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ABSTRACT: The process of land cover change prediction is generally subjected to several types of imperfections which
affect the reliability of decision about these changes. Several works in literature are carried out in an attempt to mitigate
the issues caused by data related imperfections. Although new prediction models are created and improvement is done for
the existing ones, both the imperfection related to the input of models and its propagation through models are disregarded.
To bridge this research gap, we propose a methodology that propagates imperfection throughout a model of land cover
change prediction. The proposed approach incorporates three steps: 1) computing membership functions for input variables
of the model of land cover change prediction, 2) applying a sensitivity analysis technique to determine which input
variables are the most influential in the overall imperfection model, and 3) propagating distributions of the most influential
input variables throughout the model of land cover change prediction.

Experiments are made on images representing the Saint-Denis region, capital of Reunion Island. Results show the
effectiveness of the proposed methodology in improving both computation time and prediction of the land cover change.
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1. Introduction

Remote sensing data has made significant contributions to many environmental engineering and civil applications. It is being
used increasingly in several fields to include land cover change prediction, land use monitoring and management, fire
protection, deforestation, desertification and environmental systems.

Decisions based on remote sensing data in these fields strongly depend on the accuracy of these data. However, when remote
sensing data is generated by using a measuring device and derived by various methods and models, it is generally marked by
imperfection. Several types of imperfection can be listed such as uncertainty, imprecision, and ignorance. The imperfection
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can be related to data: remotely sensed errors, overlapping errors, position errors, scaling errors, measurement errors. It can be
also related to processing methods or results.

In this paper, we are interested in predicting land cover changes. However, building reliable procedures to predict land cover
changes requires taking into account imperfections related to the prediction process.

In literature, several studies have been devoted to predicting land cover changes while considering the imperfect aspect of
data [8] [1]. The majority of these studies treat imperfection on three levels: the input data, the model and model outputs.
However, the propagation of imperfections from one level to another is not well addressed.

The land cover change prediction is often marked by several types of imperfections that affect the accuracy of decisions. The
source of this imperfection is not always due to an existing inconsistency for the data, but it may be due to the ambiguity and
lack of precision. Epistemic imperfections are left for forthcoming works. We are interested in random imperfections (stochastic).
That is, a probabilistic collocation method is used to propagate imperfection as it is a computationally efficient method for
propagating imperfection on large complex models.

The objective of this paper is to present a methodology for imperfection propagation through a model for land cover change
prediction. The prediction model is presented in previous works [3] [4] [5]. In these works, we presented a model to predict
spatiotemporal changes in satellite image databases. The proposed model exploits data mining concepts to build predictions
and decisions for several remote sensing fields. It takes into account imperfections related to the spatiotemporal mining
process in order to provide more accurate and reliable information about land cover changes in satellite images. Nevertheless,
the propagation of imperfection through this model is not considered. Decisions on land cover could change consequently.

Therefore, we propose an approach which intend to reduce imperfection related to the prediction process and therefore to
improve decisions about land cover change. This approach is based on sensitivity analysis and imperfection propagation
methods.

This paper is organized as follows: in Section II we discuss related works concerning propagation of imperfection and
sensitivity analysis. Section III describes the proposed approach for propagating imperfection throughout the model of land
cover change prediction. Finally, Section IV presents our experiments and results.

2. Related Works

Land cover change prediction contributes significantly to assess, manage and monitor different issues related to environmental
changes. However, the prediction is generally marked by several types of imperfection. This imperfection can be propagated
throughout the prediction process.

This section is divided into two parts. The first one describes concepts of propagation of imperfection. The second describes
sensitivity analysis.

2.1 Propagation of Imperfection
The goal of imperfection propagation is to estimate the change’s rate in the model output due to some input data or parameters
change’s model. In literature, most of studies are focusing on two families of uncertainty propagation: 1) probabilistic and 2)
non-probabilistic methods [6]. Probabilistic methods have the advantage of being simple to represent. They have no restrictions
on input attributes. The probability distribution functions defining these attributes are assumed to be known. In the current
paper, we focus in studying probabilistic uncertainty propagation methods.

Among probabilistic methods, we list the Monte Carlo method (MC). It is a very common statistical and probabilistic method
for propagating uncertainty [24] [25]. The probability density of the final result is obtained from compiling the results a large
number of runs. However, MC has two problems:the computation time and complexity. Many methods based on polynomial
chaos have been developed to reduce the computational effort.

Another probabilistic method is Galerkin Polynomial Chaos method (GPC) [6] [22]. It is an intrusive uncertainty propagation
method. Intrusive means that the uncertainty propagation method requires modifying model in which uncertainty propagation
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method will be applied. It is based on the homogeneous chaos theory of Wiener [21], who constructed a chaos expansion
using Hermite polynomials. The intrusive GPC approach requires the modification of the deterministic system that leads to a
stochastic huge system.

Non-intrusive polynomial chaos methods (NIPCM) are proposed to overcome the model modificationproblem [23]. These
methods use the model as a black-box. Both GPC and NIPCM methods use sampling to estimate coefficients of the polynomial
chaos expansion. For the same accuracy, run’s number is much less than Monte Carlo simulation.

2.2 Sensitivity Analysis
A sensitivity analysis can extend an uncertainty analysis by identifying which input parameters are important (due to their
estimation uncertainty) in contributing to the prediction imprecision of the outcome variable. Therefore, a sensitivity analysis
quantifies how changes in the values of the input parameters alter the value of the outcome variable [26]. This helps refine
their modeling and therefore reducing the impact of the imperfection. The identification of the major sources of imperfection
is an important practice in the assessment of model performance as it allows concentrating the available resources on the
major sources of imperfection [15] [16]. Saltelli et al. in [15] lists three types of methods for sensitivity analysis. The first type
of methods is local techniques such as Fourier amplitude sensitivity test (FAST). Local techniques allow estimating the
response outputs to variation of individual inputs or parameters while fixing the other parameters at their initial values. The
second type of sensitivity methods is qualitative technique denoted also as screening methods. Qualitative techniques are
“one-at-a-time” experiments in which the impact of changing the values of each of the chosen factors is evaluated [17]. The
last type of sensitivity analysis methods is a global technique denoted also as variance-based methods. Global techniques
allow the variation of all inputs or parameters with the later implicitly accounting for parameter interactions [18].

2.3 Input Parameter Estimation
In order to take into account the propagation of imperfection through the prediction model, we need to estimate distribution
of input data. In literature, there are three categories of estimation methods for probability densities [13]: 1) non-parametric
approaches, 2) semi-parametric approaches and 3) parametric approaches.

Among methods for estimation of probability densities using the first family, we list histogram and kernel density estimator
[14], and kernel differomorphism method [19]. Finite mixture models (FMM) belongs to the second family method which is the
semi-parametric approaches [13].

For the third family, we list the maximum likelihood methods [27]. This method is simple and has a good convergence property
but it is limited to the great complexity’s problems. It allows giving an estimator of a parameter of an unknown probability law
whose independent realizations are observed.

3. Proposed Approach

The proposed approach, as shown in Figure1, is based on two steps. The first one consists of a sensitivity analysis. The goal
of this step is to identify among the input variables which are the variables that affect more the output of the model of land
cover prediction. So refining the modeling of these variables helps reducing their impact in the overall model imperfection. In
the second step, a probabilistic collocation method is used to propagate imperfection related to variables identified in the
first step. The collocation method is a probabilistic polynomial chaos method [2] [7] [21]. It is a class of non-intrusive
polynomial chaos methods, it uses the model as a black box [11] [20].

3.1 Review of the Module for Land Cover Change Prediction
In previous works [5] [3] [4], we presented an approach to predict spatiotemporal changes in satellite images. In order to better
understand the process of land cover change prediction, let suppose that an object is extracted from a satellite image acquired
at date t using previous work [5].This object can be a lake, vegetation zone, urban area, etc. Five features are considered for
this object which are: the radiometry, geometry, texture, spatial relations, and acquisition context. Each feature is described
through a set of attributes A

i
 (1 ≤ i ≤ N). We note by a state the set of attribute values computed for the object at a given date.

In [3], an object database is built by an offline process. This database is composed by a set of models. Each model is
composed by a set of states. Each state represent the same object at a different date.

The prediction process is divided into three main steps. It starts by a similarity measurement step to find similar states (in the
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object database) to a query state (representing the query object at a given date). The second step is composed by three sub-
steps: (1) finding the corresponding model for the state, (2) finding all forthcoming states in the model (states having dates
superior to the date of the retrieved state), and (3) for each forthcoming date, build the spatiotemporal change tree for the
retrieved state. The third step is to construct the spatiotemporal change for the query state. Interested readers can refer to [3]
[4].

The module for the prediction of land cover changes allows taking into account imperfection related to the prediction process.
However, the propagation of the input imperfection through this module is not considered.

Thus, we propose to develop a methodology for uncertainty propagation through the module of land cover change predic-
tion. This methodology combines sensitivity and imperfection propagation methods to reduce imperfection related to the
prediction process.

3.2 Imperfection Propagation Module
Let X be a random variable with a probability density f (X, θ) analytically known but one of the parameters θ is unknown
(numerically). The theory of chaos polynomial proposes to characterize random variable X with chaos polynomial represen-
tation. The problem is to construct an analytical expression based on achievements of this variable in a sample size n, to find
the most likely numerical value for the parameter θ [28].

If {x
1
,…, x

n
} are independent realizations of the random variable X. We can say that x =→ x
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The a priori probability of occurrence of a sample can then be characterized by the product of the probabilities of occurrence
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3.3 Sensitivity Analysis
The main objective of the analysis sensitivity is to determine what are the input attributes of describing an object that
contribute most to the imperfection of the prediction model output. In the proposed approach, a global sensitivity analysis is
used [12].

In this study, we focus more specifically on the methods based on the study of the variance of sensitivity indices for
quantifying the influence of input attributes.

Let us denote by M the model for land cover change prediction, S = (A
1
, …, A

p
) p independent input variables with known

distribution and Y the output of the prediction model. Y are decisions about land cover change.

Variance-based sensitivity indices, also called Sobol indices (S
J 
), are used in the proposed approach as an evaluation index

for output variables. The index SJ for output variable Y according to input variables A = (A
i
) 

i =1, …, p
 is computed as follow:

Figure 1. The Proposed Approach
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The variance of Y, Var (Y), is the sum of contributions of all the input variables A = (A
i
)
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 and Aε. Here, Aε denotes an
additional input variable, independent of A, named seed variable. This variable is an uncontrollable variable used to make the
prediction model stochastic.

Figure 2.The Polynomial Collocation Method (PCM)
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The goal of the PCM is to approximate Y, by a simple polynomial function of I
k
. Orthogonal polynomials are used by PCM

approximation. They are also used to generate sets of parameter values, called collocation points [20].

Steps of the collocation approach are illustrated in Figure 2. First, input attributes are identified and their distributions of
uncertainty are determined. The determination of the distribution may either be based on the expert knowledge, or be based
on statistical data. Second, the orthogonal polynomial distributions are derived. If the approximation of the response of the
prediction model has an order equal to p, orthogonal polynomials up to order p +1 are determined. Third, a polynomial
expression is generated to represent the performance or output variable based on orthogonal polynomials of random variables
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 are deterministic coefficients to be estimated.
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i = 1...∞ is the set of random variables associated with reduced centered Gaussian random variables A
i
.
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denotes the multidimensional Hermite polynomials of degree p.

The random inputs and outputs are approximated by the PC expansions. These expansions contain unknown coefficients of
the outputs. Calculating these coefficients is made by solving a linear system of equations that uses a selected number of
collocations points. For a problem with n random variables, the total number of deterministic solutions required is given by
equation (11).

T =  ( p + n ) !
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Where p is the PC order.

For example: if n = 2 and p = 2 then T = 6, the output variable can be written as follow:

Y ≅  Y’ = y
0 
 + y

1 
Γ

1 
(ξ

 1
) + y

2 
Γ

1 
(

 
ξ

2
) + y

3 
Γ

2 
(ξ

 1
,
 
ξ

1
 ) + y

4 
Γ

2 
(ξ

 1
,
 
ξ

2
 ) + y

5 
Γ

2 
(ξ

 2
, ξ

2
 )

In this study, collocation points are chosen as roots of the higher order polynomials. Specifically, the n + 1 roots of the (n +1)th

polynomial order corresponding to each parameter y
k
 are used to define collocation points. Thus, Y that is particularly good

within the most probable range of values of input variables. Moreover, roots of the (n + 2)th order polynomials are used to
define another set of collocation points that can be used to estimate the error of the approximation.

After, we run the model for each of input sets, we get y
i
 as the corresponding result. Then, by replacing each ξ

I
 in the

approximation of Y, we can solve the three simultaneous equations for the unknowns y
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Before using the approximation of Y, the quality of the adjustment is computed. This is achieved by calculating the error
between consecutive polynomial orders. In this work, we use the method proposed in [20] to determine collocation points.
These points are obtained from the next orders of the orthogonal polynomial. If the error is greater than a given threshold, we
need to pass to a higher order approximation and recalculate the error between consecutive approximations.

The interpretation of Sobol index is straightforward as their sum is equal to one. The larger an index value, the greater the
importance of the variable or the group of variables linked to this index [12]. In the case of a model with p input variables, the
number of Sobol indices is 2p −1.

The basic concept of the Probabilistic Collocation Method (PCM) is to approximate the response of the  prediction model to
some polynomial function of uncertain parameters:
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Figure 3. The studied area

Figure 4. Satellite image acquired on June 12, 2007

Where

T is the number of terms in the approximation y
i
  , equivalent to the number of collocation points.
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   is the values of  Y at the collocation points for a (p +1)th polynomial order approximation using a pth polynomial order

approximation.
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   is the values of  Y at the collocation points for a (p +1)th polynomial order approximation using a (p +1)th polynomial order

approximation. Steps 4, 5 and 6 in Figure 2 are repeated until obtaining an error lesser than a given threshold. Therefore, the
obtained approximation can be used for the model of land cover change prediction.

Such a complex model can be reasonably approximated by a polynomial.

4. Experimental Results

The experimental result section is divided into two parts: validation of the proposed approach and evaluation of the proposed
approach compared with existing ones.
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The study area is located in the north-eastern Reunion Island in the Indian Ocean (55°13’1.07”E to 20°51’46.35”S), east of
Madagascar (Figure 3).

Experiments were conducted on SPOT4 satellite images and belong to the Kalideos1 database set up by the CNES2. Images
dated June 12, 2007 and June 09, 2011 with a spatial resolution of 10 m, and a size of 1190 × 670 pixels were acquired (Figure 3
and Figure 4). Images were orthorectified and coregistered to the UTM coordinate system with a root mean square error of less
than 0.5 pixel per image.

4.1 Validation of  the proposed approach
The validation section is divided into three main steps:
1) Computation of Membership functions, 2) Sensitivity Analysis, 3) Imperfection Propagation.

4.1.1 Presentation of Uncertain Input Parameters
The aim of the proposed approach is to propagate imperfection through the model for land cover change prediction presented
in [3].

In the current study, we are concerned by predicting urban changes of the study region between thetwo dates 2007 and 2011.
To achieve this goal, we take as input to the prediction model the image acquired on June 12, 2007 (Figure. 4). However, the
image acquired on June 09, 2011 (Figure 5) is only used for evaluation of results proposed by the proposed approach.

Let us consider that an urban object is extracted after a segmentation of the image in the Figure 4 using previous work [5]. The
urban object is described by five features (radiometric, geometric, textural, spatial and acquisition context). Each feature is
characterized by a set of attributes. 20 attributes are considered to describe the urban object work [5].

These attributes represent the input of the proposed approach and are:

• Radiometry: The mean radiometric, the standard deviation, the swekness, and the kurtosis.

• Geometry: We use length, width, perimeter, and area. These parameters are computed from theminimum bounding rectangle
of the urban object.

• Texture: We use seven attributes from Gabor which are: energy, entropy, correlation, homogeneity, contrast, mean Gabor and
variance Gabor.

• Spatial localization: Directional and metric relations are used to describe the spatial localization.

• Acquisition context: We use temperature, pressure, moisture.
Interested readers can refer to our previous work [5].

4.1.2 Computation of  Membership Functions
The first step in the proposed methodology is to estimate the membership function for the urban attributes. These 20
attributes are random attributes (A

1
,..., A

20 
) represented byprobability distributions (P

1
, ..., P

20 
).

Figure 6 depicts results obtained after the application of the algorithm of the maximum likelihood method for the attribute mean
radiometric.

4.1.3 Sensitivity Analysis
The second step in the proposed approach consists of the application of the sensitivity analysis to identify most influential
input parameters. This helps determining input attributes that contribute most to the overall imperfection of prediction model.
Figure 8 depicts that, the mean Gabor part of textural feature, the radiometric mean part of radiometric feature, and the moisture
part of the acquisition context feature are the most involving and influential attributes to the overall imperfection of the
prediction model.

After applying the sensitivity analysis process, we will consider only three input variables which are the mean Gabor, the mean

1http://kalideos.cnes.fr.
2Centre National d’Etudes Spatiales (French Space Agency).
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Figure 5. Satellite image acquired on June 09, 2011

Figure 6. Membership degrees for the attribute mean radiometric
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radiometric and the moisture. Then, the probabilistic collocation method can be applied by reducing the complexity of the
model and therefore minimizing computational cost.

4.1.4 Probabilistic Collocation Method (PCM)
The PCM approach is composed by seven steps. In this paper, we will consider only the three input attributes identified by
the sensitivity analysis process.

Figure 7 depicts results obtained after the application of the algorithm of the maximum likelihood method for the attribute mean
texture.

Step 1: Specify Distribution of Uncertain Parameters
The first step is to determine the distribution of the three parameters: mean Gabor, radiometric mean and moisture. This is
achieved by applying the algorithm of the maximum likelihood method for the three attributes.

First, we must specify the uncertainty in the parameters. The Gabor mean (I1) has a normal distribution with a mean of 175, and
a standard deviation of 15.
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Figure 7. Membership degrees for the attribute mean texture
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Step 2: Derive orthogonal polynomial for the distributions
In the second step, derive the set of orthogonal polynomials from distributions obtained in the step1. Since these distributions
are Gaussian, the following simplification may be used, [6].

 X = µ  + 
 
σ  (H1 (ξ ))

Where µ is the mean and σ is the standard deviation of X. H1  (ξ ) is the first order Hermite polynomial. Hermite polynomials are
a set of polynomials which are orthogonal to the standard normal distribution ξ, with an average of  0 and a variance of 1. This
allows the use of the same set of orthogonal polynomials for all Gaussian distributions, instead of deriving orthogonal
polynomials for each specific distribution. Since in our study, equation (18) to (22) describe the first five Hermite polynomials
are:

               H1 (ξ) =   ξ

            H2 (ξ)  =  ξ 2−1

        H3 (ξ)  =  ξ 3 − 3 ξ

      H4 (ξ)  =  ξ 4− 6 ξ 2 + 3

  H5 (ξ) =  ξ 5 − 10 ξ 3 + 15  ξ

Step 3: Generate polynomial chaos expansion
In this step, we generate a polynomial expression to represent the output parameter. The third-order approximation used in
this case is given by the equation (23):

Y ≈ Y’ = y
0
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 +  y
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(ξ
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3
)  + ….

This equation (23) is a development of the equation (10). y
i
 are the unknowns of the equation (23). To solve these variables,

simulation points are needed. These points are called collocation points.

Table 1 describes the development of the equation (10) in the 20th element. This represents the third order polynomial chaos.

Step 4: Generate collocation points for model runs
The goal of applying the probabilistic collocation method is to find a good approximation with a reduced number of simulations.
Collocation points are selected from the roots of orthogonal polynomials of next higher order (n + 1) for each uncertain
parameter. At order p = 1, the equation (10) becomes:

Y ≈ Y’= y
0
 + y

1 
ξ

1
 + y

2 
ξ

2
 + y

3 
ξ

3
 ….

The unknowns in equation (24) are y0, y1, y2 and y3. To resolve this equation, we need four collocation points. These points
are the roots of the Hermite polynomial of order p +1 = 2, as mentioned in the equation (25):

H
2 
(ξ

i 
) = 0 →  ( ξ

i
2 − 1 ) = 0 → ξ

i
 ∈ {−1; 1}

The number of available collocation points is always greater than the number of needed collocation points. A method for
selecting collocation points is presented in [20]. In our work, we need four collocation points.

Step 5: Run the model to the collocation points

We run the model for each collocation point for the approximation of  Y of order p. After saving the values we reruns for the
approximation of order p + 1.

The moisture (I3) has a normal distribution with a mean of 55, and a standard deviation of 8.

 N (µ3, σ3 ) =  N (55, 8) (16)

(17)

(18)

(22)

(21)

(20)

(19)

(23)

(24)

(25)

 N (µ1, σ1)  =  N (175, 15)

The radiometric mean (I2) has a normal distribution with a mean of 170, and a standard deviation of 23.

 N (µ2 , σ2) =  N (175, 23)

(14)

(15)
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Figure 9.Probability density distribution of parameters Gabor mean
   (a), radiometric mean (b) and moisture (c) of the object forest
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Table 1. The First 20 Hermite Polynomials Approximation of Y
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Where Y
i
1 and Y

i
2 are the approximation of  Y at the first and the second orders. We found an error of 57.4%  for the first order.

In order to reduce the error term, we consider a higher order for the approximation.

Step 7: Try a higher order approximation
Figure 10.a describes the convergence of error reduction by increasing the order of the polynomial chaos approximation.
Figure 10.b shows the improvement of the reduction of the error rate for an ith order approximation compared to previous
approximation of the first order. We note that the important error rate reduction is for the third order. Then, we can consider
this order as satisfying order for our PCM approximation.

The next step is to return to the probability distributions for the input attributes. Then, we determine the optimal values of
these attributes corresponding to the order 3. These values are finally incorporated into the prediction model presented in [2].

(26)

Step 6: Check the approximation error

Before using the approximation in uncertainty analysis, the quality of the retrieved approximation can be tested. We calculate
the error term by the following equation:

| |
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Figure 10.The approximation error variation (a) and the global
error reduction (b) according to the order of the polynomial
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Polynomial Order

Polynomial Order

For the urban area, the rate of change between 2007 and 2011 found by the model described in [2] is around 41.75 %. Real rate
of change for the urban is about 42.89 %.

For the first order, the average of predicting urban changes is 41.12%. Passing to the second order, the prediction rate of urban
change is about 42.52%.

For the third order, the prediction rate of urban change is about 42.77 %. For the MC method, the prediction rate of urban
change is about 42.68%. We can conclude that increasing the polynomial order allows to improve the prediction of urban
changes.

4.2 Evaluation of the Proposed Approach
In order to evaluate the proposed approach in improving land cover change prediction, we apply the proposed propagation
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Figure 11. Comparison of prediction rate of urban change for MC and MCP with an order equal to 1, 2 and 3
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Table 2. Error for the Prediction of Urban Changes between MCP
With an Order Equal to 3 and Mc Between Dates 2007 and 2011

method and the Monte Carlo method to the prediction model presented in [2]. Then, we compare the proposed prediction
changes to the MC ones.

Monte Carlo method is applied in several domains. It is considered as one of the most used methods in literature for
uncertainty propagation.

Figure 12 depicts the ground truth image at the date June 09, 2011. Information was extracted by experts over the studied are
to construct the ground truth image. Polygons of the studied area of northwestern Reunion Island are digitized to derive the
the matic information using a topographic map with the scale of 1/50,000.Topographic information is used to determine the
matic classes in the studied area. Five the matic classes are identified which are the following: urban, water, forest, bare soil
and non-dense vegetation areas. The ground truth image is used in this paper to compare land cover prediction obtained by
the application of the proposed approach and MC method to the model presented in [3].

Error for
Approach Predicting  Urban

Change (%)

Monte Carlo Approach      0.35

Proposed Approach           0.22

Table 2 depicts the error calculated between real urban changes, MCP with an order equal to 3 and MC between dates  2007
and 2011. As we note, the proposed approach provides a better results than the MC method in predicting urban changes. This
shows the effectiveness of our approach in reducing imperfection related to the prediction process.

Table 3 illustrates percentages of change of the five land cover types (forest, water, bare soil, nondense vegetation  and
urban). Results show that the propagation of imperfection improves the land cover change prediction compared to the
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Figure 12. The Ground truth image at the date June 09, 2011

Forest     Water      Bare     Non Dense
   Soil          Vegetation     Urban

Method Proposed by [3] 70, 98%   2, 95%   66, 03%     32, 03%        41, 75%

Monte Carlo Approach 72, 14%   3, 38%   65, 23%     33, 28%        42, 68%

Proposed Approach 72, 19%   3, 49%   65, 17%     33, 35%        42, 77%

Real                                          72, 21%    3, 59%    65, 06%   33, 49%       42, 89%

Urban

Water

Forest

Bare Soil

Non-dense
Vegetation

original model presented in [3]. In addition, we note that the proposed approach outperforms the MC method in predicting
land cover changes.

Indeed, in 2011, the ground truth image shows a change of 33.49 % for non-dense vegetation, while the proposed approach
predicts a change of 33.35 %. After the treatment of the propagation of uncertainty in the MC method, the prediction is about
33.28 %. This provides a difference between real changes and prediction of changes for the proposed approach in the order
of 0.14 %. For the forest object, the ground truth image shows a change of 72.21 %, while the model proposed by [3] predicts
a change of 70.98 %. After the treatment of the propagation of uncertainty in MC method, the prediction is about 72.14 %.
After the treatment of the propagation of uncertainty in collocation approach, the prediction is about 72.19 %. This provides
a difference between real changes and prediction of changes for the proposed approach in the order of 0.02 %. These results
confirm the effectiveness of the proposed approach in improving land cover change prediction. This is made by reducing the
effect of imperfection related to input variables and their propagation on the model of land cover change prediction.

In order to better evaluate performances of the proposed approach, 20 additional experiments are performed. 20 different
periods are considered. Predicted land cover changes for these 20 periods are estimated through the proposed approach and
MC method. Then, real urban changes are evaluated based on images representing the same dates in each period.

Table 6 depicts that, over the 20 areas studied, the proposed approach provides best results in 80% of cases compared to the
MC method. In addition, the proposed approach provides an average rate of prediction equal to 0.344%. This average is
greater than the average rate of prediction given by the MC method which is equal to 0.376%.

In addition to the improvement of the land cover changes prediction, we decide to evaluate the performance of the proposed
approach in term of processing time.

Table 3. Comparison of Percentage of Change Prediction Between 2007and 2011 for the
Prediction Model Proposed By [3], Monte Carlo Approach and Proposed Approach.
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Figure 13.Comparing difference between real changes and prediction of changes for
the three methods:  method presented in [3], Monte Carlo and proposed approach

          R1      R2       R3      R4      R5     R6      R7      R8       R9     R10   R11    R12    R13    R14   R15    R16    R17   R18   R19    R20

M.C  0, 37   0, 37   0, 41   0, 26   0, 33  0, 4    0, 43  0, 39   0, 28   0, 37  0, 36   0, 41  0, 41   0, 43  0, 32  0, 39  0, 45  0, 37  0, 35  0, 42

P.C    0, 29   0, 31   0, 35   0, 28   0, 29  0, 36  0, 40  0, 36   0, 31   0, 33  0, 35  0, 37  0, 42   0, 40  0, 34  0, 32  0, 40  0, 33  0, 30  0, 38
.M

Table 4. Comparison of Error Rate for Land Cover Change Prediction
between the Proposed Approach and the Mc Method for 20 Period Tests

Forest            Water          Bare soil   Vegetation Urban

Method proposed by [3]

Monte Carlo approach

Proposed Approach

1, 60 %

0,00 %

1, 40 %

1, 20 %

1, 00 %

0, 80 %

0, 60 %

0, 40 %

0, 20 %

Table 5 provides a comparison of computational time for the three methods: MC method, approach of collocation without
sensitivity analysis (while considering the 20 input attributes) and collocation approach with sensitivity analysis (the proposed
approach). The calculations are performed on a Dell i7- 2670QM (2.2 GHz 6MB cache and 6GB of RAM).

 Polynomial Number Total of       Total Time of Work

    Order         Work

         1       31          32min 8sec

         2       37          32min 20sec

         3       47          32min 40sec

         4       62          33min 10sec

        5       83          33min 52sec

        1       27                 54sec

        2      378         756 = 12min 36sec

        3      3654         7308 = 2h 1min 48sec

        4     27405               15h 13min

        5     169911               94h 23min

        -     10000                        20000 = 6h 15min

        -     100000                      200000  =  55h33min

Approach

Collocation method
with sensitivity
analysis N ===== 3

Collocation
method without

sensitivity
analysis N ===== 20

MC method

Table 5. Comparison of Computational Time between Mc Method, Collocation with Sensitiv-
ity Analysis Collocation (Proposed Approach) and Collocation without Sensitivity Analysis
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Figure 14. Convergence of computational time for three methods:
MC, Polynomial Collocation method and proposed approach

Pol.Collocation  method

Mcp with Sensitivity
analysis

M.C

C
om

pu
ta

ti
on

 ti
m

e 
in

 S
ec

Polynomial Order

60000

50000

40000

30000

20000

10000

0
1                           2                           3                          4                          5                            6

For an execution with 100000 simulations, 55 hours are needed to apply Monte Carlo method. For the classical collocation
method (without applying the sensitivity analysis),we note that the computation time increase significantly from 2 hours to 15
hours to 94 hours when increasing the polynomial order from 3 to 4 to 5.

However, for the proposed approach (collocation method with sensitivity analysis), the computation time is about 32 minutes.

In Figure 14, we plotted the evolution of the computational time of the three methods tested according to the order of the
polynomial chaos expansion. We note that the computational time increases dramatically with the order of polynomial chaos.

5. Conclusion

This paper presents a methodology for propagating imperfection throughout a model for land cover change prediction. The
methodology is based on computing membership functions for input features for a given land cover type. Then, these
membership functions are evaluated through a sensitivity analysis module to identify the most influential features in the
overall imperfection of the prediction module. After that, influential features are propagated through the land cover prediction
model. To achieve this, we use a probabilistic collocation method. This helps identifying the optimal values of those features
that best reduce the overall imperfection. Finally, we take all attributes describing a particular object while considering the
optimal values of influential attributes and we introduce them into the model of land cover change prediction. This helps
obtaining more reliable decisions about land cover change.

The proposed approach was compared on error prediction and computing time to existing propagation methods. Results
shows good performance of the proposed approach.
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