Home| Contact Us| New Journals| Browse Journals| Journal Prices| For Authors|

Print ISSN: 0976-898X
Online ISSN:
0976-8998


  About JITR
  DLINE Portal Home
Home
Aims & Scope
Editorial Board
Current Issue
Next Issue
Previous Issue
Sample Issue
Upcoming Conferences
Self-archiving policy
Alert Services
Be a Reviewer
Publisher
Paper Submission
Subscription
Contact us
 
  How To Order
  Order Online
Price Information
Request for Complimentary
Print Copy
 
  For Authors
  Guidelines for Contributors
Online Submission
Call for Papers
Author Rights
 
 
RELATED JOURNALS
Journal of Digital Information Management (JDIM)
International Journal of Computational Linguistics Research (IJCL)
International Journal of Web Application (IJWA)

 

 
Journal of Information Technology Review
 

Measuring the Capacitance per Unit Length of Rectangular Coaxial Transmission Lines using the Fem Formulation
Vladimir V. Petrovic and Žaklina J. Mancic
Vladimir V. Petrovic is with the Robert Bosch, GmbH Reutlingen, Germany., Faculty of Electronic Engineering, University of Niš, Aleksandra Medvedeva 14 18000 Niš, Serbia
Abstract: In this study we have used the FEM formulation to measure the capacitance per unit length of rectangular coaxial transmission lines with offset nonzero thickness inner conductor. We then compared the outcome of the work with that of the experimentation conducted to measure the commercial software FEM, which uses node-based first-order basis function. After concluding the whole exercise, we have drawn correct inferences.
Keywords: Quasi-static Analysis, Finite Element Method, Strong Fem Formulation, Lines With Rectangular Cross Section, Offset Inner Conductor, Isotropic And Anisotropic Dielectric, Capacitance Per Unit Length Measuring the Capacitance per Unit Length of Rectangular Coaxial Transmission Lines using the Fem Formulation
DOI:https://doi.org/10.6025/jitr/2022/13/2/44-51
Full_Text   PDF 1.27 MB   Download:   74  times
References:

[1] Petrovic, V., Mancic, Žaklina J. (2015). Calculation of Capacitance of Rectangular Coaxial Line with Offset Inner Conductor bu Using Weak FEM Formulation, Telecommunication in modern Satellite, Cable and Broadcasting Services (TELSIKS), 2015, Pages 342- 345, DOI:10.1109/TELSKS.2015.7357803 51
[2] Mancic, Ž. J., Petrovi, V. V. (2011). Strong FEM Calculation of the Influence of the Conductor’s Position on Quasi- Static Parameters of the Shielded Stripline With Anisotropic Dielectric, In: Proceedings of the ICEST conference, Niš, 2011, 191-194, (ISBN 978-86- 6125031-6).
[3] Mancic, Ž. J., Petrovic, V. V. (2011). Strong and Weak FEM Formulations of Higher Order for Quasi-Static Analysis of Shielded Planar Transmission Lines, Microwave and Optical Technology Letters (MOTL), 53 (5), 1114-1119, May 2011. (DOI 10.1002/ mop.25917, online ISSN 1098-2760.
[4] Mancic, Žaklina J., Petrovic, Vladimir, V. (2015). Analysis of a square coaxial line with anisotropic substrates by strong FEM formulation, Facta universitatis - series: Electronics and Energetics, 28 (4) 625-636, 2015.
[5] Mancic, Ž. J., Petrovic, V. V. (2012). Strong FEM Formulation for Quasi-Static Analysis of Shielded striplines in Anisotropic Homogeneous Dielectric, Microwave and Optical Technology Letters (MOTL), 54 (4) 1001-1006, April 2012. (DOI 10.1002/ mop.26676.
[6] http://www.femm.info/Archives/bin/femm42bin_x64.exe
[7] Milovanovi, A., Koprivica, B. (2012). Calculation of Characteristic Impedance of Eccentric Rectangular Coaxial Lines”, PRZEGLD ELEKTROTECHNICZNY (Electrical Review), ISSN 0033-2097, R. 88 NR 10a/2012. (http://pe.org.pl/articles/2012/10a/ 54.pdf)
[8] Pantic, Z., Mittra, R. (1986). Quasi-TEM analysis of microwave transmission lines by the finite-element method, IEEE Trans MTT, 34 (1986), 1096–1103.
[9] COMSOL Multiphysics Modeling Software, (www.comsol.com)
[10] Manic, A. B., Mancic, S. B., Ilic, M. M., Notaroš, B. M. (2012). Large anisotropic inhomogeneous higher order hierarchical generalized hexahedral finite elements for 3-D electromagnetic modeling of scattering and waveguide structures,” Microwave and Optical Technology Letters (MOTL), 54 (7) 1644–1649.
[11] Ilic, M. M., Ilic, A. Ž., Notaroš, B. M. (2005). Efficient Large-Domain 2-D FEM Solution of Arbitrary Waveguides Using p- Refinement on Generalized Quadrilaterals, IEEE Transactions on Microwave Theory and Techniques, 53 (4) April 2005, 1377- 1383.
[12] Mancic, Ž. J., Petrovic, V. V. (2014). Strong FEM formulation for 2D quasi-static problems and application to transmission lines, Invited Paper, 22nd T5l5 communictions Forum, TELFOR 2014, Belgrade, 25-27.11.
[13] Petrovi, V., Popovi, B.D. (2001). Optimal FEM solution for onedimensional EM problems, Int. J. of Numerical Modelling 14 (1) 49-68, Jan-Feb.
[14] Jin, J. (1993). The Finite Element Method in Electromagnetics, New York: Wiley.
[15] Harrington, R. F. (1968). Field computation by moment method, Macmillan, New York.


Home | Aim & Scope | Editorial Board | Author Guidelines | Publisher | Subscription | Previous Issue | Contact Us |Upcoming Conferences|Sample Issues|Library Recommendation Form|

 

Copyright © 2011 dline.info