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ABSTRACT: Gaussian mixture models (GMMs) remain the state of the art technique for modeling spectral envelope features 
for speech recognition systems. This paper presents a comparative analysis of the performance of three estimation algo-
rithms Expectation Maximization (EM), Greedy EM Algorithm (GEM) and Figueiredo-Jain Algorithm (FJ) based  Gaussian 
mixture models (GMMs) for text-independent speech biometrics verifi cation. The simulation results are showed signifi cant 
performance achievements. The test performance of, EER=0.26 % for “EM”, EER=0.21 % for “GEM” and EER=0.16 % 
for “FJ”, show that the behavioral information scheme of speech biometrics is more robust and have a discriminating power, 
which can be explored for identity authentication.  
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1. Introduction 

BIOMETRIC is a Greek composite word stemming from the synthesis of bio and metric, meaning life measurement. In this con-
text, the science of biometrics is concerned with the accurate measurement of unique biological characteristics of an individual 
in order to securely identify them to a computer or other electronic system. Biological characteristics measured usually include 
fi ngerprints, voice patterns, retinal and iris scans, face patterns, and even the chemical composition of an individual’s DNA [1]. 
Biometrics authentication (BA) (Am I whom I claim I am?) involves confi rming or denying a person’s claimed identity based 
on his/her physiological or behavioral characteristics [2]. BA is becoming an important alternative to traditional authentication 
methods such as keys (“something one has”, i.e., by possession) or PIN numbers (“something one knows”, i.e., by knowledge) 
because it is essentially “who one is”, i.e., by biometric information. Therefore, it is not susceptible to misplacement or forgetful-
ness [3]. These biometric systems for personal authentication and identifi cation are based upon physiological or behavioral features 
which are typically distinctive, although time varying, such as fi ngerprints, hand geometry, face, voice, lip movement, gait, and 
iris patterns. An identity verifi cation system has to deal with two kinds of events: either the person claiming a given identity is the 
one who he claims to be (in which case, he is called a client), or he is not (in which case, he is called an impostor). Moreover, the 
system may generally take two decisions: either accept the client or reject him and decide he is an impostor.   

Some works based on biometric speech identity verifi cation systems has been reported in literature. Fortuna J. et al. [16] 
present a comparative analysis of the performance of decoupled and adapted Gaussian mixture models (GMMs) for open-set, 
text-independent speaker identifi cation (OSTISI) and concluded that the speaker identifi cation performance is noticeably better 
with adapted-GMMs than with decoupled-GMMs. Their analysis is based on a set of experiments using an appropriate subset of 
the NIST-SRE 2003 database and various score normalization methods. They included a detailed description of the experiments 
and discuss how the OSTI-SI performance is infl uenced by the characteristics of each of the two modeling techniques and the 
normalization approaches adopted. Eduardo Sànchew-Soto et al. [17] present a new adaptation technique for speaker verifi ca-
tion of models built using Bayesian Networks tested using the NIST 2002 data base and showed improvement in the verifi cation 
performances. The adaptation problem of parameters of the conditional probability tables (CPTs) is treated in a specifi c manner. 
The model adaptation involves estimating the new vectors with a transformation that includes vectors in the world model and the 
speaker model and the combination of both models is based on a value computed using a measure of distance between vectors of 
both CPTs. Arnon Cohen et al. [18] describe an HMM based speaker verifi cation system evaluated on a text-dependent database, 
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which verifi es speakers in their own specifi c feature space. The user feature space is determined by a Dynamic Programming 
(DP) feature selection algorithm, in which a suitable criterion, correlated with Equal Error Rate (EER) was developed and is 
used for this feature selection algorithm. A signifi cant improvement in verifi cation results was demonstrated with the DP selected 
individual feature space. An EER of 4.8% was achieved when the feature set was the “almost standard” Mel Frequency Cepstrum 
Coeffi cients (MFCC) space (12 MFCC + 12 ΔMFCC). Under the same conditions, a system based on the selected feature space 
yielded an EER of only 2.7%. Mijail Arcienega et al. [19] present a Bayesian network approach for modeling the pitch and 
spectral envelope and showed an increase in the performance of the speaker recognition system. In which the conditional statisti-
cal distributions (represented by GMMs) of the features are simultaneously exploited for increasing the recognition score within 
the approach, and in particularly in noisy conditions. Driss Matrouf et al. [20] investigate the effect of voice transformation on 
automatic speaker recognition systems performance and showed an increase of about 2.7 time of the likelihood ratio, without 
a degradation of the natural aspect of the voice. It focuses on increasing the impostor acceptation rate, by modifying the voice 
of an impostor in order to target a specifi c speaker. Their work is inspired from the idea that in several forensic situations, it is 
reasonable to think that some organizations have a knowledge on the speaker recognition method used by the police department 
and could impersonate a given, well known speaker.  

2. Biometric Speech Verifi cation 

2.1 Speech Analysis and Feature Extraction
Gaussian Mixture Models (GMMs), is the main tool used in text-independent speaker verifi cation, in which can be trained 
using the Expectation Maximization (EM) algorithm [4]. In this work the speech modality, is authenticated with a multi-lingual 
text-independent speaker verifi cation system. The speech trait is comprised of two main components as shown in fi gure 1: 
speech feature extraction and a Gaussian Mixture Model (GMM) classifi er. The speech signal is analyzed on a frame by 
frame basis, with a typical frame length of 20 ms and a frame advance of 10 ms [5]. For each frame, a dimensional feature 
vector is extracted, the discrete Fourier spectrum is obtained via a fast Fourier transform from which magnitude squared 
spectrum is computed and put it through a bank of fi lters. The critical band warping is done following an approximation to 
the Mel-frequency scale which is linear up to 1000 Hz and logarithmic above 1000 Hz. The Mel-scale cepstral coeffi cients 
are computed from the outputs of the fi lter bank [6]. The state of the art speech feature extraction schemes (Mel frequecy 
cepstral coeffi cients (MFCC) is based on auditory processing on the spectrum of speech signal and cepstral representation of 
the resulting features [7]. One of the powerful properties of cepstrum is the fact that any periodicities, or repeated patterns, 
in a spectrum will be mapped to one or two specifi c components in the cepstrum. If a spectrum contains several harmonic 
series, they will be separated in a way similar to the way the spectrum separates repetitive time patterns in the waveform. The 
description of the different steps to exhibit features characteristics of an audio sample with MFCC is showed in fi gure 2.  

Figure 1. Acoustic Speech Analysis
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The distribution of feature vectors for each person is modeled by a GMM. The parameters of the Gaussian mixture probability 
density function are estimated using three different estimation algorithms. The Expectation Maximization (EM) algorithm 
[8], Greedy algorithm (GEM) [8] and  Figueiredo-Jain (FJ) algorithm [8].

Given a claim for person C’s identity and a set of feature vectors  }{ 1i
 Nv
 i = X  x =

�
 supporting the claim, the average log likeli-

hood of the claimant being the true claimant is calculated using:

    (1)

where         (2)

and                     (3)

Here λC is the model for person C. NM is the number of mixtures, mj is the weight for mixture j (with constraint 1 1MN
j= jm =∑ ), 

and ( ; , )N x μ ∑
� �

 is a multi-variate Gaussian function with mean μ→ and diagonal covariance matrix ∑. Given a set 1{ }B
b b=λ

of B background person models for person C, the average log likelihood of the claimant being an impostor is found using:

                                                       
 (4)

The set of background person models is found using the method described in [15]. An opinion on the claim is found using:

  (5)  

The opinion refl ects the likelihood that a given claimant is the true claimant (i.e., a low opinion suggests that the claimant is 
an impostor, while a high opinion suggests that the claimant is the true claimant).  

2.2 Maximum Likelihood Parameter Estimation  
Given a set of observation data in a matrix X and a set of observation parameters θ the ML parameter estimation aims at 
maximizing the likelihood L(θ) or log likelihood of the observation data X ={X1,…, Xn}

   (6)

Assuming that it has independent, identically distributed data, it can write the above equations as:

 (7)

The maximum for this function can be fi nd by taking the derivative and set it equal to zero, assuming an analytical func-
tion.

    (8)

The incomplete-data log-likelihood of the data for the mixture model is given by:

   (9)

Which is diffi cult to optimize because it contains the log of the sum. If it considers X as incomplete, however, and posits 
the existence of unobserved data items 1{ }N

i iY y ==  whose values inform us which component density generated each 
data item, the likelihood expression is signifi cantly simplifi ed. That is, it assume that yi ∈{1..K} for each i, and yi = k if 
the i-th sample was generated by the k-th mixture component. If it knows the values of Y, it obtains the complete-data log-
likelihood, given by:
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  (10)

  (11) 

  (12)

 (13)

Which, given a particular form of the component densities, can be optimized using a variety of techniques [9].

2.2.1 EM algorithm 
The expectation-maximization (EM) algorithm [8, 10, 11, 12] is a procedure for maximum-likelihood (ML) estimation in 
the cases where a closed form expression for the optimal parameters is hard to obtain. This iterative algorithm guarantees 
the monotonic increase in the likelihood L when the algorithm is run on the same training database.

The probability density of the Gaussian mixture of k components in Rd can be described as follows:

Ʀ   (14)

where φ(x|θi ) is a Gaussian probability density  with the parameters θi = (mi , ∑i )is the mean vector and ∑i is the covariance 
matrix which is assumed positive defi nite given by:

 (15)

and πi ∈ [0, 1] (i = 1,2,..., k) are the mixing proportions under the constraint ∑k
i=1 πi = 1. If it encapsulate all the parameters 

into one vector: Θk = (π1, π2,..., πk, θ1, θ2, ..., θk), then , according to Eq. (23), the density of Gaussian mixture can be rewrit-
ten as: 

 (16)

For the Gaussian mixture modeling, there are many learning algorithms. But the EM algorithm may be the most well-known 
one. By alternatively implementing the E-step to estimate the probability distribution of the unobservable random variable 
and the M-step to increase the log-likelihood function, the EM algorithm can fi nally lead to a local maximum of the log-
likelihood function of the model. For the Gaussian mixture model, given a sample data set S = {x1, x2,···, xN} as a special 
incomplete data set, the log-likelihood function can be expressed as follows: 

 (17)

Which can be optimized iteratively via the EM algorithm as follows: 

  (18)

   (19)

 (20)

.   (21) 

Although the EM algorithm can have some good convergence properties in certain situations, it certainly has no ability to deter-
mine the proper number of the components for a sample data set because it is based on the maximization of the likelihood.  

2.2.2 Greedy EM Algorithm
The greedy algorithm (GEM) [8, 10, 12, 13] starts with a single component and then adds components into the mixture one 
by one. The optimal starting component for a Gaussian mixture is trivially computed, optimal meaning the highest train-
ing data likelihood. The algorithm repeats two steps: insert a component into the mixture, and run EM until convergence. 
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Inserting a component that increases the likelihood the most is thought to be an eas ier problem than initializing a whole 
near-optimal distribution. Component insertion involves searching for the parameters for only one component at a time. 
Recall that EM fi nds a local optimum for the distribution parameters, not necessarily the global optimum which makes it 
initialization dependent method.

Given pc a C-component Gaussian mixture with parameters θc. the general greedy algorithm for Gaussian mixture is as fol-
lows:  

 1. Compute the optimal (in the ML sense) one-component mixture p1 and set C←1. 

 2. Find a new component N(x ; μ′, ∑′) and corresponding mixing weight α′ that increase the likelihood the most: 

μ′ ′ ′

h l k f d
 (22)

while keeping pc fi xed.  

 3. Set pc+1 (x) ← (1−α′) pc (x) + α′ N(x ; μ′, ∑′)

and then C ← C + 1.

 4. Update pc using EM (or more other method) until convergence. 

 5. Evaluate some stopping criterion; go to step 2 or quit.  

The stopping criterion in Step 5 can be for example any kind of model selection criterion, wanted number of components, 
or the minimum message length criterion.  

The crucial point is of course Step 2. Finding the optimal new component requires a global search, which is performed by 
creating CNcand candidate components. The number of candidates will increase linearly with the number of components C, 
having Ncand candidates per each existing component. The candidate resulting in the highest likelihood when inserted into 
the (previous) mixture is selected. The parameters and weight of the best candidate are then used in Step 3 instead of the 
truly optimal values.  

The candidates for executing Step 2 are initialized as follows: the training data set X is partitioned into C disjoints data sets 
{Ac}, c = 1…C, according to the posterior probabilities of individual components; the data set is Bayesian classifi ed by the 
mixture components. From each Ac number of Ncand candidates are initialized by picking uniformly randomly two data points 
xl and xr in Ac. The set Ac is then partitioned into two using the smallest distance selection with respect to xl and xr. The mean 
and covariance of these two new subsets are the parameters for two new candidates. The candidate weights are set to half 
of the weight of the component that produced the set Ac. Then new xl and xr are drawn until Ncand candidates are initialized 
with Ac. The partial EM algorithm is then used on each of the candidates. The partial EM differs from the EM and CEM 
algorithms by optimizing (updating) only one component of a mixture; it does not change any other components. In order to 
reduce the time complexity of the algorithm a lower bound on the log-likelihood is used instead of the true log-likelihood. 
The lower-bound log-likelihood is calculated with only the points in the respective set Ac. The partial EM update equations 
are as follows:

   (23)

Ɲ
    (24)

    (25)

   (26)

where N(Ac) is the number of training samples in the set Ac. These equations are much like the basic EM update equations 
in Eqs. (19) - (21). The partial EM iterations are stopped when the relative change in log-likelihood of the resulting C + 1 
–component mixture drops below threshold or maximum number of iterations is reached. When the partial EM has converged 
the candidate is ready to be evaluated.  
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2.2.3 Figueiredo-Jain Algorithm 
The Figueiredo-Jain (FJ) [8,10,12,13] algorithm  tries to overcome three major weaknesses of the basic EM algorithm. The EM 
algorithm presented previous section requires the user to set the number of components and the number will be fi xed during the 
estimation process. The FJ algorithm adjusts the number of components during estimation by annihilating components that are 
not supported by the data. This leads to the other EM failure point, the boundary of the parameter space. FJ avoids the boundary 
when it annihilates components that are becoming singular. FJ also allows starting with an arbitrarily large number of compo-
nents, which tackles the initialization issue with the EM algorithm. The initial guesses for component means can be distributed 
into the whole space occupied by training samples, even setting one component for every single training sample.   

The classical way to select the number of mixture components is to adopt the “model-class/model”  hierarchy, where some 
candidate models (mixture pdf’s) are computed for each model-class (number of components), and then select the “best” 
model. The idea behind the FJ algorithm is to abandon such hierarchy and to fi nd the “best” overall model directly. Using 
the minimum message length criterion and applying it to mixture models leads to the objective function:  

   (27)    

Where N is the number of training points, V is the number of free parameters specifying a component, and Cnz is the number 
of components with nonzero weight in the mixture (∝C > 0). θ in the case of Gaussian mixture is the same as in (Eq. 3) The 
last term ln L(X, θ) is the log-likelihood of the training data given the distribution parameters (Eq. 13).

The EM algorithm can be used to minimize Eq. 27 with a fi xed Cnz . It leads to the M-step with component weight updating 
formula: 

.  (28)  

This formula contains an explicit rule of annihilating components by setting their weights to zero.   

The above M-steps are not suitable for the basic EM algorithm though. When initial C is high, it can happen that all weights 
become zero because none of the components have enough support from the data. Therefore a component-wise EM algorithm 
(CEM) is adopted. CEM updates the components one by one, computing the E-step (updating W) after each component 
update, where the basic EM updates all components “simultaneously”. When a component is annihilated its probability mass 
is immediately redistributed strengthening the remaining components.

When CEM converges, it is not guaranteed that the minimum of Λ(θ, X) is found, because the annihilation rule (Eq. 28) 
does not take into account the decrease caused by decreasing Cnz. After convergence the component with the smallest weight 
is removed and the CEM is run again, repeating until Cnz = 1. Then the estimate with the smallest Λ(θ, X ) is chosen. The 
implementation of the FJ algorithm uses a modifi ed cost function instead of Λ(θ, X) .

  (29)

3. Experiments Set Up 

The experiments were performed using audio database extracted from video, which is encoded in raw UYVY. AVI 640 x 
480, 15.00 fps with uncompressed 16bit PCM audio; mono, 32000 Hz little endian. The capturing devices for recording the 
video and audio data were: Allied Vision Technologies AVT marlin MF-046C 10 bit ADC, 1/2” (8mm) Progressive scan 
SONY IT CCD; and Shure SM58 microphone. Frequency response 50 Hz to 15000 Hz. Unidirectional (Cardiod) dynamic 
vocal microphones. The extracted 16 bit PCM audio fi les (with wav header), were sampled at 16000 Hz, mono little endian. 
Thirty subjects were used for the experiments in which twenty-six are males and four are females. For each subject, six multi-
lingual (.wav fi les) of one minute each recording were used for each subject. The database obtained from eNTERFACE 2005 
[14]. For the experts, four speech samples were used for the modeling (training); two samples were used for the subsequent 
validation and testing. Three sessions of the speech database were used separately. Session one was used for training the 
speech experts. Each expert used ten mixture client models. To fi nd the performance, Sessions two and three were used for 
obtaining expert opinions of known impostor and true claims.  

Performance Criteria 
The basic error measure of a verifi cation system is false rejection rate (FRR) and false acceptance rate (FAR) as defi ned in 
the following equations:  
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False Rejection Rate (FRRi): is an average of number of falsely rejected transactions. If n is a transaction and x(n) is the 
verifi cation result where 1 is falsely rejected and 0 is accepted and N is the total number of transactions then the personal 
False Rejection Rate for user i is

1
( )

N1
i N n

x nFRR  = 
=
∑  (30) 

False Acceptance rate (FARi) is an average of number of falsely accepted transactions. If n is a transaction and x(n) is the 
verifi cation result where 1 is a falsely accepted transaction and 0 is genuinely accepted transaction and N is the total number 
of transactions then the personal False Acceptance Rate for user i is

1
( )

N1
i N n

x nFAR  = 
=
∑  (31)

Both FRRi and FARi are usually calculated as averages over an entire population in a test. If P is the size of populations then 
these averages are

P
i

i

1
FRR

P
FRR = ∑  (32)

P
i

i

1
FAR

P
FAR = ∑  (33)  

Equal Error Rate (EER), is an intersection where FAR and FRR are equal at an optimal threshold value. This threshold 
value shows where the system performs at its best. 

4. Results and Discussions 

As a common starting point, classifi er parameters were selected to obtain performance as close as possible to EER on clean test 
data (following the standard practice in the face and speaker verifi cation area of using EER as a measure of expected perfor-
mance). A good decision is to choose the decision threshold such as the false accept equal to the false reject rate. In this paper it 
uses the Detection Error Tradeoff (DET) curve to visualize and compare the performance of the system (see Figure 3).  
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The (EM), (GEM) and (FJ) estimation algorithms based state-of-the art fi nite mixture modal (GMM) achieve a signifi cant 
performance rates, EER=0.26 % for “EM”, EER=0.21 % for “GEM” and EER=0.16 % for “FJ”. Thus, the behavioral infor-
mation scheme based speech biometrics presented a robust base with a discriminating power to the identity authentication.    

5. Conclusions and Future Work 

The paper has presented a human authentication method of behavioural biometrics speech information. Simulation results 
show that state-of-the art fi nite mixture modal (GMM) is quite effective in modelling the genuine and impostor score densi-
ties. The simulation results are showed a signifi cant performance rate based EER. Hence, the behavioral information scheme 
based speech biometrics is robust and have a discriminating power, which can be explored for identity verifi cation. 

Furthermore it concentrated on the fusion with other modalities. Handwriting signature, dynamic face and fi ngerprint for the 
target to refi ne more the EER performance.     
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