
Journal of Intelligent Computing Volume 8 Number 4 December 2017124

Managing Undefined Values in Temporal Environment

Michal Kvet, Karol Matiaško
Faculty of Management Science and Informatics, Department of Informatics
University of Zilina
Zilina, Slovakia
Michal.Kvet@fri.uniza.sk

ABSTRACT: Database systems and temporal extension is core part of the data and information system processing. However,
temporal paradigm has never been standardized. Object level temporal approach is based on extension of the primary key,
whereas our approach uses column granularity, thanks to that, sensorial data with various granularity and frequency of
changes can be effectively managed and accessed. Moreover, significant performance parameter is just index structure and
mostly used B+tree. Such developed index cannot manage and deal with NULL values, therefore in this paper, we propose
effective solution for storing undefined attribute values as well as time attributes delimiting validity.

Keywords: Temporal Characteristics, Attribute Oriented Approach, Unlimited Validity, MaxValueTime, UndefTypeValue

Received: 12 June 2017, Revised 10 July 2017, Accepted 27 July 2017

© 2017 DLINE. All Rights Reserved

I. Introduction

Information system management and development requires universal access to data, which should be evaluated, processed,
stored and also retrieved. Such system must ensure robustness, effectivity and security. Soon after developing first database
system, strong pressure on performance could be perceived. Architecture and approaches have been changed significantly
over the years, however, the main paradigm based on conventional approach is still used. It is based on storing and manipulating
only actual valid data. Thus, historical data are not stored in main structure at all, although they can be found in backup and log
files. To provide complex security, most database systems work in archive log mode – all online redo log are archived. If they
were not deleted automatically directly after creating new backup, it would be possible to reconstruct any object state during
whatever time point or time interval. Quality, performance and reliability of such system would be really poor and questionable.
Therefore, after development of first database systems, pressure for time data processing was strong resulting in developing
new concepts, paradigms and management of such data. Unfortunately, it has not been certified and approved as standard, yet,
so development stream was completely cancelled in 2001. Although later, there have been some temporal approaches [1] [2] [3]
[9], most of them were based on object level temporal architecture. It is based on primary key extension. Object itself is then
determined by its identifier as well as time delimiting particular object state. Uni-temporal system uses validity time extension,

 Journal of Intelligent Computing Volume 8 Number 4 December 2017 125

bi-temporal approach is based on validity, but consists also transaction validity frame. In general, we can use muti-temporal
system, which can deal with various number of temporal spheres to be processed like validity, transaction validity, time position,
location, reliability and many other factors. Fig. 1 shows the object level temporal model. It has, however, many limitations. First
of all, object state consists of all processed attributes, thus, if some attribute value is not changed and some others are,
duplicates must be stored. Moreover, there is strict limitation, if new attributes should be added to the object creating state.
There is problem with data definition before the timepoint of adding new attributes. Another aspect is data model complexity.
Whereas foreign key always references primary key or unique index, which forms also primary key, referential integrity manage-
ment is too complicated with regards on state covering by time.

Figure 1. Temporal object model

First part of this paper deals with time spectrum supported by object level temporal architecture. Later, we concern on undefined
values management covered by index structure to optimize data retrieval process and its performance. Problem of undefined
value management is divided into two parts, which are handled differently – time (validity) and standard attribute. Then we
propose column level temporal architecture, which has been developed for different frequency and granularity of attribute
changes, sensorial data. It proposes complete structure and approach restructuralization and performance improvements.
Temporal logic is covered in [5] [15] [21].

2. Time Spectrum Modelling Techniques

Time in the database can be modelled using one attribute (time point) or using time interval.

2.1 Time Point
Time point is characterized by only one attribute value determining time moment based on granularity. Such defined approach
is, however, very inefficient, because each moment requires inserting new row defining state. Therefore, time point is this case
expresses time limitation, mostly the first time of the validity of particular state. Thus, direct newer state is also border of
previous state validity. Moreover, such architecture as core part of the temporal processing used today, does not support
undefined values processing or even complete undefined or unknown states. Imagine NULL values, they do not determine
undefined value in temporal sphere, they can have specific sense based on application domain. As we will describe later, NULL
values defining validity interval can cause significant problem in terms of performance and complex evaluation. Another
modelling method for the time spectrum interval is just time interval.

2.2 Time Inverval
Principles of time interval management has been introduced in in the nineties of the 20th century. Also special datatype has been
introduced delimiting begin (BD) and end (ED) date of the time interval – period. It was part of the concept, which was, however,

Journal of Intelligent Computing Volume 8 Number 4 December 2017126

to become temporal standard. Therefore, such type is not part of the SQL, nor specific dialect of individual database systems.
It means, that interval definition must be user managed with regards on correctness – minimal interval length based on granularity,
modelling method, correct position of the BD and ED. Furthermore, temporal data object can be defined by only one state in any
time point. Such properties and activities should be monitored by period temporality core manager, however, it has not been
approved resulting in necessity to define own criterions and conditions for each system.

Nowadays, time interval is defined mostly by two attributes replacing period data type. Thus, primary key of the object temporal
table is extended by two attributes. Whereas primary key, nor any part of it cannot contain NULL values, time interval infinity
cannot be modelled using NULL values. Naturally, begin date (BD) is still defined correctly, there is no necessity for non-
strictness or non-precision. Vice versa, another aspect is used for end date (ED). Often, we do not know the time point of new
update operation – in time of inserting data (new state), validity limit message in undefined (unknown). Also in systems, where
data are produced regularly in defined time frame, there can be problems with interface input queues or communication methods.
So, it cannot be strict. One of the possible solution is to exclude ED from the primary key, which is, although, possible, but they
are commonly grouped together from the definition. Moreover, if there is NULL value delimiting validity, what does it mean? Can
you be sure, that such time point has not occurred, yet? Can you be sure, that no newer event influenced such state sooner? No
at all. Therefore, NULL values are really not suitable. Thus, we introduce MaxValueTime notation for dealing with such
unlimited validity state management. Time interval itself can be modelled using two methods [4] [9]:

• closed-closed interval representation (CC representation),

• closed-open interval representation (CO representation).

The difference between them is based on limiting time point of the interval. If using CC representation, the last time point is part
of the interval, whereas ED of the CO representation expresses the first point, which can have another state delimited by the
time. Significant advantage of using CO representation is offered, if there is necessity to transfer solution to another granularity.
In this case, it is often useful or even inevitable to use more grained granularity. CO representation characteristics does not
create undefined time spectrum, also called as time gaps [4] [5]. Transformation techniques and access methods are described
in [1] [8] [9].

Figure 2. Closed – open representation

 Journal of Intelligent Computing Volume 8 Number 4 December 2017 127

Figure 3. Closed – closed representation

3. MaxValueTime Notation

Special value for actual unlimited validity should be used to express, that the limitation is now unknown, but has not occurred,
yet. This factor cannot be marked by the NULL value, because it is not possible to compare it with actual value (sysdate).
Therefore, for such reasons, we introduce special notation for dealing with unlimited validity. In principle, it can be said, that it
denotes the last possible timepoint value to be stored, respectively very high time value - 12-31-9999 (MM-DD-YYYY) and time
spectrum based on defined granularity. Thus, there is no problem with attribute value comparison using relational operations,
to sort data. However, most significant factor is performance and access methods, which can be associated with this notation.
In general, MaxValueTime notation is associated with ED and expresses “until further notice”. Physically, MaxValueTime
notation is used for storing data, not physical date, so there is no problem with consecutive interpretation.

4. Index Structure

Temporal data are characterized by huge data amount to be processed, evaluated and stored. Data analysis and retrieval must
be performed with regards on effectivity and performance. Data are stored physically in data files accessed through interim layer
– tablespaces. Each required block must be loaded into memory buffer cache before processing, which requires data resources
and I/O operations and can be considered as important factor influencing performance - costs. Therefore, one of the main
features affecting performance is delimited by access method reflected by using index structures. Temporal databases are state
oriented with emphasis on evolution monitoring over the time. Getting states and individual changes in the Select statement
forms the core of a major milestone of efficiency and speed of the system.

Oracle defines an index as an optional structure associated with a table or table cluster that can sometimes speed data access.
By creating an index on one or more columns of a table, you gain the ability in some cases to retrieve a small set of randomly
distributed rows from the table. Indexes are one of many means of reducing disk I/O [6] [10] [16].

The absence or presence of an index does not require a change in the wording of any SQL statement. An index is a fast access
path to a single row of data. It affects only the speed of execution. Given a data value that has been indexed, the index points
directly to the location of the rows containing that value. Database management system automatically maintains the created
indexes – changes (Insert, Delete, Update) are automatically reflected into index structures. However, the presence of many
indexes on a table degrades the performance because the database must also update the indexes [6] [17] [18].

Journal of Intelligent Computing Volume 8 Number 4 December 2017128

There are several methods for accessing data, which can be used as a result of parsing optimizer decision. In this paper, we will
mention the most important based on performance are following experiments:

• Table Access Full. This method sequentially accesses and loads all data blocks from the disc storage to the memory, which are
under the High Water Mark (HWM). Whereas it must process all data blocks, it is also the slowest method for data retrieval.
Moreover, it is used, when large portion of the table´s data is required (optimizer assumes, that accessing direct data would be
easier and faster) or if accessed table is small consisting of few data blocks. In that case, Table Access Full method is used
regardless the associated index.

• Index Unique Scan can be characterized by accessing data based on unique index, if only one value reflecting equality is used.
It accesses no more than one data row.

• Index Range Scan is used, if suitable index is defined and condition is based on non-equality or equality in case of non-unique
index.

• Index Skip Scan is special and new index access path type, which has been introduced in Oracle 9i version [10] [22]. It creates
index tree, which node is index tree, too, but based on different leading attribute. Thanks to that, such method can process and
locate data by skipping leading index column of the composite index.

These methods are based on locating particular data by using index. The result is direct data locator in the physical storage –
Rowid (Rowid is pseudocolumn returning adress of the row consisting of these attributes – data object number, identifier of data
file, identifier of data block and position of the row in the block). Then Index Rowid method can be used – data are located using
obtained Rowid. Special type of the index approach is Full Index Scan and Fast Full Index Scan. These two methods are based
on the fact, that all required data are part of the defined index, thus, no Rowid is necessary to be used. The difference between
them is sorting. Full Index Scan method uses sorted data, whereas Fast Full Index Scan are not sorted in suitable way.

5. B+tree Index Type

The index structure of the B+tree is mostly used because it maintains the efficiency despite frequent changes of records (Insert,
Delete, Update). B+tree index consists of a balanced tree in which each path from the root to the leaf has the same length [10]
[22].

Figure 4. B-tree

 Journal of Intelligent Computing Volume 8 Number 4 December 2017 129

In this structure, we distinguish three types of nodes - root, internal node and leaf node. Root and internal node contains
pointers Si and values Ki, the pointer Si refers to nodes with lower values the corresponding value (Ki), pointer Si+1 references
higher (or equal) values. Leaf nodes are directly connected to the file data (using pointers) [10].

B+tree (fig. 5) extends the concept of B-tree (fig. 4) by chaining nodes at leaf level, which allows faster data sorting. DBS Oracle
uses the model of two-way linked list, which makes it possible to sort ascending and descending, too [10] [12].

Figure 5. B+tree

Limitation of this approach is NULL value processing. Whereas such values cannot be compared using relational operations,
they cannot be stored using this structure, which can result in significant performance degradation. Next chapters compares
performance of managing undefined time limited states using existing NULL value approach and our proposed MaxValueTime
and UndefTypeValue notation.

6. Experiment Environment

Our experiments and evaluations were performed using defined example table - employee. Fig. 6 shows the structure of the table.
50 departments were used, each consisting of 1000 employees, each of them was delimited by 20 different salaries over the time.
Thus, total number of rows was one million. No primary key was defined, because of the environment properties and our direct
opportunity for explicit index definition.

Experiment results were provided using Oracle Database 11g Enterprise Edition Release 11.2.0.1.0 - 64bit Production; PL/SQL
Release 11.2.0.1.0 – Production. Parameters of used computer are: processor: Intel Xeon E5620; 2,4GHz (8 cores), operation
memory: 16GB and HDD: 500GB.

Experiment results comparison was obtained using autotracing. These parameters were monitored:

• access method (operation),

• CPU costs (in [%]),

• processing time (in [hh:mi:ss]).

Journal of Intelligent Computing Volume 8 Number 4 December 2017130

Figure 6. Employee table structure

7. Performance

To point out management of undefined values over the time, it is necessary to evaluate our proposed solution with existing
approach to declare performance as well as define limitations. Whereas temporal characteristics requires each state to be defined
by no more than one row, our defined environment limits the number of actual states to 50 000. In the following experiments,
various number of actual states is used:

• 50 000 (5% of all table data),

• 20 000 (2% of all table data),

• 10 000 (1% of all table data),

• 5 000 (0,5% of all table data),

• 2 000 (0,2% of all table data),

• 1 000 (0,1% of all table data).

In the first phase, comparison of undefined time value denoted by NULL value in comparison with MaxValueTime notation is
used. B+tree index based on attributes ED, BD and ID is created (in such defined order) – the reason and comparison of index
types can be found in [12]. Select clause of the statement consists of only ID attribute, thus, all data can be obtained using index
with no necessity for accessing data files in the physical storage. Fig. 7 shows the experiment results. As we can see, if NULL
values are used, there is no other way, so Table Access Full (TAF) method must be used to avoid NULLs. If undefined value is
modelled by MaxValueTime notation, all values are indexed, so Index Range Scan (IRS) with significant performance improvement
can be used. Total costs and processing time reflect significant performance growth, too. If all data have actual non-limited
value, 86,67% of costs is eliminated, which reflects 86,96% of processing time. With the reduction of the number of undefined
values, the difference is even more strict – 99,56% of costs and 86,96%. As we can see, processing time does not depend on
number of actual data ration. The reason is based on necessity of index loading into memory, which reflects the same time. On
the other hand, total costs cover not only memory, but also other server resources, are eliminated with data dimension down
tendency. Special category covers Table Access Full method, which must load and evaluate all data blocks of the table covered
by High Water Mark (which does not transfer its value to lower segment). Our experiments use only new Insert statements
execution, however, in commercial environment, also Update statements would be performed resulting in table segment
fragmentation, thus table would contain more data blocks than necessary (some of them would not be fully occupied). The result
would be again reduced performance of the NULL value management solution. Graphical result reporting is shown in fig. 8.

 Journal of Intelligent Computing Volume 8 Number 4 December 2017 131

Figure 7. Performance results – NULL, MaxValueTime

Figure 8. Costs– NULL, MaxValueTime

Second part deals with the extension of the Select clause. In this section, we require more attributes than are part of the index,
therefore data must be accessed by Rowids, if index method is used. Again, NULL value performance is really worse. It does not
express significantly different results in comparison with previous experiment. It always reflects all data blocks, which are
loaded into memory. Data processing and transferring into result set from memory is negligible. MaxValueTime notation offers
wide range of performance improvement possibilities. Also in this case, Index Range Scan method can be used, which must be,
however, followed by loading particular data block to provide data, which are not part of the index. This method is called Table
Access by Index Rowid (TAIR). It reflects the slowdown from 8% up to 25% in our environment. Average value of the added
costs is 13,35%. Fig. 9 shows the results.

Journal of Intelligent Computing Volume 8 Number 4 December 2017132

Figure 9. Costs– NULL, MaxValueTime

The last performance evaluation is this category is based on replacing existing B+tree index structure with bitmap index, which
can manage NULL values. Bitmap index is advisable mostly for systems, which values are not changed at all, or the frequency
is low. It is not, however, our case. Therefore, the task is to compare performance. The environment characteristics are the same,
only ID attribute is selected. The total costs of the NULL processing are significantly lowered, whereas defined index can be
used, which is also reflected by using Bitmap Index Range Scan and Bitmap Conversion to Rowids methods.

Processing costs based on bitmap index reflect improvement from 66% (5% of all data) up to 99% (0,1% of all data) in comparison
with managing NULL values in B+tree index. Results are shown in fig. 10.

Figure 10. Costs– NULL, MaxValueTime

Nevertheless the mentioned bitmap solution improvement, it is necessary to evaluate the comparison with our proposed
MaxValueTime notation, which reflects better performance also for bitmap index. Specifically, for 5% of all data, processing,
costs cover almost 100%, however, when data amount is reduced - 0,1% of all data, it reflects only 83% of total costs (NULL
value processing using bitmap index is reference – 100%).

Comparison of the bitmap index using NULL values and MaxValueTime notation in B+tree index environment is the inevitable
part of the proposed concept. In this part, we can see, that there is significant performance improvement, which is also reflected
graphically in fig. 11:

 Journal of Intelligent Computing Volume 8 Number 4 December 2017 133

• Blue colour expresses B+tree and NULL value processing.

• Orange colour expresses B+tree and MaxValueTime notation.

• Grey colour expresses Bitmap index and NULL value processing.

• Yellow colour expresses Bitmap index and MaxValueTime notation.

Figure 11. Costs– B+tree and Bitmap index

Figure 12. Costs– NULL, UndefTypeValue

Journal of Intelligent Computing Volume 8 Number 4 December 2017134

Previous part of this section deals with temporal management in time attribute value processing – validity - with regards on
undefined and non-bordered values. The aim of the second part is to compare performance of undefined value management,
which, does not, however, have time characteristics. For these purposes, we will evaluate salary attribute in the same structure
and the same environment properties. In this case, there is no ratio limitation, generally, all values can get NULL values. Thus,
another solution, which avoids NULL values, can profit significantly. Therefore, we introduce UndefTypeValue notation, which
references undefined value based on particular attribute datatype. For each SQL data type, special notation is proposed. If our
UndefTypeValue constraint is used, index access method is used up to 25% data ratio. Then, optimizer predicts, that accessing
all data blocks will be easier for processing. In this case, we will evaluate only processing costs. Results are in fig. 12 and fig. 13.

Stricter results would be reflected in attribute oriented temporal approach.

Figure 13. Costs– NULL, UndefTypeValue

8. Attribute Oriented Temporal Model

Attribute oriented temporal model was firstly introduced in 2013 and is based on shifting previous solution to the attribute
granularity. Solution consists of three levels ensuring existing applications managing only conventional approach to be used
without application code compiling necessity. Core of the system is temporal model, which reflects all changes and points to the
historical, actual, and also future valid value. Thanks to that, there is no duplicate values in the system. It consists of these
attributes [13] [14] [15]:

• ID_change – got using sequence and trigger – primary key of the table.

• ID_previous_change – references the last change of an object identified by ID. This attribute can also have NULL value that
means, the data have not been updated yet, so the data were inserted for the first time in past and are still actual.

• ID_tab – references the table, record of which has been processed by DML statement (Insert, Delete, Update, Restore).

• ID_orig – carries the information about the identifier of the row that has been changed.

• ID_column – holds the information about the changed attribute (each temporal attribute has defined value for the referencing).

• Data_type – defines the data type of the changed attribute:

• C = char / varchar

• N = numeric values (real, integer, …)

 Journal of Intelligent Computing Volume 8 Number 4 December 2017 135

• D = date

• T = timestamp

This model can be also extended by the definition of the other data types like binary objects.

• ID_row – references to the old value of attribute (if the DML statement was Update). Only Update statement of temporal
column sets not NULL value.

• Operation – determines the provided operation:

• I = Insert

• D = Delete

• U = Update

• R = Restore

The principles and usage of proposed operations are defined in the part of this paper. Restore operation provides validity
restoration after the sensor or data distribution failure.

• BD – the begin date of the new state validity of an object.

Figure 7. Temporal layer structure

Despite of the performance improvements, such solution is still not optimal, whereas each change of the attribute automatically
means performing Insert statement into temporal system model, which is also the bottleneck of the system. In many systems,
some attributes and their changes are correlated and synchronized. If multiple values are always changed at the same time, why
do we need multiple Insert statements with the same values delimiting time? Are there duplicates, aren´t they? Sure, there is
problem. Solution resides in creating attribute groups. Temporal model then is not delimited only by attribute itself, but it can
reference also attribute group. Principle of such solution is described in [14].

Extension of temporality is based on reliability management [11] and network optimization, simulation [19] [20] covered by
security management [13].

9. Conclusion

Temporal enhancement of the database systems brings the opportunity to store, manage and evaluate data during the whole
lifecycle of the objects. At the same time, it requires extension of the processing paradigm, which is based on conventional, non-
temporal approach. Data management efficiency as well as performance is one of the key part of our research. Object level
temporal approach, which is based on object granularity itself, does not provide sufficient power for dealing with objects, which

Journal of Intelligent Computing Volume 8 Number 4 December 2017136

attribute values are not updated at the same time, which delimits the performance, but also storing capabilities. Therefore, we
propose column level temporal architecture, which is based on attribute granularity and offers significant performance
improvements. With this approach, sensorial data can be provided using any granularity and frequency of changes, temporal
management layer provides robust solution to reflect performance.

However, many times, it can happen, that there is no relevant value to be stored, it is certain, that actual value is not reliable. In
object level temporal model, the whole state is considered as unknown, whereas attribute oriented approach deals with such
validity and reliability problem delimited by unknown value separately. In this paper, we define limiting factors of managing
undefined values in temporal environment with regards on index approach performance. As we can see in the experiments, there
can be significant improvement, if no NULL values are stored regardless the time delimiting validity in any temporal sphere or the
attribute value itself. Therefore, two notations are introduced and evaluated. MaxValueTime is associated with time attributes,
which mostly reflect validity. From the temporal definition, it can be used only for right border of the interval – ED. UndefTypeValue
is generalization of the approach and i sused for any attribute value, which does not reflect actual or correct value. It is
developed for each data type, which can be structured using undefined values.

In the future, we would like to highlight grouping factors in attribute oriented temporal approach with emphasis on undefined
value in group, but the rest part of the group would remain defined and consistent. It can also reflect dependencies to evaluate
and replace unknown or incorrectly provided values by adding additional layer providing sophisticated solution with prediction
and complex evaluation techniques.

Acknowledgment

This publication is the result of the project implementation:

Centre of excellence for systems and services of intelligent transport, ITMS 26220120028 supported by the Research &
Development Operational Programme funded by the ERDF and Centre of excellence for systems and services of intelligent
transport II., ITMS 26220120050 supported by the Research & Development Operational Programme funded by the ERDF.

This paper is also the result of the project implementation Center of translational medicine, ITMS 26220220021 supported by
the Research & Development Operational Programme funded by the ERDF.

References

[1] Ahsan, K., Vijay. P. (2014). Temporal Databases: Information Systems, Booktango.

[2] Avilés. G. (2016). Spatio-temporal modeling of financial maps from a joint multidimensional scaling-geostatistical perspective,
In Expert Systems with Applications. V. 60, p. 280-293.

[3] Behling. R. (2016). Derivation of long-term spatiotemporal lanslide activity – a multisensor time species approach, Remote
Sensing of Environment, 136, p. 88-104.

[4] Date, C. J. (2006). Date on Database, Apress.

[5] Date, C. J. (2007). Logic and Databases – The Roots of Relational Theory, Trafford Publishing.

[6] Feueuerstein, S. (2014). Oracle PL/SQL Programming, O’Reilly.

[7] Huey, P. (2014). Oracle Database Security Guide, Oracle Press.

[8] Johnston, T. (2014). Bi-temporal data – Theory and Practice, Morgan Kaufmann.

[9] Johnston, T., Weis, R. (2010). Managing Time in Relational Databases, Morgan Kaufmann.

 Journal of Intelligent Computing Volume 8 Number 4 December 2017 137

[10] Kuhn, D. (2012). Expert Indexing in Oracle Database 11g, Apress.

[11] Kvassay, M., Zaitseva, E., Kostolny, J., Levashenko, V. (2015). Importance analysis of multi-state systems based on integrated
direct partial logic derivatives, In: 2015 International Conference on Information and Digital Technologies, p. 183–195.

[12] Kvet, M. Temporal data approach performance, APSAC 2015, p. 75 – 83.

[13] Kvet, M., Matiasko, K. (2015). Temporal Context Manager. SDOT •ilina, p. 93-103.

[14] Kvet, M., Matiasko, K. (2014). Transaction Management. CISTI, Barcelona, p.868-873.

[15] Kvet, M., Matiaško, K., Kvet, M. (2014). Complex time management in databases, Central European Journal of Computer
Science, 4 (4) 269-284.

[16] Matiaško, K., Vajsová, M., Zábovský, M., Chochlík, M.(2008). Database systems. EDIS.

[17] Niemiec, R. (2014). Oracle Query Tuning, Oracle Press.

[18] Rood, R. (2012). Oracle Advanced PL/SQL Developer Professional Guide, Packt Publishers.

[19] Simsion, G., Witt, G. (2005). Data Modeling Essentials, Morgan Kaufmann.

[20] Suarez, E. (2016). Reconstruction of Neural Acrivity from EEG Data Using Spatiotemporal Constraints, International
Journal of Neural Systems. Vol. 26.

[21] Tuzhilin. A. (2016). Using Temporal Logic and Datalog to Query Databases Evolving in Time, Forgotten Books.

[22] Watson, J. (2008). OCA Oracle Database 11g Administration, Oracle Press.

