
guarantee, in retrieve file phase, the user compares hash values E′ with E to judge whether some file blocks have been altered
in network transmitting or on cloud storage.

In response and verification phase, let us assume that the cloud storage server has lost some of file blocks, but preserves well
all verification blocks, it can be proved that the cloud storage server can’t pass through the user’s integrity verification. The
processes of this proof are as follows:

If the user and the cloud storage server choose the subset of file blocks as challenged blocks, but the cloud

storage server has lost file blocks . Where, . Accordingly, the cloud storage server falsifies file
blocks with replacement, then he computes

 (17)

 h (m1 || , ..., || bl || , ..., || bt || , ..., || mn) ? h (m1 || m2 ||, ..., || mn)
 =

To make the equation true, unless the cloud storage server can find out the value of hash collision. This means he can find out
hash values h (A) and h (B) , let h (A) = h (B) on the premise A B , but this is not feasible[11]. In view of this, the user thinks
that some file blocks have been altered in network transmitting or on cloud storage.

4.2 Performance Analysis
Comparing SIVS and EIVS schemes with S-PDP in Ateniese [4] and Wang[13] schemes, in order to maintain the fairness, we
don’t consider communication and computation costs of root nodes and auxiliary authentication information in Wang[13]
scheme. Also, we don’t consider the computation costs that the user and the cloud storage server derive random sequence {r

i }1<i <n } , challenge blocks indices and random coefficients in the four schemes.

 80 Journal of Intelligent Computing Volume 7 Number 2 June 2016

Table 1 indicates computation costs of S-PDP [4] and Wang[13] schemes are roughly equivalent, and the computation costs of
SIVS and EIVS schemes are all lower than two other schemes. To all operation, bilinear pairing operation is most time-consuming,
followed by exponentiation operation. Multiplication operation is also more time-consuming than hash and add operation. EIVS
has more hash operation than three other schemes, but has no pairing operation. Moreover the total exponentiation operation
of EIVS are less than three other schemes. So the computation costs of EIVS are the lowest in four schemes, and the costs of
SIVS are next lowest. Therefore, at the same level of security, when SIVS and EIVS cooperate to check the integrity of cloud
storage data, we can get more efficient integrity verification guarantee than other schemes.

5. Conclusion

In view of communication costs and computation costs of current integrity verification schemes are too high, this paper
proposes two integrity verification schemes SIVS and EIVS based on Schnorr Signature. SIVS and EIVS cooperate to check the
integrity of cloud storage data. If the files need to be stored in cloud for a long time, SIVS scheme will be used to ensure double
integrity of cloud data. But for cloud data stored temporarily, EIVS will be used to get efficient integrity verification guarantee.
How to apply the data recovery and privacy protection technology to improve fault tolerance and security of cloud storage
data? It will become our emphasis in further research.

Acknowledgment

This work is partially supported by Program for Innovation Team Building at Institutions of Higher Education in Chongqing
under Grant No. KJTD201310, Natural Science Foundation of Chongqing Science &Technology Commission of China under
Grant No. 2011jjA40031, Science &Technology Research Foundation of Education Committee of Chongqing of China under
Grant No. KJ120504.

References

[1] Mell, P., Grance, T. (2011). The NIST Definition of Cloud Computing, Special Publication 800–145. National Institute of
Standards and Technology: Gaithersburg, MD, USA.

Table 1. Computational Costs Comparison of Four Schemes

When we analyze the performance of the four schemes, we suppose the size of each file block | mi| is the same, and total number
of file blocks n is also the same. Moreover, the number of challenged file blocks c is also the same.

In the four schemes, communication costs are mainly composed of the costs of challenge and response values. In Wang[13]
scheme, the TPA takes values chal{i, vi} as challenge values and sends them to the server. Moreover, the server returns the set
of information as response values to the TPA, so communication costs of Wang [13] scheme are the highest in
the four schemes. However, the communication costs of SIVS , EIVS and S-PDP [4] schemes are roughly equivalent.

To computation costs, we ignore the costs of challenge phase and retrieve file phase, and only consider the costs of pro-
processing phase, response phase and verification operation; Add: addition operation; Mult: multiplication operation;

 Journal of Intelligent Computing Volume 7 Number 2 June 2016 81

[2] Wikipedia, Cloud storage. (2007). http://en.wikipedia.org/wiki/Cloud_storage (accessed onJuly 2014).

[3] Deswarte, Y., Quisquater, J.-J. (2003). A.Sadane, Remote integrity checking. In: 6th working conference on integrity and
internal control in information systems (IICIS), 1-11.

[4] Ateniese, G., Burns, R., Curtmola, R., et al (2007). Provable data possession at untrusted stores. In: Proceedings of the 14th

ACM conference on computer and communications security, p. 598-609.

[5] Curtmola, R., Khan, O., Burns, R., et al (2008). MR-PDP: Multiple-replica provable data possession. In: 28th IEEE ICDCS, 411-
420.

[6] Chen, L.X. (2011). A homomorphic hashing based Provable Data Possession. Journal of Electronics & Information Technology
33 (9) 2199-2204.

[7] Juels, A., Kaliski, B. S. (2007). PORs: Proofs of Retrievability for large files. In: Proceedings of the 14th ACM conference on
Computer and communications security, 584-597.

[8] Shacham, H. Waters, B (2008). Compact proofs of retrievability. In: Proceedings of the 14th International Conference on the
Theory and Application of Cryptology and Information Security, p. 90-107.

[9] Schnorr, C.P (1991). Method for identifying subscribers and for generating and verifying electronic signature in a data
exchange system, U.S. Patent # 4995082.

[10] Zhu, Y., Hu, H.X., Ahn, G. J., Yu, M.Y. (2012). Cooperative provable data possession for integrity verification in multicloud
storage. IEEE Transactions on Parallel and Distributed Systems, 23 (12) 2231 - 2244.

[11] Liu, F.F., Gu, D., Lu, H. N., et al (2011). Reducing computational and communication complexity for dynamic provable data
possession, China Communications, 8 (6) 67-75.

[12] Wang, C., Wang, Q., Ren, K., et al. (2009). Ensuring data storage security in cloud computing. In: Proceedings of IWQos’09,
p. 1-9.

[13] Wang, Q., Wang, C., Ren, K. (2011). Enabling public auditability and data dynamics for storage security in cloud computing,
IEEE Transactions on Parallel and Distributed Systems 22 (5) 847-859.

