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ABSTRACT: The process of land cover change prediction is generally subjected to several types of imperfections which
affect the reliability of decision about these changes. Several worksin literature are carried out in an attempt to mitigate
the issues caused by data related imperfections. Although new prediction models are created and improvement is done for
the existing ones, both the imperfection related to the input of models and its propagation through models ar e disregarded.
To bridge this research gap, we propose a methodology that propagates imperfection throughout a model of land cover
change prediction. The proposed approach incorporatesthree steps. 1) computing member ship functionsfor input variables
of the model of land cover change prediction, 2) applying a sensitivity analysis technique to determine which input
variables arethe most influential in the overall imperfection model, and 3) propagating distributions of the most influential
input variables throughout the model of land cover change prediction.

Experiments are made on images representing the Saint-Denis region, capital of Reunion Island. Results show the
effectiveness of the proposed methodology in improving both computation time and prediction of the land cover change.
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1. Introduction

Remote sensing data has made significant contributionsto many environmental engineering and civil applications. It isbeing
used increasingly in several fields to include land cover change prediction, land use monitoring and management, fire
protection, deforestation, desertification and environmental systems.

Decisions based on remote sensing datain thesefields strongly depend on the accuracy of these data. However, when remote

sensing datais generated by using a measuring device and derived by various methods and models, it isgenerally marked by
imperfection. Several types of imperfection can be listed such as uncertainty, imprecision, and ignorance. The imperfection
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can berelated to data: remotely sensed errors, overlapping errors, position errors, scaling errors, measurement errors. It can be
also related to processing methods or results.

Inthis paper, we areinterested in predicting land cover changes. However, building reliable procedures to predict land cover
changes requires taking into account imperfections related to the prediction process.

In literature, several studies have been devoted to predicting land cover changes while considering the imperfect aspect of
data[8] [1]. The majority of these studies treat imperfection on three levels: the input data, the model and model outputs.
However, the propagation of imperfections from onelevel to another is not well addressed.

Theland cover change prediction is often marked by several types of imperfectionsthat affect the accuracy of decisions. The
source of thisimperfection is not always due to an existing inconsistency for the data, but it may be due to the ambiguity and
lack of precision. Epistemicimperfectionsareleft for forthcoming works. We are interested in random imperfections (stochastic).
That is, aprobabilistic collocation method is used to propagate imperfection asit is a computationally efficient method for
propagating imperfection on large complex models.

The objective of this paper isto present amethodol ogy for imperfection propagation through amodel for land cover change
prediction. The prediction model is presented in previous works [3] [4] [5]. In these works, we presented a model to predict
spatiotemporal changesin satellite image databases. The proposed model exploits data mining conceptsto build predictions
and decisions for several remote sensing fields. It takes into account imperfections related to the spatiotemporal mining
processin order to provide more accurate and reliable information about land cover changesin satelliteimages. Neverthel ess,
the propagation of imperfection through this model is not considered. Decisions on land cover could change consequently.

Therefore, we propose an approach which intend to reduce imperfection related to the prediction process and therefore to
improve decisions about land cover change. This approach is based on sensitivity analysis and imperfection propagation
methods.

This paper is organized as follows: in Section Il we discuss related works concerning propagation of imperfection and
sensitivity analysis. Section |11 describes the proposed approach for propagating imperfection throughout the model of land
cover change prediction. Finally, Section IV presents our experiments and results.

2. Related Works

Land cover change prediction contributes significantly to assess, manage and monitor different issuesrel ated to environmental
changes. However, the prediction is generally marked by several types of imperfection. Thisimperfection can be propagated
throughout the prediction process.

Thissectionisdivided into two parts. The first one describes concepts of propagation of imperfection. The second describes
sensitivity analysis.

2.1 Propagation of |mperfection

Thegoal of imperfection propagation isto estimate the change’ sratein the model output dueto someinput dataor parameters
change’smodel. In literature, most of studies are focusing on two families of uncertainty propagation: 1) probabilistic and 2)
non-probabilistic methods [ 6]. Probabilistic methods have the advantage of being simpleto represent. They have norestrictions
on input attributes. The probability distribution functions defining these attributes are assumed to be known. In the current
paper, we focus in studying probabilistic uncertainty propagation methods.

Among probabilistic methods, welist the Monte Carlo method (MC). It isavery common statistical and probabilistic method
for propagating uncertainty [24] [25]. The probability density of thefinal result is obtained from compiling theresultsalarge
number of runs. However, M C has two problems:the computation time and complexity. Many methods based on polynomial
chaos have been devel oped to reduce the computational effort.

Another probabilistic method is Galerkin Polynomial Chaos method (GPC) [6] [22]. It isan intrusive uncertainty propagation
method. Intrusive meansthat the uncertainty propagation method requires modifying model in which uncertainty propagation
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method will be applied. It is based on the homogeneous chaos theory of Wiener [21], who constructed a chaos expansion
using Hermite polynomials. Theintrusive GPC approach requires the modification of the deterministic system that leadsto a
stochastic huge system.

Non-intrusive polynomial chaos methods (NIPCM) are proposed to overcome the model modificationproblem [23]. These
methods use the model asablack-box. Both GPC and NIPCM methods use sampling to estimate coefficients of the polynomial
chaos expansion. For the same accuracy, run’s number is much less than Monte Carlo simulation.

2.2 Sensitivity Analysis

A sensitivity analysis can extend an uncertainty analysis by identifying which input parameters are important (due to their
estimation uncertainty) in contributing to the prediction imprecision of the outcome variable. Therefore, asensitivity analysis
quantifies how changes in the values of the input parameters alter the value of the outcome variable [26]. This helps refine
their modeling and therefore reducing theimpact of theimperfection. Theidentification of the major sources of imperfection
is an important practice in the assessment of model performance as it alows concentrating the available resources on the
major sources of imperfection[15] [16]. Saltelli et al. in[15] liststhreetypes of methodsfor sensitivity analysis. Thefirst type
of methods is local techniques such as Fourier amplitude sensitivity test (FAST). Local techniques allow estimating the
response outputs to variation of individual inputs or parameters while fixing the other parameters at their initial values. The
second type of sensitivity methods is qualitative technique denoted also as screening methods. Qualitative techniques are
“one-at-a-time” experiments in which theimpact of changing the values of each of the chosen factorsisevaluated [17]. The
last type of sensitivity analysis methods is a global technique denoted also as variance-based methods. Global techniques
alow thevariation of all inputs or parameterswith the later implicitly accounting for parameter interactions[18].

2.3Input Parameter Estimation

In order to take into account the propagation of imperfection through the prediction model, we need to estimate distribution
of input data. In literature, there are three categories of estimation methods for probability densities[13]: 1) non-parametric
approaches, 2) semi-parametric approaches and 3) parametric approaches.

Among methods for estimation of probability densities using thefirst family, welist histogram and kernel density estimator
[14], and kernel differomorphism method [19]. Finite mixture models (FMM) belongsto the second family method whichisthe
semi-parametric approaches[13].

For thethird family, welist the maximum likelihood methods[27]. This method issimple and has agood convergence property
butitislimited to the great complexity’s problems. It allows giving an estimator of aparameter of an unknown probability law
whose independent realizations are observed.

3. Proposed Approach

The proposed approach, as shown in Figurel, is based on two steps. Thefirst one consists of asensitivity analysis. The goal
of this step isto identify among the input variables which are the variables that affect more the output of the model of land
cover prediction. So refining the modeling of these variables hel psreducing their impact in the overall model imperfection. In
the second step, a probabilistic collocation method is used to propagate imperfection related to variables identified in the
first step. The collocation method is a probabilistic polynomial chaos method [2] [7] [21]. It is a class of non-intrusive
polynomial chaos methods, it usesthe model asablack box [11] [20].

3.1Review of theModulefor Land Cover ChangePrediction

In previousworks|[5] [3] [4], we presented an approach to predict spatiotemporal changesin satelliteimages. In order to better
understand the process of land cover change prediction, let suppose that an object is extracted from asatellite image acquired
at datet using previouswork [5].This object can be alake, vegetation zone, urban area, etc. Five features are considered for
this object which are: the radiometry, geometry, texture, spatial relations, and acquisition context. Each feature is described
through aset of attributes A, (1 <i < N). We note by a state the set of attribute values computed for the object at agiven date.
In [3], an object database is built by an offline process. This database is composed by a set of models. Each model is
composed by a set of states. Each state represent the same object at a different date.

The prediction processis divided into three main steps. It starts by asimilarity measurement step to find similar states (in the
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object database) to a query state (representing the query object at a given date). The second step is composed by three sub-
steps: (1) finding the corresponding model for the state, (2) finding all forthcoming states in the model (states having dates
superior to the date of the retrieved state), and (3) for each forthcoming date, build the spatiotemporal change tree for the
retrieved state. Thethird step isto construct the spatiotemporal change for the query state. Interested readers can refer to [3]

(4.

Themodulefor the prediction of land cover changes all owstaking into account imperfection related to the prediction process.
However, the propagation of the input imperfection through this module is not considered.

Thus, we propose to develop a methodology for uncertainty propagation through the module of land cover change predic-
tion. This methodology combines sensitivity and imperfection propagation methods to reduce imperfection related to the
prediction process.

3.2Imperfection Propagation Module

Let X be arandom variable with a probability density f (X, 6) analytically known but one of the parameters 6 is unknown
(numerically). Thetheory of chaos polynomial proposesto characterize random variable X with chaos polynomial represen-
tation. The problem isto construct an analytical expression based on achievements of thisvariablein asamplesizen, tofind
themost likely numerical valuefor the parameter 0 [28].

X

If {X,,..., X} areindependent realizations of the random variable X. We can say that X= ( :

l) isa random realization of
X

n

- .1
Vector x= ( x )Whose components X, are independent pairs.
n

Theapriori probability of occurrence of asample can then be characterized by the product of the probabilities of occurrence
of each of the outputs (since these are assumed to be independent pairs).
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The objective of the method of maximum likelihood isto find the valuethat |eadsto the maximal probability. The product of the
N
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The arithmetic mean is the most efficient estimator of the expected value in the case of the normal distribution.
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Figure 1. The Proposed Approach
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3.3 Sensitivity Analysis

The main objective of the analysis sensitivity is to determine what are the input attributes of describing an object that
contribute most to the imperfection of the prediction model output. In the proposed approach, aglobal sensitivity analysisis
used [12].

In this study, we focus more specifically on the methods based on the study of the variance of sensitivity indices for
quantifying the influence of input attributes.

Let us denote by M the model for land cover change prediction, S= (A, ..., Ap) p independent input variables with known
distribution and Y the output of the prediction model. Y are decisions about land cover change.

Variance-based sensitivity indices, also called Sobol indices (S, ), are used in the proposed approach as an evaluation index

V,(Y,)
S,=
Var (Y)

©)
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Where V, (Y,) is computed using equation (7) and Var (Y) is computed using equation (8).
V, (Y,) =Var [E (Y, [A )]
=Var {E[E(Y|A)A 1}
=Var [E (Y |A )] )

The variance of Y, Ver (Y), isthe sum of contributions of all theinput variablesA=(A),_, andA_ Here, A denotesan

additional input variable, independent of A, named seed variable. Thisvariableisan uncontroll gblevariabl eused to makethe
prediction model stochastic.

Var (N)=V,N+37 3 IV (V)] ®
= =i
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The interpretation of Sobol index is straightforward as their sum is equal to one. The larger an index value, the greater the
importance of the variable or the group of variableslinked to thisindex [12]. In the case of amodel with p input variables, the

number of Sobol indicesis2”-1.

The basic concept of the Probabilistic Collocation Method (PCM) isto approximate the response of the prediction model to
some polynomial function of uncertain parameters:

Y=f (1 1)

The goal of the PCM isto approximate Y, by asimple polynomial function of I, . Orthogonal polynomials are used by PCM
approximation. They are also used to generate sets of parameter values, called collocation points[20].

Steps of the collocation approach are illustrated in Figure 2. First, input attributes are identified and their distributions of
uncertainty are determined. The determination of the distribution may either be based on the expert knowledge, or be based
on statistical data. Second, the orthogonal polynomial distributions are derived. If the approximation of the response of the
prediction model has an order equal to p, orthogonal polynomials up to order p +1 are determined. Third, a polynomial
expression isgenerated to represent the performance or output variable based on orthogonal polynomials of random variables
{&,, - &} Thisiscalled theextension of polynomial chaos. Sincethe model isablack box, we can usealinear approximation
inthefirst estimate.

n n i1 n il 2
y’:y0+z ylrl(éil)+Z )y y2F2(€il’€i2)+_2 Z 2+y3F3(§i1’€i2’§i3) (10
i1=1 i1=1i2=1 i1=1i2=1i3=1 i]_ 2 i3
+X X X XY Yl (61580 SiaeSi) o

Where i1=1i2=1i3=1i4=1
y, are deterministic coefficientsto be estimated.
{&},_, .. istheset of random variables associated with reduced centered Gaussian random variables A,

Fp( ) denotes the multidimensional Hermite polynomial s of degreep.

The random inputs and outputs are approximated by the PC expansions. These expansions contain unknown coefficients of
the outputs. Calculating these coefficients is made by solving a linear system of equations that uses a selected number of
collocations points. For a problem with n random variables, the total number of deterministic solutionsrequired is given by
equation (11).
|
p! n!
Wherepisthe PC order.

For example: if n=2and p=2then T = 6, the output variable can be written asfollow:

Inthis study, collocation points are chosen asroots of the higher order polynomials. Specifically, then + 1 roots of the (n+1)"
polynomial order corresponding to each parameter y, are used to define collocation points. Thus, Y that is particularly good

within the most probable range of values of input variables. Moreover, roots of the (n + 2)" order polynomials are used to
define another set of collocation points that can be used to estimate the error of the approximation.

After, we run the model for each of input sets, we get y, as the corresponding result. Then, by replacing each él in the
approximation of Y, we can solve the three simultaneous equations for the unknownsy,, y;, ¥,, ¥, ¥, and y,.

Before using the approximation of Y, the quality of the adjustment is computed. This is achieved by calculating the error
between consecutive polynomial orders. In this work, we use the method proposed in [20] to determine collocation points.
These points are obtained from the next orders of the orthogonal polynomial. If the error isgreater than agiven threshold, we
need to pass to a higher order approximation and recal cul ate the error between consecutive approximations.
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Figure4. Satelliteimage acquired on June 12, 2007

The error term isdenoted as e 0 and calculated according to the equation (13):

Ap)
N AR

Capp~

1T yp
T zizly'

Where

T isthe number of termsin the approximation yip , equivalent to the number of collocation points.

yip isthe values of Y at the collocation points for a (p +1)" polynomial order approximation using a pth polynomial order

approximation.

yip isthevaluesof Y at the collocation pointsfor a(p+1)" polynomial order approximation using a(p +1)™ polynomial order
approximation. Steps 4, 5 and 6 in Figure 2 are repeated until obtaining an error lesser than agiven threshold. Therefore, the

obtained approximation can be used for the model of land cover change prediction.

Such acomplex model can be reasonably approximated by apolynomial.

4. Experimental Results

The experimental result section isdivided into two parts: validation of the proposed approach and eval uation of the proposed

approach compared with existing ones.

13
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The study areais located in the north-eastern Reunion Island in the Indian Ocean (55°13' 1.07”E to 20'51'46.35” S), east of
Madagascar (Figure 3).

Experiments were conducted on SPOT4 satellite images and belong to the Kalideos® database set up by the CNES?. Images
dated June 12, 2007 and June 09, 2011 with aspatial resolution of 10 m, and asize of 1190 x 670 pixelswereacquired (Figure 3
and Figure4). Imageswere orthorectified and coregistered to the UTM coordinate system with aroot mean square error of less
than 0.5 pixel per image.

4.1Validation of theproposed approach
The validation section is divided into three main steps:
1) Computation of Membership functions, 2) Sensitivity Analysis, 3) Imperfection Propagation.

4.1.1 Presentation of Uncertain I nput Parameters
Theaim of the proposed approach isto propagate imperfection through the model for land cover change prediction presented
in[3].

In the current study, we are concerned by predicting urban changes of the study region between thetwo dates 2007 and 2011.
To achievethisgoal, wetake asinput to the prediction model the image acquired on June 12, 2007 (Figure. 4). However, the
image acquired on June 09, 2011 (Figure 5) is only used for evaluation of results proposed by the proposed approach.

L et usconsider that an urban object isextracted after asegmentation of theimagein the Figure 4 using previouswork [5]. The
urban object is described by five features (radiometric, geometric, textural, spatial and acquisition context). Each featureis
characterized by a set of attributes. 20 attributes are considered to describe the urban object work [5].

These attributes represent the input of the proposed approach and are:

* Radiometry: The mean radiometric, the standard deviation, the swekness, and the kurtosis.

» Geometry: We use length, width, perimeter, and area. These parameters are computed from theminimum bounding rectangle
of the urban object.

* Texture: We use seven attributes from Gabor which are: energy, entropy, correlation, homogeneity, contrast, mean Gabor and
variance Gabor.

* Spatial localization: Directional and metric relations are used to describe the spatial localization.

» Acquisition context: We use temperature, pressure, moisture.
Interested readers can refer to our previous work [5].

4.1.2 Computation of Member ship Functions
The first step in the proposed methodology is to estimate the membership function for the urban attributes. These 20

attributes are random attributes (A, ..., A, ) represented byprobability distributions (P, ..., P,;).

Figure 6 depictsresults obtained after the application of the algorithm of the maximum likelihood method for the attribute mean
radiometric.

4.1.3 Sensitivity Analysis

The second step in the proposed approach consists of the application of the sensitivity analysis to identify most influential
input parameters. This hel ps determining input attributesthat contribute most to the overall imperfection of prediction model.
Figure 8 depictsthat, the mean Gabor part of textural feature, the radiometric mean part of radiometric feature, and the moisture
part of the acquisition context feature are the most involving and influential attributes to the overall imperfection of the
prediction model.

After applying the sensitivity analysisprocess, wewill consider only threeinput variableswhich are the mean Gabor, the mean

http://kalideos.cnes.fr.
2Centre National d Etudes Spatiales (French Space Agency).
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Figure 6. Membership degreesfor the attribute mean radiometric

radiometric and the moisture. Then, the probabilistic collocation method can be applied by reducing the complexity of the
model and therefore minimizing computational cost.

4.1.4 Probabilistic Collocation M ethod (PCM)

The PCM approach is composed by seven steps. In this paper, we will consider only the three input attributes identified by
the sensitivity analysis process.

Figure 7 depictsresults obtained after the application of the al gorithm of the maximum likelihood method for the attribute mean
texture.

Sep 1: Specify Distribution of Uncertain Parameters
The first step is to determine the distribution of the three parameters: mean Gabor, radiometric mean and moisture. Thisis
achieved by applying the algorithm of the maximum likelihood method for the three attributes.

First, we must specify the uncertainty in the parameters. The Gabor mean (11) hasanormal distribution with amean of 175, and
astandard deviation of 15.
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N (i, 0,) = N(175, 15) (149
The radiometric mean (12) hasanormal distribution with amean of 170, and a standard deviation of 23.

N(u,,0,)= N(175,23) (15

The moisture (13) hasanormal distribution with amean of 55, and a standard deviation of 8.
N (uy, ;) = N(55,8) (16)

Step 2: Derive orthogonal polynomial for the distributions
In the second step, derive the set of orthogonal polynomialsfrom distributions obtained in the stepl. Since these distributions
are Gaussian, thefollowing simplification may be used, [6].

X=u+ o (H1(&) a7

Where uisthemean and oisthe standard deviation of X. H1 (&) isthefirst order Hermite polynomial. Hermite polynomialsare
aset of polynomialswhich are orthogonal to the standard normal distribution &, with an averageof 0and avarianceof 1. This
allows the use of the same set of orthogonal polynomials for all Gaussian distributions, instead of deriving orthogonal
polynomialsfor each specific distribution. Sincein our study, equation (18) to (22) describethefirst five Hermite polynomials
are

H1(8)= ¢ (18)
H2(§) = &1 19
H3(§) = §%-3¢ (20
H4($) = £%-65%+3 ()
H5(&) = E5-10&E3%+15 ¢ (2]

Sep 3: Generate polynomial chaos expansion
In this step, we generate a polynomial expression to represent the output parameter. The third-order approximation used in
this case is given by the equation (23):

Y=Y :y0+y1§1+ y2§2+y3§3+y4(512_1) + y5 (51&2) + y6§1§3+ y7 (§22_ 1) +y8(§253) +... (23)

This equation (23) is adevelopment of the equation (10). y, are the unknowns of the equation (23). To solve these variables,
simulation points are needed. These points are called collocation points.

Table 1 describes the devel opment of the equation (10) in the 20" element. This represents the third order polynomial chaos.

Sep 4: Generate collocation pointsfor model runs

Thegoal of applying the probabilistic collocation method isto find agood approximation with areduced number of simulations.
Collocation points are selected from the roots of orthogonal polynomials of next higher order (n + 1) for each uncertain
parameter. At order p = 1, the equation (10) becomes:

Y=Y=y 4y, E Y, 64V, (24

The unknownsin equation (24) arey0, y1, y2 and y3. To resolve this equation, we need four collocation points. These points
aretheroots of the Hermite polynomial of order p +1 = 2, as mentioned in the equation (25):

H,(£)=0— (£2-1)=0->& e {-1;1} ()

The number of available collocation points is always greater than the number of needed collocation points. A method for
selecting collocation pointsis presented in [20]. In our work, we need four collocation points.

Sep 5: Run the model to the collocation points

We run the model for each collocation point for the approximation of Y of order p. After saving the values we rerunsfor the
approximation of order p+ 1.
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i"" Polynomial Polynomial
Element rp ChaosOrder
0 1 0
1 3 1
2 g, 1
3 &, 1
4 g1 2
5 EE, 2
6 EE, 2
7 &1 2
8 EE, 2
9 -1 2
10 &,E2-3) 3
11 &, &1 3
12 &~ 1 3
13 & &> 3
14 &85, 3
15 &, (&~ 1 3
16 &,(,- 3 3
17 &, (E,- 1) 3
18 &, >~ 1) 3
19 (&, 1) 3

Table 1. The First 20 Hermite Polynomial sApproximation of Y

Sep 6: Check the approximation error
Before using the approximation in uncertainty analysis, the quality of the retrieved approximation can betested. We calculate

the error term by the following equation:
14 2 A
RO Gl -

e =
App 14 1
72 -1

Where Yi1 and Yi2 arethe approximation of Y at thefirst and the second orders. We found an error of 57.4% for thefirst order.
In order to reduce the error term, we consider ahigher order for the approximation.

Sep 7: Try ahigher order approximation

Figure 10.a describes the convergence of error reduction by increasing the order of the polynomial chaos approximation.
Figure 10.b shows the improvement of the reduction of the error rate for an i" order approximation compared to previous
approximation of the first order. We note that the important error rate reduction isfor the third order. Then, we can consider
this order as satisfying order for our PCM approximation.

The next step is to return to the probability distributions for the input attributes. Then, we determine the optimal values of
these attributes corresponding to the order 3. These values arefinally incorporated into the prediction model presentedin[2].
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For the urban ares, therate of change between 2007 and 2011 found by the model described in[2] isaround 41.75 %. Real rate
of change for the urban is about 42.89 %.
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Figure 10.The approximation error variation (&) and the global
error reduction (b) according to the order of the polynomial

For thefirst order, the average of predicting urban changesis41.12%. Passing to the second order, the prediction rate of urban
changeisabout 42.52%.

For the third order, the prediction rate of urban change is about 42.77 %. For the MC method, the prediction rate of urban
change is about 42.68%. We can conclude that increasing the polynomial order allows to improve the prediction of urban
changes.

4.2 Evaluation of the Proposed Approach
In order to evaluate the proposed approach in improving land cover change prediction, we apply the proposed propagation

26 Journal of Multimedia Processing and Technologies Volume 5 Number 1 March 2014




4,5 {W - MC

4 e MCPp=3
7 35 MCPp=2
s
B 3 MCPp=1
s \
i
E ) /
S 15 “/ \\ / -
Q il
T INC N

0 —

41,541,641,741,841,9,42 42,142,242,342,445,542,642,742,842,9 43 43,143,2

k Change rate /

Figure 11. Comparison of prediction rate of urban change for MC and MCP with an order equal to 1, 2 and 3

method and the Monte Carlo method to the prediction model presented in [2]. Then, we compare the proposed prediction
changes to the MC ones.

Monte Carlo method is applied in several domains. It is considered as one of the most used methods in literature for
uncertainty propagation.

Figure 12 depictsthe ground truth image at the date June 09, 2011. Information was extracted by experts over the studied are
to construct the ground truth image. Polygons of the studied area of northwestern Reunion Island are digitized to derive the
the matic information using a topographic map with the scale of 1/50,000.Topographic information is used to determine the
matic classesin the studied area. Five the matic classes are identified which are the following: urban, water, forest, bare soil
and non-dense vegetation areas. The ground truth image is used in this paper to compare land cover prediction obtained by
the application of the proposed approach and MC method to the model presented in [3].

Error for
Approach Predicting Urban
Change (%)
Monte Carlo Approach | 0.35

Proposed Approach 0.22

Table 2. Error for the Prediction of Urban Changes between MCP
With an Order Equal to 3 and Mc¢ Between Dates 2007 and 2011

Table 2 depictsthe error cal culated between real urban changes, MCP with an order equal to 3 and MC between dates 2007
and 2011. Aswe note, the proposed approach provides abetter results than the M C method in predicting urban changes. This
shows the effectiveness of our approach in reducing imperfection related to the prediction process.

Table 3 illustrates percentages of change of the five land cover types (forest, water, bare soil, nondense vegetation and
urban). Results show that the propagation of imperfection improves the land cover change prediction compared to the

Journal of Multimedia Processing and Technologies Volume 5 Number 1 March 2014 27




/3 N
< A ( f‘
SR e I \Vater
3 X‘\ W Forest
% \3% L [ Baesoi

Pt ‘,-_j"' I Non-dense
A28 Vegetation
\& /

Figure 12. The Ground truth image at the date June 09, 2011

Forest | Water | Bare Non Dense
Sail Vegetation| Urban

Method Proposed by [3] | 70,98% | 2,95% | 66,03% | 32,03% |41, 75%
MonteCarloApproach | 72,14% | 3,38% | 65,23% | 33,28% |42,68%
Proposed Approach 72,19% | 3,49% | 65,17% | 33,35% |42, 77%
Real 72,21%| 3,59%| 65,06%| 33,49% |42,89%

Table 3. Comparison of Percentage of Change Prediction Between 2007and 2011 for the
Prediction Model Proposed By [3], Monte Carlo Approach and Proposed A pproach.

original model presented in [3]. In addition, we note that the proposed approach outperforms the MC method in predicting
land cover changes.

Indeed, in 2011, the ground truth image shows a change of 33.49 % for non-dense vegetation, while the proposed approach
predicts achange of 33.35 %. After the treatment of the propagation of uncertainty in the M C method, the prediction is about
33.28 %. This provides a difference between real changes and prediction of changes for the proposed approach in the order
of 0.14 %. For theforest object, the ground truth image shows a change of 72.21 %, while the model proposed by [3] predicts
achange of 70.98 %. After the treatment of the propagation of uncertainty in MC method, the prediction is about 72.14 %.
After thetreatment of the propagation of uncertainty in collocation approach, the predictionisabout 72.19 %. This provides
adifference between real changes and prediction of changes for the proposed approach in the order of 0.02 %. These results
confirm the effectiveness of the proposed approach inimproving land cover change prediction. Thisis made by reducing the
effect of imperfection related to input variables and their propagation on the model of land cover change prediction.

In order to better evaluate performances of the proposed approach, 20 additional experiments are performed. 20 different
periods are considered. Predicted land cover changes for these 20 periods are estimated through the proposed approach and
MC method. Then, real urban changes are evaluated based on images representing the same dates in each period.

Table 6 depictsthat, over the 20 areas studied, the proposed approach provides best resultsin 80% of cases compared to the
MC method. In addition, the proposed approach provides an average rate of prediction equal to 0.344%. This average is
greater than the average rate of prediction given by the MC method which is equal to 0.376%.

In addition to the improvement of theland cover changes prediction, we decide to eval uate the performance of the proposed
approach in term of processing time.

28 Journal of Multimedia Processing and Technologies Volume 5 Number 1 March 2014




1,60%
® Method proposed by [3]

® Monte Carlo approach
» Proposed Approach

1,40%
1,20%-

1,00 %-

0,80%-

0, 60 %-

0, 40%-

0,20%-
0,00% -

.

Forest Water Bare soil Vegetation Urban y

Figure 13.Comparing difference between real changes and prediction of changesfor
the three methods: method presented in [3], Monte Carlo and proposed approach

Rl R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 R17 R18 R19 R20
M.C 0,37 0,37 0,41 0,26 0,33 0,4 0,430,39 0,28 0,37 0,36 0,41 0,41 0,43 0,32 0,39 0,45 0,37 0,35 0,42
PC 0,29 0,31 0,35 0,28 0,29 0,36 0,40 0,36 0,31 0,33 0,350,37 0,42 0,40 0,34 0,32 0,40 0,33 0,30 0, 38
M

Table 4. Comparison of Error Rate for Land Cover Change Prediction
between the Proposed Approach and the Mc Method for 20 Period Tests

Table 5 provides a comparison of computational time for the three methods: MC method, approach of collocation without
sensitivity analysis (while considering the 20 input attributes) and coll ocation approach with sensitivity analysis (the proposed
approach). The calculationsare performed onaDéll i7- 2670QM (2.2 GHz 6MB cache and 6GB of RAM).

Approach Polynomial Number Total of | Total Timeof Work
Order Work
1 31 32min 8sec
Collocation method 2 37 32min 20sec
with sensitivity 3 a7 32min 40sec
analysisN =3 4 62 33min 10sec
5 83 33min 52sec
Collocation 1 27 S4sec
method without 2 378 756 = 12min 36sec
sensitivity 3 3654 7308 = 2h 1min 48sec
analysisN =20 -
4 27405 15h 13min
5 169911 94h 23min
MC method : 10000 20000 = 6h 15min
- 100000 200000 = 55h33min

Table 5. Comparison of Computational Time between Mc Method, Collocation with Sensitiv-
ity Analysis Collocation (Proposed Approach) and Collocation without Sensitivity Analysis
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Figure 14. Convergence of computational timefor three methods:
MC, Polynomial Collocation method and proposed approach

For an execution with 100000 simulations, 55 hours are needed to apply Monte Carlo method. For the classical collocation
method (without applying the sensitivity analysis),we note that the computation time increase significantly from 2 hoursto 15
hours to 94 hours when increasing the polynomial order from3to4to5.

However, for the proposed approach (coll ocation method with sensitivity analysis), the computation timeisabout 32 minutes.

In Figure 14, we plotted the evolution of the computational time of the three methods tested according to the order of the
polynomial chaos expansion. We note that the computational timeincreases dramatically with the order of polynomial chaos.

5. Conclusion

This paper presents a methodology for propagating imperfection throughout a model for land cover change prediction. The
methodology is based on computing membership functions for input features for a given land cover type. Then, these
membership functions are evaluated through a sensitivity analysis module to identify the most influential features in the
overall imperfection of the prediction module. After that, influential features are propagated through the land cover prediction
model. To achievethis, we use a probabilistic collocation method. This helpsidentifying the optimal val ues of those features
that best reduce the overall imperfection. Finally, we take all attributes describing a particular object while considering the
optimal values of influential attributes and we introduce them into the model of land cover change prediction. This helps
obtaining more reliable decisions about land cover change.

The proposed approach was compared on error prediction and computing time to existing propagation methods. Results
shows good performance of the proposed approach.
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