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Extending SWRL Rules to Integrate Object-Oriented Techniques in Hybrid Ontologies
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ABSTRACT: Scalability of ontology reasoning is a key factor in the practical adoption of ontology technologies. To improve
the quality of reasoning on a simple ontology, we propose to enrich the comportment of the ontology concepts by rules. This
enrichment is done by extending a version of SWRL and its execution in Jess.

The extending of SWRL rules consists of adding new keywords as OWL ontology classes and properties, and post-translating
them by using rewriting meta-rules. These rules adapt the technique of Object-Oriented programming and create a new
hybrid ontology.

The reasoning on this hybrid ontology makes it possible to improve in terms of results the quality of the previous reasoning.
To mention and clarify the importance of this kind of reasoning, we use a case study inherent to interpret a check up in
preventive medicine.
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1. Introduction

While reasoning over OWL ontologies is a provably intractable computational problem, it has been observed that the ontologies
encountered in practice rarely involve a combination of constructs that leads to intractability. By relying on sophisticated
optimizations, reasoners were developed in which they can handle ontologies with large Tboxes, yet these still do not provide
adequate performance on ontologies containing large ABoxes. This has so far prevented the usage of OWL in applications that
depend on large data sets, such as metadata management and information integration.

Parallel to the development of reasoning techniques for OWL [10], recent work in semantic Web has concentrated on the
addition of rules to OWL which provides an additional layer of expressivity [3].

In some applications, rules are consecrated to a specific task, which can be achieved independently of the ontology. In these
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cases, it is possible to use two distinct languages with specific inference engines. But other applications, where rules are used
to extend the expressivity of OWL, require the reasoning on rules in conjunction with ontology.  Although the combination of
OWL DL and the rules are uncertain [1, 2]

The ultimate goal of this work is the development of hybrid ontology which reuses techniques of Orient-Object Programming
that could be automatically converted into various rule engine formats, and executed directly. That’s why; we propose an
approach to enrich the comportment (behavior) of the ontology concepts with rules. This enrichment is done through two
manners. 1) Binding attributes and roles of concepts with conditions. This aspect constitutes the major contribution of this
work. 2) Creating rules to combine individuals and atoms of concepts. The latter is found, in a large scale, in literature.

This internal and external enrichment of the ontology concepts gives rise to hybrid ontologies, which permits the amelioration
of results of the reasoning. To clarify the importance of such reasoning, we apply a case study inherent to interpret a check up
in preventive medicine, using standard and current tools of semantic Web.

2. Related Work

In literature, there are two main approaches to integrate OWL language withe rules: the homogeneous approach and the hybrid
one.

2.1 Homogeneous Approach
The homogeneous approach treats the predicates of the rules and the ontologies homogeneously, to create a new logical and
simple language. The general idea is that the rules can use unary and binary predicates of the ontology as well as the predicates
of the rules. Thus, a new reasoner is necessary, able to handle and manipulate the new homogeneous language emerged [4].

2.2 Hybrid Approach
The hybrid combination follows a distinct architecture of two subsets in which, each one treats a part of the knowledge base.
More specifically, it combines the possibilities of a reasoner on description logics and the possibilities of executing rules of an
inference engine in order to define rules on the ontology layer. [5].

Thus in the hybrid approach the ontology remains unchanged and rules are built on top of ontologies. This makes possible the
integration of existing rule reasoner with ontology reasoner for reasoning in the hybrid language, rather than developing a new
reasoned from scratch.

2.2.1 Some Examples of Hybrid Systems
• AL-log: The AL-log language described in [12] is a hybrid integration of Datalog and the Description Logic ALC. The ALC DL
is a simple Description Logic admitting only the following class constructors. The DL queries in the bodies of the AL-log rules
are restricted to (ground or open) class-instance membership queries; property instance membership queries are not allowed.
Moreover, the variables of the DL queries in the body of an AL-log rule must also appear in the non-DL atoms of the body or in
the head. Thus the DL queries are typing constraints on the variables.

• CARIN: Is defined as a family of languages with the intention to provide a hybrid integration of Datalog with different
description logics. The class of DL logics considered includes any subset of the description logic ALCNR, and the intersection
constructor for properties. Thus CARIN extends AL-log by integrating Datalog with more expressive DL and by admitting more
general DL queries in the bodies of the hybrid rules. [13]

• Integrating Answer Set Programming with DL: Proposals to integrate function-free rules with answer set semantics and
Description Logics are presented by several authors. The paper [14] uses DL-queries of the ALC description logic as constraints
in rule bodies. The rules allow disjunctive heads. In particular, the work [15] presents semantics with inûnite open domains
which is capable of dealing with an interesting fragment of OWL DL extended with rules. Again, this is a homogeneous
system.[14]

• DLEjena [6] is inspired from the hybrid and homogeneous approach for the integration of the rules and ontologies. The
architecture of DLEJena has four modules: the first charges the ontology and separates its terminological and assertional parts.
The second reasons on the Tbox part, the third reasons on the Abox part and the last one reason with the help of the applied
rules to Tbox and Abox parts.
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• In [7], the plugin of SWRLJessTab is illustrated on the Family ontology rules to show how certain reasoning could be provided
for interoperability between SWRL and OWL.

• In [8], the symbolic knowledge is represented in ontology of the cortical structures. For the representation, standard languages
of the semantic Web (OWL, SWRL) are used.  In order to enrich ontology, it is extended by Horn clauses. These rules permit to
propagate relations and to infer new facts from those existing.

• Alloy [9] is a system for reasoning on ontology written in OWL and SWRL or SWRL-Fol. It is based on the transformation of
OWL ontology and SWRL rules in a program called Alloy’s program and its analysis starts from a charged model to verify
automatically its uniformity.

2.3 Discussion
The study of the previous work shows that there are two different fundamental approaches. The first one is homogeneous
where the rules and the individuals of the ontology are compiled without separation between them. This leads to a base of facts
compiled in the same inference engine [9]. The hybrid systems are the second approach. They are made of several subsets; each
of them treats a different part of the knowledge base and use new formalisms of representation and specific procedures of
reasoning [6, 7 and 8]. In such systems, the problem of the complementary in answers is asked. Really, if the inference is executed
separately with OWL reasoner and an inference engine, some inferences are evidently missed.

Therefore, the interoperability between the SWRL rules and the ontology requires a close integration.

In this paper, we are interested to complete answers of a hybrid system by proposing an approach that allows enriching the
concepts comportment. This enrichment is effected via rules reasoning on the attributes. Concretely, we propose a complete
process of creating a rule base to the terminological part of ontology and whose steps are detailed in the following sections.

2.4 Limitations of SWRL
The current SWRL 1.0 specification omits some typical rule language constructs, sacrificing some expressiveness to ensure
decidability and/or efficiency. We have previously identified some limitations and workarounds in writing teaching strategies in
SWRL [7]; in this work, we directly address these limitations.

2.4.1 Flat list
A SWRL rule body (or head) is a flat list of atoms. No block structure is supported (as there are no constructs that would need
them). Note that either of #E or #F would also entail adding block structure.

2.4.2 E. Conjunction only
Disjunction (E1) and negation (E2) are excluded.

2.4.3 F. No quantifiers
Explicit universal and existential quantifiers are excluded. All atoms are implicitly universally quantified.

2.4.4 No user-defined functions
SWRL provides a library of built-in functions for primitive math, string, and date operations. It doesn’t allow an external function
to be defined or called (which fails 1.1#C).

2.4.5 Assertions only
A SWRL rule head “makes” its atoms true; the standard implementation is to add these atoms as new facts to the knowledge
base. Existing knowledge cannot be changed. [11]

3. Process of Creation of Intra-Concept Rule Base

Our contribution consists of proposing a process to create these rules (cf. Figure 1).

In the following sections, we detail the various steps of our process presented in figure 1.

3.1 Needs Specification and Conceptualization Steps
These steps are guided by experts. They lead to a structured document which contains concepts and attributes as well as the
relations between them.  After the revelation of the various experts, this part makes up of a whole of phases making it possible
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to lead to an intermediate, semi-formal representation (RIs) of a rule.

3.2 Formalization Step
A complete formal and operational representation, from the conceptual representation of rules is obtained while passing by
another semi-formal one which play the role of intermediary. The rules are defined in the following form:

R: b
1 
∩ b

1 
∩ .........b

n 
→ a (1)

Figure 1. Process of creation of intra-concept rule base

They are composed of two parts:
• The antecedent (b

1
…b

n
) is the conjunction of atoms. An atom can be an attribute, a role, or built-ins. In this study, we consider

the cases where the atoms are attributes or built-ins.

• The result of the conjunction of the atoms exists in the conclusion part. (a)The latter gives a result which corresponds to a
chosen rules type.

Let D, OP, DP, builtIn be respectively a datatype URI or an enumerated value range, object property, datatype property and built-
In relation. Let i, j be object terms, and v, v

1
, ..., v

n
 be datatype terms (data literals or data value ranging variables) and let p be

a built-in name. Then, the set of atoms is defined by the following grammar:

Atom → D(v) | OP (i, j) | | DP (i, v) | builtIn (p,  v
1
, ..., v

n
) (2)

The writing of a rule initially obliges us first to choose its type.  This last is connected to its objective:

• Calculate the value of a property based on other properties: can be used to initialize new instances with default values of
properties.
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• Check constraints and perform data validation: for example, need to automatically raise inconsistency flags when currently
available information does not fit the specified integrity constraints.

The result of this step is the formal representation of the rules. To express the passage of the conceptual model, (described in the
preceding step), to a formalized rule, the conjunction between the atoms is represented by an intersection between them and the
conditions on values of an attribute (≥/ ≤ /=..) are represented by a built-in.

3.3 Codification Step
This step consists of translating the result of the previous phase in a language of definition of rules.  For this reason we choose
to extend SWRL by rules. To overcome this, we devise a generic approach of extending SWRL rules by adding new keywords
as OWL ontology classes and properties and post-translating them using rewrite meta-rules. The resulting “extended SWRL”
language is sufficiently expressive to formulate the new type of rules which adapt the techniques of the Object-Oriented
Programming, as shown in the following (cf. Figure 2) :

Figure 2. Keywords extension

For example, the RuleConstruction class derives new values from other properties of the same concept. We use also the SQWRL
language, because of its semantic functionalities which are richer than those of SWRL.

The result of this step is a RDF document, made up of a SWRL representation which corresponds to the structure of the rule and
a RDF part which provides mechanisms giving access to the individuals.

3.3.1 Extending SWRL rules (keywords extension)
We propose a generic approach for adding new keywords as OWL ontology classes and properties. We use the following
simple java code (cf. Figure 3) to create the new concepts (keywords).

After the creation of new concepts, we use there in the SWRL rules then convert them to a Jess format using XSLT and
SweetRules. Apply meta-rules to rewrite the keywords before evaluating the rules in Jess.

3.3.2 Rule Rewriting in Jess
Once the rules are in Jess format, we apply our own meta-rules to rewrite those rules that contain any of our keywords. Jess
(equivalently, Java) has a Lisp-like ability to treat unevaluated rules as data, manipulate them using list and string operations,
and evaluate a list or string as a rule. An unevaluated Jess rule has a tree structure. We represent a tree-of-tokens as a Vector-
tree of String, using standard Java classes, i.e. the elements of each Vector are either String for a leaf token, or recursively a
Vector-tree for a sub list. We define a rewriting meta-rule for each keyword, as a tree rewriting operation, which examines a rule’s
Vector-tree, modifies any elements, splices any new sub trees into place, and so on. Each meta-rule deletes its own keyword from
the rule or replaces it with the corresponding Jess keyword.

Keyword matching is done with respect to SweetRules’ output. Our RuleConstruction keyword is an OWL class, so SWRL
deems it to be a class membership test. SweetRules, being agnostic to our keywords, convert RuleConstruction to the Jess rule
pattern for a class membership test.

The rule rewriting step uses a simple iteration that applies every meta-rule to every Jess rule string. Translated rule strings that
have changed are then re-evaluated in Jess.

3.4 Evolution Step
This step consists of following the evolution of the rule. After each modification, the mechanism of reasoning on ontology
enables us to ensure their integration in the ontology, and their execution on the chosen inference engine.
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3.5 Integration Step
This step is effected by the arrangement of RDF code corresponding to the intra-concept rules in the hierarchy of ontology.

3.6 Checking Step
Here RACER reasoner is used to exploit the services of inference which it provides. An inference engine of rules is necessary to
execute them. The result will be a list of the errors which can comprise the ontology checked by RACER or a consistent ontology.
It should be noted, that if the checking of ontology fails, it is necessary to modify certain parts of the rule (we consider that
ontology is consistent). So it appears reasonable to go up, if it is necessary until the step of conceptualization to avoid
modifications which do not respect the semantics of the domain ontology.

4. Issues for Implementation

OWL is hard-coded against specific design patterns, but anything that goes beyond those patterns cannot be expressed.
Furthermore, the choice of supported design patterns is misguided by theoretical assumptions about DL inferencing that are
quite often irrelevant for practical purposes.

We have recently introduced the new SWRL keywords extension as a mechanism that uses the new keyword to formalize the
meaning and behavior of Semantic Web concepts. They provide RDF vocabulary that can be used to attach rules to class
definitions.

Figure 3. Java code corresponding to a Rule Construction
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4.1 Description of the Application Domain
We chose preventive medicine as applicative field (the ontology of this domain has static and dynamic knowledge).  The first
type models the physical concepts, such as the isolated biological tests (hemoglobin, cholesterol…) the questionnaires have
submitted to the patients, they have diagnosed pathologies. The second type specifies the type of supported reasoning; the
rules of diagnosis and therapeutic treatment in the case of emergency. Thus we show how the rules were conceptualized then
formalized and translated in RDF language by using Protégé tool and how to integrate them in ontology and finally how to check
them through the use of RACER system.

We begin the design with the construction of the rules table, where we specify for certain concepts, the attributes necessary for
each rule (cf.Table1)

Rules Concept Description Type Consequence Conclusion

R1 Patient Calculate Rule Of Weight, size BMI1

BMI construction

R2 Hemoglob To indicate SWRL Rule Value of the Result _H
in test the type of (extra-concept) test, age, sex

Anemia

R3 Vgm_test To indicate SWRL Rule Value of the Result_V
the type of (extra-concept) test, age, sex
Vgm

R3 Lymphocy To indicate SWRL Rule Value of the Result _L
tes test he type of (extra-concept) test, age, sex

lymphocytes

R4 Hemoglob To check the Rule of The attributes Trigger an
in test values of the checking which have a error.

attributes default value in
the concept
Hemoglobin
Test

Table1. Description of the Rules

After the conceptualization of the rules, we pass now to the step of formalization

R1: Patient (?p), Weight (?x), size (?y), swrlm:eval (?BMI, “?x/ ?y* ?y”, ?x, ?y)^ RuleConstruction (?BMI) → sqwrl:select
(?P,?BMI)

R2: Patient (?p), integer [ >= 18 , <= 40] (?age), hasAge (?p, ?age), integer [ >=19,<=25 ] (?BMI) -> hasStat (?p, normal)

R3: Patient (?p), doing_T_H (?p, y),integer [ >=14,<=17] (?y), hasSex (?p, Male) -> hasAnemai (?p)

R4: Patient (?p), doing_T_V (?p, ?y),integer [ >= 80 , <= 95 ] (?y), hasSex (?p, Male) -> has_Macrocytosis (?p)

R5: Patient (?p), doing_T_L (?p, ?y),integer [ >=4000 , <= 10000 ] (?y), hasSex (?p, Male) -> has_Lymphocytose (?p)
R6: Patient (?p), hasAnemia (?p, ?x), has_Macrocytosis (?p, y)-> has_ Macrocytic_Anemia (?P, ?y)

So, in the formalization step, Protégé tool is used to codify them in SQWRL or SWRL language depending on the type of the rule.
The RDF code source of each rule is integrated with RDF code corresponding to the ontology.

To motivate our work from a practical point of view, we propose the following system architecture which describes the application
of the suggested process with a case study.

In this paper we introduce the new keyword from another angle to illustrate what makes it different, and why we believe that it

1 Index of Body Mass
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provides good solutions to many real-world requirements. Our main point is that this extension or SWRL rules is borrowing
good practices from object-oriented programming, modeling languages and integrating object-oriented techniques with the
flexible architecture of Semantic Web to produce a new way of working with linked data.

As this example, we’ll start with a simple ontology. It defines a class patient with the following characteristics:

In this ontology, a Patient is a class that has four properties. The values of Weight, size, age and BMI are specified by the user,
and the new SWRL rule is used to compute and calculate the value of the BMI (The Body Mass Index (BMI) is a measurement
tool that compares your height to your weight and gives you an indication of whether you are overweight, underweight or at a
healthy weight for your height) property by using the following formula: Weight in kilograms is divided by height in meters
squared (weight (kg) / [height (m)]2). We have needed to add a new keyword as SWRL rule that has been attached to a class
using the construct rule for example to do mathematical calculations.

A key contribution of this new kind of rules is to introduce a mechanism that allows users to organize those SQWRL queries in
a natural object-oriented way. These rules are not just plain lists of rules like in comparable rule languages (SWRL etc). That you
can arrange the rules in the class hierarchy where they belong. This follows the Object-Oriented principles of abstraction and
encapsulation. Since the rules (and constraints) are attached to classes, any human or agent who looks at the ontology can
quickly understand the meaning of the classes and properties. Furthermore, the rules are “scoped ” so that tools are better
guided when they need to execute the rules and constraints. Whenever someone changes the values of size weight, then the
value of BMI will update automatically, as shown with the following figure the creation of the rule Construction on protégé (cf.
Figure 4).

Figure 4. Rule Construction

We assume that a conversion from OWL + SWRL to Jess is available (including a complete implementation of all SWRL built-
in functions, or conversion to equivalent Jess language mechanisms). SweetRules [9] provide this conversion, but they involve
a fairly complex installation of many third-party software components. The current Protégé + SWRLTab tool set does not
provide a conversion to Jess, although this is currently being developed, and should be available soon.

In this section, we consider some issues in implementing a rule. As noted previously, additional infrastructure must be implemented
at the Jess level to enforce SWRL’s semantics, and to provide certain extensions to SWRL.

4.2 System Architecture
The architecture of the proposed system in this work (Figure5) is based on the hybrid reasoning (the first reasoning is on OWL
ontology, and the second on rules). The process supported by this architecture includes three phases: the first one consists of
creating the ontology enriched by SWRL rules using Protégé editor. It is followed by the request treatment phase. The last
phase concerns the semantic reasoning, in which, we integrate the two modes of reasoning.

4.3 Description of the System Architecturet
This architecture is made up of

• An editor of ontology and SWRL rules; to create hybrid ontology in OWL DL. These concepts are not simple; they are
enriched by the two types of rules which we have quoted previously.

• A phase to treat the requests:  in this paper, we don’t interest in this phase.

• The use of RACER In the system: we choose this kind of reasoner because it is compatible with nRQL requests. An inference
engine is also used to execute SWRL rules and the new type of rules. The results provided by RACER are regarded as facts base
of the inference engine. From the initial facts (facts base), the inference engine must select SWRL rules to be triggered. The
results of the execution have been sent to RACER. These last results may satisfy the request.

To validate the preceding phases, we have used the ontology which formalizes information on the domain of preventive
medicine.  The user brings the following request:

«Who is the patient reached by Macrocytic anemia and who has a standard weight? »
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The translation of the request towards the language nRQL makes it possible to obtain the following form:

   (retrieve (? patient? Macrocytic_anemia) (? Patient? Anemia_macrocytose reached_macrocytose (? patient? BMI normal)))

The Racer system uses reasoning by classification based on subsumption to classify the request in taxonomy, it will reason on
the KB (Tbox+Abox), SWRL rules and rules (of checking and construction).  The rules have been triggered in the following
order:

Rule 1 (R1) to calculate the BMI. R2, R3 and R4 which are represented in SWRL to indicate the type of Anemia.

We notice that the answer is not complete.  We are obliged to infer the new facts which are generated starting from SWRL rules,
for example the following rule (cf. Figure 6).

Figure 5. System Architecture

Figure 6. The rule selected by the inference engine

After the execution of this request « who is the patient suffering of Macrocytic anemia », the result is posted to the user.

5. Summary and Future Work

The reasoning on ontologies uses simple inference engine. According to insufficiencies of the supported languages, ontologies
are extended by SWRL rules. We assess that SWRL isn’t expressive enough to write rule sets for inherent to interpret a check
up in preventive medicine. The problem is absence of reasoners capable to interoperate ontologies and rules. The SWRL rules
combine the individuals of ontology; don’t change the concepts and the knowledge base. So the reasoning stays incomplete.
We solve this by adding the missing language constructs as new keywords in OWL/SWRL and a translation step to apply our
own rewrite meta-rules.

Our approach which integrates rules to concept is done in two manners:  1) Binding the properties of concepts by SWRL rules
for the verification and construction of new properties (intra-concept integration). These rules adapt the Object-Orient techniques.
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The heritage of this type of concept makes them rules supported by all its instances. 2) Adding relations according to the
variables values by SWRL rules (extra-concept integration).

In addition, the architecture of a system allowing the reasoning on this kind of ontology has been proposed. This system
answers the nRQL requests. Many components of this architecture have been implemented. The future work will consist on
building an interface (tool) which permits to create the rules and to integrate their RDF code into ontology.
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