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1. Introduction

Software systems continually change as they evolve to refl ect new requirements, but their internal structure tends to decay. 
Refactoring is a commonly accepted technique to improve the structure of object oriented software [9]. Its aim is to reverse the 
decaying process in software quality by applying a series of small and behaviour-preserving transformations, each improving 
a certain aspect of the system [9]. Entity Refactoring Set Selection Problem (ERSSP) is the identifi cation problem of the set 
of refactorings that may be applied to software entities, such that several objectives are kept or improved.

The paper introduces a fi rst formal version defi nition of the Multi-Objective Entity Refactoring Set Selection Problem (MO-
ERSSP) and performs a proposed weighted objective genetic algorithm on an experimental didactic case study. Different 
solution representation for our case study are used and the corresponding solutions are presented and compared.

The rest of the paper is organized as follows. A working scenario is presented in Section 2. In Section 3 the defi nition of the 
ERSSP is given, while Section 4 shortly reminds the principle of multi-objective optimization and introduces the formal 
defi nition for the MOERSSP. A short description of the Local Area Network simulation source code used to validate our 
approach is provided in Section 5. The proposed approach and several details related to the genetic operators of the genetic 
algorithm and data normalization are described in Section 6. The obtained results for the studied source code using different 
solution representation are presented and discussed in Section 7. The paper ends with conclusions and future work.

2. Working Scenario

There are still a number of problems to address if someone wants to raise the automation level for refactoring applying. 
Assuming a tool that detects opportunities for refactoring is used [15], it will identify badly structured code based on code 
smells [9, 16], metrics [14, 11] or other techniques. The gathered information is used to propose a set of refactorings that can 
be applied in order to improve the software structure. The developer chooses which refactorings he would consider more 
appropriate to apply, and use a refactoring tool to apply them. There are several problems that rise up within the considered 
context. The fi rst one that hits the developer is the large number of refactorings proposed to him, thus the most useful ones 
to be applied have to be identifi ed. Another aspect is represented by the possible types of dependencies that may exist be-
tween the selected refactorings. In means that applying any of the suggested refactorings may cancel the application of other 
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refactorings that have been already selected by the developer. In [12] are presented three kinds of such dependencies: mutual 
exclusion, sequential dependency, asymmetric confl ict, that may be used to drive the refactoring selection process. Therefore, 
the goal of this paper is to explore the possibility of identifying the optimal sequences of refactorings that keep or improve 
some objectives, like cost and impact on software entities. Thus, the developer is helped to decide which refactorings are 
more appropriate and in which order the transformations must be applied, because of different types of dependencies existing 
between them. ERSSP is an example of a Feature Transformation Subset Selection (FTSS) search problem in SBSE fi eld.

3. ERSSP Defi nition

In order to state the ERSSP some notion and characteristics have to be defi ned. Let SE = {e1,...,em} be a set of software 
entities, i.e., a class, an attribute from a class, a method from a class, a formal parameter from a method or a local variable 
declared in the implementation of a method. They are considered to be low level components bounded through dependency 
relations. The weight associated with each software entity ei ,1 ≤ i ≤ m is kept by the set Weight = {w1,...,wm}, where wi ∈ 
[0,1] and ∑m

i=1 wi = 1. A software system SS consists of a software entity set SE together with different types of dependencies 
between the contained items.

A set of possible relevant chosen refactorings [9] that may be applied to different types of software entities of SE is gathered 
up through SR = {r1,...,rt}. There are various dependencies between such transformations when they are applied to the same 
software entity, a mapping emphasizing them being defi ned by:
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where 1 ≤ h, l ≤ t,1 ≤ i ≤ m. The effort involved by each transformation is converted to cost, described by the following 
function:
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where 1 ≤ l ≤ t, 1 ≤ i ≤ m. Changes made to each software entity ei, i = 1–,–m––  by applying the refactoring rl ,1 ≤ l ≤ t are stated 
and a mapping is defi ned:
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where 1 ≤ l ≤ t, 1 ≤ i ≤ m. The overall effect of applying a refactoring rl ,1 ≤ l ≤ t to each software entity ei, i = 1–,–m–– is defi ned 
as:
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where 1 ≤ l ≤ t. Each refactoring rl, l = 1–,–t– may be applied to a subset of software entities, defi ned as a function:
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where re(rl) = SErl
, SErl

 ⊆ SE – φ , 1 ≤ l ≤ t. The purpose is to fi nd a subset of entities ESetl for each refactoring rl ∈ SR, l = 1–,–t–

such that the fi tness function is maximized. The solution space may contain items where a specifi c refactoring applying rl ,1 ≤ l ≤ 
t  is not relevant, since objective functions have to be optimized. This means there are subsets ESetl = φ, ESetl ⊆ SE, 1 ≤ l ≤ t. 

4. MOOP Model

MOOP is defi ned in [17] as the problem of fi nding a decision vector x→= (x1,...,xn), which optimizes a vector of M objective 
functions fi( x

→) where 1 ≤ i ≤ M, that are subject to inequality constraints gj (x) ≥ 0, 1 ≤ j ≤ J and equality constraints  hk ( x
→) 

= 0, 1 ≤ k ≤ K. A MOOP may be defi ned as:

)},(,),({=)}({ 1
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with gj( x
→) ≥ 0, 1 ≤ j ≤ J and hk( x

→) ≥ 0, 1 ≤ k ≤ K  where x→ is the vector of decision variables and fi( x
→)  is the i-th objective 

function; and g(x) and h(x)  are constraint vectors.

There are several ways to deal with a multi-objective optimization problem. In this paper the weighted sum method [10] is 
used.

Let us consider the objective functions f1, f2 ,... , fm . This method takes each objective function and multiplies it by a fraction 
of one, the ‘’weighting coeffi cient’’ which is represented by wi , 1 ≤ i ≤ M. The modifi ed functions are then added together 
to obtain a single fi tness function, which can easily be solved using any method which can be applied for single objective 
optimization. Mathematically, the new mapping may be written as:
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4.1. MOERSSP Formulation
Multi-objective optimization often means compromising confl icting goals. For our MOERSSP formulation there are two 
objectives taken into consideration in order to maximize refactorings effect upon software entities and minimize required 
cost for the applied transformations. Current research treats cost as an objective instead of a constraint. Therefore, the fi rst 
objective function defi ned below minimizes the total cost for the applied refactorings, as:
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 where →r  = (r1,...,rt). The second objective function maximizes the total effect of applying refactorings upon software enti-
ties, considering the weight of the software entities in the overall system, like:
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 where →r  = (r1,...,rt). The goal is to identify those solutions that compromise the refactorings costs and the overall impact on 
transformed entities. In order to convert the fi rst objective function to a maximization problem in the MOERSSP, the total 
cost is subtracted from MSX, the biggest possible total cost, as it is shown below:
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 where →r  = (r1,...,rt ) . The fi nal fi tness function for MOERSSP is defi ned by aggregating the two objectives and may be written as:

 ),()(1)(=)( 21

→→→
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 where 0 ≤ α ≤ 1. 

5. Case Study: LAN Simulation

The algorithm proposed was applied on a simplifi ed version of the Local Area Network (LAN) simulation source code, that 
was presented in [7]. The example has been successfully used in several programming courses to illustrate and teach good 
practices in object-oriented design. It covers most of the interesting constructs of the object-oriented programming paradigm, 
like: inheritance, late binding, super calls, method overriding. It has been implemented in Java and Smalltalk and it follows 
an incremental development style, including several typical refactorings. Therefore, the example is suitable as a feasability 
study.

The source code version used here consists of 5 classes: Packet, Node and its three subclasses Workstation, PrintServer 
and FileServer. The Node objects are linked together in a token ring network, using the nextNode attribute; they can 
send or accept a Packet object. PrintServer, FileServer and Workstation refi ne the behaviour of accept (and perform a 
super call) to achieve specifi c behaviour for printing the Packet and avoiding its endless cycling. A Packet object can 
only originate from an Workstation object, and sequentially visits every Node object in the network until it reaches its 
receiver that accepts the Packet, or until it returns to its sender workstation, indicating that the Packet cannot be deliv-
ered. Figure 1 shows the class diagram of the studied source code. It contains 5 classes with 5 attributes and 13 methods, 
constructors included.

Thus, for the studied problem the software entity set is defi ned as: SE = {c1,...,c5, a1,...,a5, m1,..., m13}. The chosen refactorings 
that may be applied are: renameMethod, extractSuperClass, pullUpMethod, moveMethod, encapsulateField, addParameter, 
denoted by the set SR = {r1,...,r6} in the following. The dependency relationship between refactorings is defi ned in what fol-
lows: {(r1, r3) = B, (r1, r6) = AA, (r2, r3) = B, (r3, r1) = A,(r6, r1) = AB, (r3, r2) = A, (r1, r1) = N, (r2, r2) = N, (r3, r3) =N, (r4, r4) 
= N, (r5, r5) = N, (r6, r6) = N}. For the res mapping, values were computed for each refactoring, by using a specifi ed weight 
for each existing and possible affected software entity, as it was defi ned in Section 3. The value of the res function for each 
refactoring is: 0.4, 0.49, 0.63, 0.56, 0.8, 0.2.

Here, the cost mapping rc is computed as the number of the needed transformations, therefore related entities may have 
different costs for the same refactoring. Each software entity has a weight within the entire system, but ∑ 23

i=1 wi = 1. Due to 
the space limitation, intermediate data for other mapping (e.g., effect) was not included. For effect mapping, values were 
considered to be numerical data, denoting estimated impact of refactoring applying.

Figure 1. Class diagram for LAN simulation
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6. Proposed Approach Description

The decision vector 
→
S = (S1,...,St), Sl ⊆ SE ∪ φ, 1 ≤ l ≤ t determines the entities that may be transformed using the proposed 

refactorings set SR. The item Sl on the l-th position of the solution vector represents a set of entities that may be refactored 
by applying the l-th refactoring from SR, where each entity elu

 ∈ SErl
, elu ∈ Sl ⊆ SE ∪ φ, 1 ≤ u ≤ q,1 ≤ q ≤ m,1 ≤ l ≤ t. This 

means it is possible to apply more than once different refactorings to the same software entity, i.e., distinct gene values from 
the chromosome may contain the same software entity.

A steady-state evolutionary algorithm was applied here, a single individual from the population being changed at a time. The 
best chromosome (or a few best chromosomes) is copied to the population in the next generation. Elitism can very rapidly 
increase performance of GA, preventing to lose the best found solution. A variation is to eliminate an equal number of the 
worst solutions, i.e. for each best chromosome kept within the population a worst chromosome is deleted.

6.1 Genetic Operators
The genetic operators used are crossover and mutation. Each of them is presented below.

6.1.1 Crossover Operator
A simple one point crossover scheme is used. A crossover point is randomly chosen. All data beyond that point in either 
parent string is swapped between the two parents.

For example, if the two parents are: parent1 = [ga[1,7], gb[3,5,10], gc[8], gd[2,3,6,9,12], ge[11], gf[13,4]]  and parent2 = 
[g1[4,9,10,12], g2[7], g3[5,8,11], g4[10,11], g5[2,3,12], g6[5,9]] and the cutting point is 3, the two resulting offsprings are: 
offspring1 = [ga[1, 7], gb[3,5,10], gc[8], g4[10,11], g5[2,3,12], g6[5,9]] and offspring2 = g1[4,9,10,12], g2[7], g3[5,8,11], 
gd[2,3,6,9,12], ge[11], gf[13,4]].

6.1.2. Mutation Operator
Mutation operator used here exchanges the value of a gene with another value from the allowed set. In other words, mutation 
of i-th gene consists of adding or removing a software entity from the set that denotes the i-th gene. We have used 1 mutations 
for each chromosome, number of genes being 6.

For instance, if we have the chromosome parent = [ [ga[1,7], gb[3,5,10], gc[8], gd[2,6,9,12], ge[12], gf[13,4]] and we chose 
to mutate the fi fth gene, then a possible offspring may be parent = [ [ga[1,7], gb[3,5,10], gc[8], gd[2,6,9,12], ge[10,12], 
gf[13,4]] by adding the 10-th software entity to the 5-th gene.

6.2. Algorithm description
In a steady-state evolutionary algorithm a single individual from the population is changed at a time. The best chromosome 
(or a few best chromosomes) is copied to the population in the next generation. Elitism can very rapidly increase performance 
of GA, because it prevents to lose the best found solution to date. A variation is to eliminate an equal number of the worst 
solutions, i.e. for each best chromosome kept within the population a worst chromosome is deleted.

The general pseudocode of the evolutionary algorithm used in this paper is given in the Algorithm 1.

Algorithm 1: Evolutionary algorithm
Require: SR - set of refactoringsş
SE - set of entitiesş
Ensure: Solution obtained
 1: Population Initialization;
 2: for ( t = 1 to nEvolutionCount) do
 3: for ( k=0 to lstPopulationCount; k += 2)) do
 4: Randomly choose two individuals, p1 and p2;
 5: OneCutPointCrossover for p1 and p2, resulting child c1 and child c2;
 6: Mutation(c1); Mutation(c2);
 7: Memorize in c1 and c2 the best individual from p1 and c1 and from p2 and c2;
 8: Replace the two worst individuals form population with c1 and c2.
 9: end for
10: end for
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6.3 Data Normalization
Normalization is the procedure used in order to compare data having different domain values. It is necessary to make sure 
that the data being compared is actually comparable. Normalization will always make data look increasingly similar. An 
attribute is normalized by scaling its values so they fall within a small-specifi ed range, e.g., 0.0 to 1.0.

As we have stated above we would like to obtain a subset of refactorings to be applied to each software entity from a given 
set of entities, such that we obtain a minimum cost and a maximum effect. The cost for an applied refactoring to an entity is 
between 0 and 100. At each step of the selection the res function is considered. We must normalize the cost of applying the 
refactoring, i.e., rc mapping, and the value of the res function too. Two methods to normalize the data: decimal scaling for 
the rc mapping and min-max normalization for the value of the res function have been used here.

6.3.1 Decimal Scaling
The decimal scaling normalizes by moving the decimal point of values of feature X. The number of decimal points moved 
depends on the maximum absolute value of X. A modifi ed value new_v corresponding to v is obtained using:  

 ,
10

=_ n
vvnew

where n is the smallest integer such that max(|new_v|) < 1.

6.3.2 Min-max Normalization
The min-max normalization performs a linear transformation on the original data values. Suppose that minX and maxX are 
the minimum and maximum of feature X. We would like to map interval [minX, maxX] into a new interval [new_minX, 
new_maxX]. Consequently, every value v from the original interval will be mapped into value new_v using the following 
formula:  

 .=_
minXmaxX

minXvvnew
−

−

Min-max normalization preserves the relationships among the original data values.

7. Practical Experiments for the Proposed Approach

The algorithm was run 100 times and the best, worse and average fi tness values were recorded. The parameters used by 
the evolutionary approach were as follows: mutation probability 0.7 and crossover probability 0.7. Different number 
of generations and of individuals were used: number of generations 10, 50, 100, 200 and number of individuals 20, 50, 
100, 200. The following subsection reveals the obtained results for the α parameter set to 0.5. The summary subsection 
shortly reminds all the results for the run experiments, including those for 0.3 and 0.7 values for the α parameter, as 
presented in [3, 4, 5].

7.1 Equal Weights (α = 0.5)
A fi rst experiment run on the LAN Simulation Problem proposes equal weights, i.e., α = 0.5, for the studied fi tness function 
[3, 5]. That is, 

 ),(0.5)(0.5=)( 21

→→→

⋅+⋅ rfrfrF

where →r  = (r1,...,rt). Figure 2 presents the 200 generations evolution of the fi tness function (best, worse and average) for 20 
chromosomes populations (Figure 1) and 200 chromosomes populations (Figure 1).

There is a strong competition among chromosomes in order to breed the best individual. In the 20 individuals populations 
the competition results in different quality of the best individuals for various runs, from very weak to very good solutions. 
The 20 individuals populations runs have few very weak solutions, better than 0.25, while all the best chromosomes are good 
solutions, i.e., all 100 best individuals for the 100 runs have fi tness better than 0.41.

Compared to the former populations, the 200 chromosomes populations breed closer best individuals. The number of good chro-
mosomes is smaller than the one for 20 individuals populations, i.e., 53 chromosome with fi tness better than 0.41 only.
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The data for the worst chromosomes reveals similar results, since for the 200 individuals populations there is no chromosome 
with fi tness better than 0.25, while for the 20 chromosomes populations there are 12 worst individuals better than 0.25. This 
situation outlines an intense activity in smaller populations, compared to larger ones, where diversity among individuals 
reduces the population capability to quickly breed better solutions.

Various runs as number of generations, i.e., 10, 50, 100 and 200 generations, show the improvement of the best chromo-
some. For the recorded experiments, the best individual for 200 generations was better for 20 chromosomes populations 
(with a fi tness value of 0.4793) than the 200 individuals populations (with a fi tness value of just 0.4515). This means in 
small populations (with fewer individuals) the reduced diversity among chromosomes may induce a stronger competition 
than in large populations (with many chromosomes) where the diversity breeds weaker individuals. As the Figure 2 shows 
its, after several generations smaller populations produce better individuals (as number and quality) than larger ones, due to 
the poor populations diversity itself.

The number of chromosomes with fi tness value better than 0.41 for the studied populations and generations is captured by 
Figure 3.

(a) [Experiment with 200 generations and 20 individuals]

(b) [Experiment with 200 generations and 200 individuals]

Figure 2. The evolution of fi tness function (best, worse and average) for 20 and 200 individuals with 200 generations, with 
eleven mutated genes, for α = 0.5 
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Impact on the LAN Simulation Problem source code

The best individual obtained allows to improve the structure of the class hierarchy. Therefore, a new Server class is 
the base class for PrintServer class. More, the signatures of the print method from the PrintServer class is changed, 
though the renaming to process was not suggested. Opposite to this, for the save method in the FileServer class was 
recommended to rename the method to process and the changing signature was not suggested yet. The two refactorings 
(addParameter and renameMethod) applied to the print and save methods would had been ensured their polymorphic 
behaviour.

The accept method is moved to the new Server class for the FileServer class, though the former was not suggested to be added 
as a base class for the latter. The correct access to the class fi elds by encapsulating them within their classes is enabled for 
three of fi ve class attributes. Figure 4 presents the class diagram for the LAN Simulation Problem after the obtained solution 
is applied to.

Figure 3. The evolution of the number of chromosomes with fi tness better than 0.41 for the 20, 50, 100 and 200 individual 
populations, with α = 0.5 

Figure 4. The class diagram for the LAN Simulation source code, with α = 0.5 



 Journal of Information Technology Review  Volume 1 Number 3  August  2010 115

7.2. Summary of the Experiment Results
Current subsection summarizes the results of the proposed algorithm in Section 6.2 for three different value for the α pa-
rameter, i.e., 0.3, 0.5, 0.7, in order to maximize the weighted sum fi tness function that optimizes the refactoring cost and the 
refactoring impact on affected software entities [5]. A chromosome summary of the obtained results for all run experiments 
as it is presented in [3, 4, 5] is given below:

α•  = 0.3, bestFitness = 0.33587 for 20 chromosomes and 200 generations

 - bestChrom = [[10, 22, 21, 19, 15], [3, 2], [21, 19, 10, 16, 17, 13, 11, 14, 12], [19, 10, 22, 11, 13, 16], [∅], [21, 22]]

α•  = 0.5, bestFitness = 0.4793 for 20 chromosomes and 200 generations 

 - bestChrom = [[20, 13, 19, 11], [1, 2], [15, 10, 20, 17, 19, 13, 12], [12, 11, 15, 14, 21], [6, 8, 9], [22, 12, 18, 17, 13, 14, 15]]  

α•  = 0.7, bestFitness = 0.61719 for 20 chromosomes and 200 generations 

 - bestChrom = [[20, 16], [3], [15, 18, 14, 21, 16, 13, 22, 10], [20, 10, 22, 16, 17], [∅], [16, 10, 11]]

The experiment for α = 0.3 should identify those refactorings for which the cost has a lower relevance than the overall impact 
on the applied software entities. But, the obtained best chromosome obtained has the fi tness value 0.33587, lower than the 
best fi tness value for the α = 0.5 chromosome, i.e.,0.4793. This shows that an unbalanced agreggated fi tness function with 
a higher weight for the overall impact on the applied refactorings, promotes the individuals with more low cost and small 
refactorings. Therefore, there are not too many key software entities to be refactored by a such an experiment.

The α = 0.7 experiment should identify the refactorings for which the cost is more important than the fi nal effect of the ap-
plied refactorings. The fi tness value for the best chromosome for this experiment is 0.61719, while for the α = 0.5 experiment 
the best fi tness value is lower than this one.

The experiment for α = 0.7 gets near to the α = 0.5 experiment. The data shows similarities for the structure of the obtained 
best chromosomes for the two experiments. A major difference is represented by the encapsulatedField refactoring that may 
be applied to the public class attributes from the class hierarchy. This refactoring was not suggested by the solution proposed 
by the α = 0.7 experiment. Moreover, there is a missing link in the same experiment, due to the fact the addParameter refac-
toring was not recommended for save method from FileServer and print method from PrintServer class.

Balancing the fi tness values for the studied experiments and the relevance of the suggested solutions, we consider the α = 0.5 
experiment is more relevant as quality of the results than the other analyzed experiments. Figure 4 (see Section 7.1) highlights 
the changes in the class hierarchy for the α = 0.5 following the suggested refactorings from the recorded best chromosome.

7.3 Obtained Results by Another Solution Representation
For the problem presented in Section 3 the aspect of the most appropriate refactoring for an entity is studied in [2, 6]. The 
decision vector →r  = (r1,...,rm), ri ∈ SR, 1 ≤ i ≤ m determines such refactorings that may by applied in order to transform the 
considered set of software entities SE. The item ri  on the i-th position of the solution vector represents the refactoring that 
may be applied to the i-th software entity from SE, where ei ∈ SEri

, 1 ≤ i ≤ m.

Therefore, a chromosome is represented as a string of size equal to the number of entities from SE. The value of the i-th gene 
represents the refactoring that may be applied to the i-th entity. The values of these genes are not different from each other, 
i.e, the same refactoring may be applied to multiple entities.

The results of the proposed approach in [2] for three different value for the α parameter, i.e., 0.3, 0.5, 0.7, are sum-
marized and discussed by the current section [6]. A best chromosome list of the obtained results for all experiments is 
given below:

α•  = 0.3, bestFitness = 0.25272 for 100 chromosomes and 200 generations

 - bestChrom = [1, 1, 1, 1, 1, 4, 4, 4, 4, 4, 2, 2, 3, 3, 3, 2, 3, 2, 0, 2, 3] 

α•  = 0.5, bestFitness = 0.3562 for 20 chromosomes and 200 generations 

 - bestChrom = [1, 1, 1, 1, 1, 4, 4, 4, 4, 4, 2, 2, 2, 2, 2, 3, 2, 5, 2, 2, 0, 3, 2]  

α•  = 0.7, bestFitness = 0.45757 for 50 chromosomes and 50 generations 

 - bestChrom = [1, 1, 1, 1, 1, 4, 4, 4, 4, 4, 3, 2, 3, 2, 2, 3, 3, 5, 2, 2, 3, 2, 3]  
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The data shows similar results for the structure of the best chromosome. A major difference is represented by the possible 
refactoring that may be applied to the save method from FileServer and accept method from PrintServer and FileServer 
classes. The suggested solutions by α = 0.3 and α = 0.5 experiments recommend a second refactoring that may be applied to 
the save method, i.e., the renameMethod refactoring, while for α = 0.7 the suggested refactoring is not appropriate, i.e., the 
moveMethod refactoring. Figure 5 highlights the changes in the class hierarchy for the α = 0.5.

The experiments for 20 chromosomes populations have good results in each of the three runs with different values for the α 
parameter, bringing a better solution quality for the eligible individuals.

This means in small populations (with few individuals) the reduced diversity among chromosomes may induce a harsher 
competition compared to large populations (with many chromosomes) where the diversity breeds weaker and closer indi-
viduals as fi tness quality. As the run experiments revealed it, after several generations smaller populations produce better 
individuals (as number and quality) than larger ones, due to the poor populations diversity itself.

7.4 Discussion
The Multi-Objective Refactoring Single Selection Problem (MPRSgSP) shortly reminded in Section 7.3 represents a special 
case of the MOERSSP. The former one identifi es a single refactoring that changes a software entity that satisfi es the established 
objectives in the most appropriate way, while the latter identifi es a set of possible refactorings for each software entity.

The best individual obtained for the run experiments of the MORSgSP, i.e., a 20 chromosomes population with 200 genera-
tions evolution, was transposed to the refactoring-based solution representation of the MOERSSP. The resulted individual 
has the same fi tness as in the original form, i.e., 0.3562.

The best chromosome recorded for the MOERSSP experiments, is obtained for a 20 chromosomes population with 200 
generations evolution too. But, it cannot be transposed to the solution representation presented in Section 7.3, since there are 
several refactorings suggested for each entity.

First, a refactoring may be applied to more than one software entity, as the r6 (addParameter refactoring) which is applied to 
the m8  (print method) from c3  (PrintServer class) and m11  (save method) from c4 (FileServer class). Second, r1 (renameMethod 
refactoring) is then applied for the same methods in order to highlight the polymorphic behaviour of the new renamed method 
process. This means there are at least two refactorings that may be applied to the methods referred here (print and save). Thus, 
the multiple transformations of software entities cannot be coded by the solution representation proposed by Section 7.3.

Compared to Figure 4, Figure 5 shows that the Section 7.3 allows information hiding by suggesting refactorings for fi eld 
encapsulation. But the solution representation does not allow to apply more than one refactoring to each software entity. This 
results in the lack of possibility to apply some relevant refactorings to software entities.

 

Figure 5. The class diagram for the LAN Simulation source code, with α = 0.5
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Figure 4 presents the transformed class diagram based on the solution proposed by the run experiments on MOERSSP. Al-
though, the fi tness value of the best chromosome (0.4793) is better than the value of the approach discussed in Section 7.3, 
it suggests the possibility to apply more than one refactoring to a single software entity. While Figure 5 highlight that all 5 
class attributes from the class diagram are hidden within their classes, Figure 4 encapsulates 3 class fi elds only, though there 
are other relevant refactorings that are applied in order to improve the internal structure of the studied source code.

7.5 Obtained Results by Others
Fatiregun et al. [8] applied genetic algorithms to identify the transformation sequences for a simple source code, with 5 
transformation array, whilst we have applied 6 distinct refactorings to 23 entities. Seng et al. [13] applied a weighted multi-
objective search, in which metrics were combined into a single objective function. An heterogeneous weighed approach 
was applied in our approach, because of the weight of software entities in the overall system and refactorings cost being ap-
plied. Mens et al. [12] propose techniques to detect the implicit dependencies between refactorings. Their analysis helped to 
identify which refactorings are most suitable to LAN simulation case study. Our approach considers all relevant applying of 
the studied refactorings to all entities. Bowman et al. [1] discuss the class responsibility assignment using a multi-objective 
optimization approach. The goal is to optimize the coupling and cohesion of a given class diagram based on fi ve distinct 
measures [1]. Although a single objective optimization problem suggests a unique optimal solution, the approach proposed 
by the authors offers a large set of solutions that, when evaluated, produces vectors whose components represent tradeoffs in 
the objective space. Similar to this we focus on two objectives. We study the fi nal effect of the applied refactorings but we 
pay attention to the involved costs too. In this way we try to obtain a solution that is acceptable, with a positive impact on 
the internal structure of the source code and with low costs too.

8. Conclusions and Future work

The paper discusses a new version of the MORSgSP presented in [2]. The results of a proposed weighted objective genetic 
algorithm on the same experimental didactic case study are presented and compared with other previous results. Furthermore, 
another solution representation of the chromosome for the same problem is compared with the approach proposed by the 
current paper.

The weighted multi-objective optimization is discussed here, but the Pareto approach may prove to be more suitable when 
it is diffi cult to combine fi tness functions into a single overall objective function. Thus, a further step would be to apply the 
Pareto front approach in order to prove or deny the superiority of the second possibility. Here, the cost is described as an 
objective, but it can be interpreted as a constraint, with the further consequences.
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