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ABSTRACT: Before Java Fork-Join framework implementation, the only way to parallelize recursive application in java

was done in a naïve way, which consists of creating as many threads as existing tasks. However, javar introduced the cut-

depth parameter that consists of limiting the creations of the number of threads, but does not allow benefiting from fine-grain

parallelism.

The purpose of this article is to design and implement a performing compiler for parallelizing Java application with divide-

and-conquer algorithm. The compiler includes directives and environment variables. It is built around Java ForkJoin

framework, which is directly integrated within Java 1.7 version and imported as archive library in Java 1.6 and 1.5 versions.

This compiler tends to make easier and less error-prone the parallelization of recursive applications. Although in Java

ForkJoin Framework there are two user-level performance parameters , which are the number of threads and the threshold,

our compiler introduces another user-level performance parameter which is the MaxDepth corresponding to the maximum of

depth before which parallel execution is enforced and after which sequential execution is enforced. This allows balancing

between fine-grain and coarse-grain parallelisms. Experimental results are presented and discussed.
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1. Introduction

Over many years, the only way in Java to deal with divide-and-conquer algorithm was to do it in a naïve way by using the low

level threads[7]. The naïve way method consists of creating as many threads as tasks. Knowing the cost of creating and

destructing threads, this method rapidly reached its limits in terms of performance. That makes the divide-and-conquer applications

relatively yielded poor performances. In 2000 Doug Lea introduces Java Fork-Join [5] framework which deals with divide-and-

conquer algorithm and which implements high level threads. The framework is based on a pool of worker threads, a pool of tasks

considered as lightweight processes and a strategy of task scheduling. Tasks are spawned and results are joined. The work-

stealing strategy is used to manage the queuing. The performance is determined by a parameter named Threshold. However,

parallelizing a recursive application by using the framework is done by hand. Java Concurrencer [3] is an effort to make easier the
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utilization of the framework. It is a graphic-level source-to-source parallelizing tool that transforms a sequential recursive

application into parallel one. However, that tool is only utilizable with eclipse IDE and only uses Threshold as performance

parameter.

Before Java Fork-Join framework implementation, Java suffers from a lack of performing parallelizing compiler dealing with

recursive applications. The rare existing compilers yield poor performances. Jomp [2] is a source-to-source parallelizing compiler

which deals with loop parallelism. However, recursive parallelism can be dealt with Jomp by using section directive. But, it is not

a good way because, whenever the recursive method is invoked, a thread is created. Javar [1] is a source-to-source compiler that

allows dealing with divide-and-conquer algorithm [9] [4]. However, the performance is a trade-off between coarse-grain parallelism

and fine-grain parallelism at the spent of recurrent thread creation and destruction.

We propose to design and implement a parallelizing compiler, FJComp, which is easier to use, less error-prone and performing.

This compiler tends to achieve a fine-grain parallelism while reducing the overhead of the thread and task management. The

performance depends on three user-level parameters that are the number of worker threads, the threshold and the maximum of

depth. The remainder of the paper is organized as follows: Section 2 is the design of the compiler, Section 3 corresponds to the

implementation, Section 4 evaluates the performance of the compiler, Section 5 describes similar works. Finally Section 6

concludes.

2. Design

ForkJoin Framework [5] hides the complexity of the recursive parallel programming. Thus, both parameters the programmer must

specify are the threshold and the number of worker threads. We design our compiler with respect to these specifications.

However, we add another user-level performance parameter, MaxDepth, which consists of stopping the parallel execution and

resuming a sequential execution after a maximum of depth of recursion is reached. The threshold and the maximum of depth are

both parameters which limit the parallel recursive execution. Threshold specification depends on the type of the tasks to be

divided up. For instance, in the Fibonacci algorithm, the threshold conditional expression is: if(n<THRESHOLD. In the

Sorting algorithm such as Quicksort or Mergesort, the threshold conditional expression is: if((right-left)<THRESHOLD).

This means that threshold specification is bound to the type of the tasks to be subdivided and requires well understanding the

algorithm. However, MaxDepth is more intuitive than Threshold because it is based on the number of recursions or the depth in

the tree context. However, it is strongly recommended to not use both specifications at the same time. If both clauses are

specified by the programmer, then MaxDepth is accounted for and Threshold Expression is ignored. If none of them is specified,

the MaxDepth default value is used. As root of the directives, we use //taskq. This is followed by clauses which are optional.

//taskq [nthreads = <int>]

[if(threshold_exp)][MaxDepth =

<int>]

nthreads=<int> corresponds to the number of worker threads. The default value is given by Runtime.getRuntime().

availableProcessors()and corresponds to the available number of processors of the underlying system.

if(threshold_exp): In case the conditional expression evaluates to false, parallel execution is done and tasks are

forked and joined. Otherwise, parallel execution is stopped and sequential execution is enforced.

MaxDepth = <int> corresponds to the depth after which, sequential execution is enforced. Before reaching the specified

maximum of depth, tasks are forked, computed in parallel and results are joined. The default value is 1.

task: identifies the invoked method as a recursive task. It is used inside the block of code following //taskq.

Example1: Fibonacci Computation

public class Fibonnacci {

   public long fibonacci(int n)

     { if(n==0) return 0;
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if (n==1) return 1; long x, y;

     //taskq nthreads=4 MaxDepth=4

     {

        //task

        x=fibonacci(n-1);

       //task

  y=fibonacci(n-2);

     }

        return x+y ;

    }

}

Example 2. Quicksort Sorting

public class Quicksort {

   public void Qq ( int[]a,intleft,int right )

   {

     int pivotIndex=partition(a,left,right ) ;

     //taskq nthreads=8 if((left-right)<100)

     {

       if ( left < pivotIndex )

         //task

         Qs(a,left,pivotIndex ) ;

       if ( pivotIndex + 1 < right )

         //task

          Qs(a,pivotIndex+1,right) ;

      }

    }

}

3. Implementation

Building our parallelizing compiler is made possible thank to the utilization of the JavaCC [6] compiler generator. JavaCC includes

a jjt extension file that contains tokens and syntactic expressions. It also includes a jj extension file that implements the

abstract syntactic tree generated from the syntactic expressions. For instance //taskq is registered as a token and also

corresponds to a syntactic expression and then represents a node within the abstract syntactic tree. Each node is a java

extension file and contains a method that accepts the node be visited. The encountered constructs are unparsed and then

corresponding instructions are written within a method of AddAcceptVisitor class. A class implementing a symbol table

is added. This class tracks the local variables and parameters.

The generated code is made up of the original class in which we add a private class which subclasses RecursiveAction and

then overrides the compute method. In that method, the tasks are created and concurrently executed. The content of the

sequential recursive method is modified and transformed into a parallel method involving ForkJoinPool to create the worker

threads that compute the recursive tasks. When recursive method returns a value, our compiler creates an instance variable

named result which holds the various returned values.

4. Experiments

We propose to test the performance of the programs parallelized by FJComp. The objective is 1) to compare the performances

following the JVM versions (Java 6 and Java 7) 2) to compare MaxDepth and Threshold parameters.

4.1 Environment of test

Our programs are performed in an IBM X 3650 with 8 -cores Quad-Core Intel Xeon processors E5420, 8 Gigabytes of RAM

running on Linux Fedora 11 with Java 1.6.0 and Java 1.7.0 runtime environment.
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Our experiments cover Fibonacci, Quicksort, Mergesort, Integrate and Matrix Multiplication. Fibonnaci is a computational

algorithm summing natural integer. QuickSort is a divide-and-conquer algorithm which partitions list around a pivot. The

elements of the left-side list are inferior to the pivot while the elements of the right-side list are superior to the pivot. Mergesort

is a divide-and-conquer algorithm which divides the list into two equal sub lists until the sub list is reduced to two elements. A

reverse traverse is used to sort back the sub-lists and merge them until getting the original list, which is then sorted. Integrate

is a mathematical computing corresponding to the recursive Gaussian quadrature summing over odd values from 1 to 5 and

integrating from -47 to 48. We have two versions of Matrix Multiplication, an iterative version and an recursive version. The

recursive version is O(n3) while the recursive version using Strassen’s algorithm is O(n2.8) of complexity.

4.2 Results

Figure 1. Comparing performances of Fibonacci dealt with FJComp

over Java 6 and Java 7 by using the MaxDepth parameter

Figure 2. Comparing performances of Fibonacci dealt with FJComp

over Java 6 and Java 7 by using the Threshold parameter

Figure 3. Comparing speedups of Fibonacci by

using Threshold and MaxDepth parameters
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Figure 4. Comparing performances of Integrate dealt with FJComp

over Java 6 and Java 7 by using the MaxDepth parameter

Figure 5. Speedups of Integrate by using MaxDepth parameters

Figure 6. Comparing performances of Quicksort dealt with FJComp

over Java 6 and Java 7 by using the MaxDepth parameter

4.3 Discussion

4.3.1 Comparison of performances of FJComp running over Java 7 and Java 6

Figure 1, Figure 2, Figure 4, Figure 6, Figure 7 corresponding to the execution of Fibonacci, Integrate and Quicksort show that
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Figure 7. Comparing performances of Quicksort dealt with FJComp

over Java 6 and Java 7 by using the Threshold parameter

Figure 8. Comparing speedups of Quicksort by using Threshold and MaxDepth parameters

Figure 9. Comparing performances of Mergesort dealt with FJComp

over Java 6 and Java 7 by using the MaxDepth parameter
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Figure 10. Comparing performances of Mergesort dealt with FJComp

over Java 6 and Java 7 by using the Threshold parameter

Figure 11. Comparing speedups of Mergesort by using Threshold and MaxDepth parameters

Figure 12. Comparing performances of Matrix Multiplication dealt with FJComp

over Java 6 and Java 7 by using the MaxDepth parameter
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Figure 13. Comparing performances of Matrix Multiplication dealt with

FJComp over Java 6 and Java 7 by using the Threshold parameter

Figure 14. Comparing speedups of Matrix Multiplication by using

Threshold and MaxDepth parameters

FJComp better performs over Java 6 than over Java 7 whatever the performance parameter. However, Figure 9, Figure 10 , Figure

12 and Figure 13 respectively corresponding to the execution of Mergesort and Matrix Multiplication indicate that dealing

Mergesort and Matrix Multiplication with FJComp running over Java 7 gives best performances than running over Java 6.

4.3.2 MaxDepth Performance

Using MaxDepth parameter (Figure 1), Fibonacci reaches its best performances running over 2 processors with MaxDepth value

equal to 5; running over 4, 6 and 8 processors with MaxDepth value equal to 10. Integrate (Figure 4) running over 2, 4, 6 and 8

processors with MaxDepth value equal to 15 give best perforemances. Quicksort (Figure 6) reaches its best performances when

MaxdDepth is equal to 10 whatever the number of processors(2, 4, 6, 8). Mergesort (Figure 9) reaches its best performances

when running over 2 processors with MaxDepth equal to 15; when running over 4 processors with MaxDepth equal to 1, when

running over 6 and 8 processors with MaxDepth equal to 5. Matrix Muliplication(Figure 12) reaches its best performances when

MaxDepth is of 5, 1, 3, 1 over respectively 2, 4, 6, 8 available processors.
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4.3.3 Threshold Performance

Using Threshold parameter (Figure 2), Fibonacci reaches its best performances running over 2 processors with treshold value

equal to 20; running over 4, 6 and 8 processors with Threshold value equal to 30. Quicksort (Figure 7) reaches its best

performances when Threshold is equal to 100000 whatever the number of processors (2, 4, 6, 8). Mergesort (Figure 10) reaches

its best performances when running over 2 and 4 processors with Threshold value is equal to 10000; when running over 6

processors with Threshold value equal to 1000000; when running over 8 processors with Threshold value equal to 100000.

Matrix Multiplication (Figure 13) reaches its best performances running over 2, 4, 6, 8 processors with treshold value equal to

1024, 2048,1024, 2048 rescpectively.

4.3.4 MaxDepth versus Treshold Performances

According to our experiment results Integrate, Quicksort and Meregsort reach their best performance with Treshold parameter.

Meanwhile Fibonacci and Matrix Multiplication best perform with MaxDepth parameter.

4.3.5 Speedup

Figure 3, Figure 8 and Figure 11 show that using Threshold parameter slightly gives best performances than using MaxDepth

excepted Figure 14 where MaxDepth parameter slightly outperforms Treshold parameter.

4.3.4 Scale up

Figure 3 and Figure 5 show that Fibonacci and Integrate best scale up whatever the number of processors. But, Quicksort

(Figure 8) and Mergesort (Figure 11) best scale up when number of processors vary from 2 to 4 and slightly scale up from 6 to

8 processors. Figure 14 shows that Matrix Multiplication slighty scales up from 4 to 8 processors.

The following table is a summary of the results of experiments and highlights the best performance of Fibonacci, Integrate,

Quicksort, Mergesort and Matrix Multiplication according to the Java runtime (Java 6 or Java 7) and the performance

parameter(MaxDepth or Threshold)

Table 1. Performance Comparisons

The following table determines the various criterion of performance of Fork-Join framework. For each application, the dataset

and how algorithm is load balanced are determined. However, how the garbage collector interacts with the application is an

implementation-dependent.

Table 2. Performance Criterions of Fork-Join framework
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According to Table 1, Fibonacci, Integrate and Quicksort best perform over Java 6 whereas Mergesort and Matrix Multiplication

best perform over Java 7. If we refer to [5], garbage collection, memory locality, task synchronization and task locality determine

the performance. Fibonacci and Integrate have scalar dataset (Table 2), that’s why they don’t suffer from the memory locality.

They also well load balance, thus the synchronization, if any, does not impact the performance of those applications. All those

reasons make those applications scalable.

Task locality depends on the ability of the program to well load balance. For instance Quicksort is an irregular algorithm in terms

of load balancing; because it depends on the choice of the pivot. Mergesort and Matrix Multiplication well load balance the

small tasks, but more the tasks are big and the more chance some worker threads remain idle while others are active. So,

Mergesort, Quicksort and Mayrix Multiplication, not only their suffer from the load imbalancing but their suffer from the

synchronization due to the fact that the idle worker try to steal works of active threads. Quicksort most suffers from the task

locality and synchronization because work-stealing strategy is sometimes used. Furthermore Quicksort Meregesort, Matrix

Multiplication suffer from memory locality and bandwidth because these algorithms handle array of data (Table 2 ) . The garbage

collection is implementation-dependent on the virtual machine. From our experiment we cannot determine how Java 6 and Java

7 garbage collectors interact with our applications. Knowing that Quicksort, Mergesort and Matrix Multiplication suffer from

task locality and memory locality, what makes the difference of performance between running over Java 6 and Java7? What

makes the difference between Fibonacci, Integrate, Quickort (best performance with Java 6) and Mergesort and Matrix Multiplication

(best performance with Java 7)? We can notice that Fibonacci and Integrate have scalar dataset and their best performances are

with Java 6. Knowing that, these two applications well load balance and do not suffer from memory locality, we can observe that

Java 6 garbage collector best fit than Java 7 garbage collector when they deal with scalar data. When dealing with array dataset,

Java 7 best fits with Mergesort and Matrix Multiplication and Java 6 is most indicated for Quicksort. We can observe that,

Mergesort and Matrix Multiplication are similar in a way they subdivide their tasks. According to our experimental results, most

of time dealing applications with our compiler over Java 7 give bets performances than running over Java 6.

Using the performance parameters Threshold and MaxDepth is a trade-off between the simplicity and the performance. According

to Table 1, MaxDepth outperforms Treshold when dealing with Fibonacci, Integrate and Matrix Multiplication and Treshold

outperforms MaxDepth when dealing with Quicksort and Mergesort. Using MaxDepth is much easier than using Threshold.

Notice that the experiments do not cover all the possible values of MaxDepth and Threshold. Our experiments only focus on

ranges of values. Thus, to really know the difference of performance between MaxDepth and Threshold, exhaustive experiments

covering all possible values must be done. These parameters allow defining fine-grain and coarse-grain parallelism. For instance,

Mergesort and Matrix Multiplication using MaxDepth parameter soon reach their best performances. That means Mergesort

and Matrix Multiplication relatively need coarse-grain parallelism rather than fine-grain. Unlike Mergesort, Quicksort needs

more fine-grain parallelism than coarse-grain parallelism because of its irregularity in terms of load balancing.

5. Related work

In [5], Doug Lea designs and implements a Java framework for supporting divide-and-conquer program. This framework is easy

to use and consists of splitting the task into independent subtasks via fork operation, and then joining all subtasks via a join

operation. The performances of experiment show a performance gain. The performance mainly depends on garbage collection,

memory locality, task synchronization, and task locality. The framework is made up of a pool of worker threads, a fork/join Task,

and queues of tasks. The worker threads are standard (“heavy”) threads. The fork/join tasks are lightweight executable class.

The queues of task are made up of dqueue (supports both LIFO and FIFO). Each worker thread generates a new task via a fork

operation and each thread has its own queue. The framework also uses work-stealing algorithm which consists of, from an

empty queue of a worker thread, popping a task belonging to a non-empty queue of another worker thread. Both parameters that

can impact the performances are the threshold and the number of worker threads. When the subtask size is smaller than the

threshold, then that subtask is executed serially. But, sometimes it is very difficult to determine the threshold.

CONCURRENCER [3] is a tool that transforms sequential Java code into parallel program. From the sequential code Int variable-

type, HashMap variable-type and recursion-like algorithm are transformed into AtomicInteger, ConcurrentHasmap and

ForkJoinTask respectively. However, this tool is integrated within Eclipse’s refactoring engine. In other words, this tool is not

useful if the program operates with an IDE other than eclipse. In the recursion conversion to ForkJoinTask, the performance

parameter the programmer must specify is the threshold. However, for some divide-and-conquer it is difficult to determine the

threshold. In our compiler, FJComp, we introduce another parameter performance which is the MaxDepth, when reached,

sequential algorithm is performed. Specifying the MaxDepth is easier than using the Threshold.
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From version 3.0, OpenMP [8] introduces the task parallelism. Programmer uses constructs to identify the tasks to be parallelized.

Task constructs are enclosed within the parallel construct. Tasking, as designed in OpenMP is a good candidate to parallelize

recursive algorithm. In the context of recursive application, each invoked method is identified as task. Clauses allow managing

the variables. The if clause, when its scalar expression evaluates to false, enables sequential execution. This is very important

for the performance.

Javar [1] is not designed to be a fine-grain parallelism and it is implemented in a naïve way. The cut_depth is the performance

parameter. If the cut_depth is too small, there is no overhead for the thread creation but a coarse-grain parallelism is achieved.

When the cut_ depth is too high, the fine-grain parallelism is achieved but there is extra overhead in terms of thread creation and

destruction.

Jomp [2] is an openMp like-interface for shared memory parallel programming. However, since then OpenMP has advanced

version while Jomp did not develop. Jomp was designed to deal with loop-level parallelism and sometimes exploits parallelism

when a method has several independent sections. A section is considered as an enclosed block of code within a method. To

parallelize dive-and-conquer algorithm, Jomp uses section construct. This causes as many parallel region creations as recursion

invocations. Given that creating and destroying thread need resource invocations (cpu, memory), Jomp is not suitable to deal

with parallel recursive algorithm.

6. Conclusion

We have implemented and designed FJComp, a source-to-source parallelizing compiler that deals with Java divide-and-conquer

algorithm. The compiler is made up of //taskq  directives with optional clauses which are Threshold conditional expression

and MaxDepth value. Although ForkJoin framework is easy to use, the programmer may sometimes be facing the error of coding.

Our compiler is designed to be easier to use and les error-prone.

Experimental results show that dealing with our compiler gives performance gain. Comparison between Java 6 and Java 7 shows

that, Java 6 when dealing with scalar dataset outperforms Java 7 and Java 7 when dealing with array dataset outperforms Java6

most of time. It is obvious that how Java 6 and Java 7 garbage collectors interact really differ whether we have scalar dataset or

array dataset. Comparison between Threshold and MaxDepth shows that both parameters slightly yield same performances.

However, choosing one of them is a trade-off between simplicity and performance. But, it is much easier to use MaxDepth.

Several future works may be planned. The first one is to combine Jomp with FJComp in order to obtain a unified compiler and in

order to get better performance when the program to be parallelized both implement divide-and-conquer algorithm and loop-

level parallelism. The second one is to improve the compiler by adding the variable clauses (private, shared, firstprivate). The

third one is to do more studies and benchmarks in order to find out how Java 6 and Java 7 garbage collectors really interact with

Fork-Join programs.
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