
 Journal of Information Technology Review Volume 4 Number 1 February 2013 25

Mapping Between Petri Nets and DEVS Models

Sofiane Boukelkoul, Mohammed Redjimi

Université du 20 Août 1955 – 21000 Skikda

Faculté des sciences- Département d’informatique

Skikda, Algéria

{bouk.sofiane, redjimimed}@yahoo.fr

ABSTRACT: Complex systems are characterized not only by the diversity of their components, but also by the interconnections

and interactions between them. For modeling such systems, we often need more than one formalism and we must concern

ourselves with the coexistence of heterogeneous models.This purpose can be achieved by using the multi-modeling. The

transformation of such models in a pivot model is a technique in this context. This paper proposes a translation approach of

Petri nets to DEVS “Discrete Event System Specification” models.We present mechanisms which can systematically transform

the places and transitions of Petri netsto DEVS models. The coupling of these models generates a DEVS coupled model

capable of running on platforms based on DEVS.

Keywords: DEVS, Petri Nets, Multi-modeling, Coupling Model, Modeling and Simulation

Received: 1 December 2012, Revised 10 January 2013, Accepted 13 January 2013

© 2013 DLINE. All rights reserved

1. Introduction

The diversity and the complexity of increasingly growing systems has forced the scientific community to implement tools for

modeling and simulation more and more efficient and meet the expressed requirements and constraints and supports the

heterogeneity and especially coupling systems in various disciplines. Now, it appears essential to use federative tools which

offer extensive possibilities of abstraction and formalization. The multi-modeling consists of using several formalisms when one

wants to model complex systems whose components are heterogeneous.The assembly models for these subsystems with the

consideration of the interconnections and interactions between them consist in a set of coupled models representing the initial

complex system [1].

Therefore, it has become essential to implement tools and coupling mechanisms to allow multiple models based on different

formalisms to coexist.

Our work relates to the implementation of algorithmic tools that allow the transformation of formal Petri nets (PN) models in

equivalent models based on the DEVS formalism. So these models can be simulated in DEVS environments.

This paper is structured as follow: First, we quote related works and justifying our motivations, followed by an introduction to

multi-modeling. Then we formally present DEVS and PN formalisms. Then we proceed to the presentation of the mechanism of

transformation from PN to DEVS with justifications of motivations and choices. Finally, we end with a conclusion and perspectives.

26 Journal of Information Technology Review Volume 4 Number 1 February 2013

2. Related Works and Motivations

Several researches have focused on the study of the relationship between PN or other dynamic formalism and DEVS formalisms,

since DEVS is considered as one of the basic modeling formalisms based on the unifying framework of general dynamic

modeling formalism. Jean de Lara proposed in [4] a modeling based multi-paradigm to generate PN and State-Charts. It consists

of modeling at multiple levels of abstraction implemented in AToM3 “Tool for Multi-formalism and Meta-Modeling”. Where is

presented a graphical abstraction of meta-models of Satcharts and PNs. For example the use of CD++ to develop PN [3] is closest

to our work. However it only provides tools for generating PN by using library of predefining models for PN places and

transitions. Therefore one may be couldn’t find the appropriate model for given transition especially when it contains a big

number of ports. Furthermore, in [3] we don’t find a vital parallelism because firing transitions is scheduled. That means one

never find more than one transition in firing state, while the parallelism is one of the fundamental PN characteristics. Thus the

conflict characteristic of PNs is silently absent since without parallelism the problematic of conflict is not considered. So the

value of our work is that is characterized by the development of algorithms that can automatically transform the existing PN in

DEVS models. Moreover, the most important characteristics of PNs such as parallelism, concurrence and conflict are well

preserved in our approach.

3. Multi-modeling

Complex systems are so far to be modeled with only one formalism because many aspects are present. And one formalism can’t

treat all the system frameworks. It can be semantically adequate for one or more aspect of a complex system but unlikely not for

all. So multi-modeling comes to benefit of the multitude of formalisms’ representation force by allowing coexisting many models

based on different formalism in one model. According to Hans Vangheluwe [2], multi modeling paradigm focuses on three axes:

• The coupling and transformation of models described in different formalisms.

• Abstraction of models by defining the relationship between them at each level of abstraction.

• The meta-model which focuses on the description of the classes of models (models of models).

In [14] there is a representation of various possible transformations by using formalism transformation graph “FTG”.

4. The DEVS Formalism

DEVS was initially introduced by B. P. Zeigler [5] in 1976 for discrete event systems modeling. It is modular, hierarchical, abstract

and independent of any implementation. It is characterized by a rigorous formalization of exchange events between its models

(atomic or coupled). DEVS offers a formal framework of model coupling. Further more, DEVS is closed under coupling, i.e. a

coupled model can be considered as an equivalent atomic model. This characteristic is strongly required for the hierarchical

model construction.

A DEVS atomic model is based on a continuous-time inputs, outputs, states and functions (exit, transition, life states). Coupled

models are more complex. They are constructed by connecting several atomic models or even coupled hierarchically. Interactions

are handled through the ports of entry and exit models, which promotes modularity.

4.1 Formal Specification of a DEVS atomic model

A DEVS atomic model is described by the following equation:

Atomic DEVS = (X, Y, S, δ
int

, δ
ext

, δ
con

, λ, t
a
)

X is the set of external inputs.

Y is the set of model outputs.

S is the set of states.

δ
int

: S → S: is the internal transition function that moves the system from a state to another autonomously. It depends on the time

elapsed in the current state.

δ
ext

: S × X → S: is the external transition function occurs when model receives an external event. It returns the new state of the

(1)

 Journal of Information Technology Review Volume 4 Number 1 February 2013 27

system based on the current state.

δ
con

: X → S × S: is the transition function of conflict. It occurs if an external event happens when an internal change (autonomous)

system status. This feature is only present in a variant of DEVS: Parallel DEVS [6].

λ: S → Y: is the output function of the model. It is activated when the elapsed time in a given state is equal to its life.

t
a
 (s) represents the life of a state “s” of the system. It is the time during which the model will remain in this state, if no external

event occurs.

DEVS atomic model can be represented graphically as in Figure 1. It is represented by a rectangle with a plurality of inputs ports

and a plurality of outputs ports, represented by filled triangles. The value v
i
 is the value taken by an input or output port. This

value belongs to the set of possible values of p
i
 ports. An input port has a value in the processing of an event attached to that

port. An output port has a value when the output function takes a value for this port.

Figure 1.Representation of a DEVS atomic model

4.2 Formal Specification of a DEVS coupled model

Coupled DEVS formalism describes a system as a network of connected components. These components consist of models that

are atomic or coupled. These components interact with themselves by exchanging events and values through their ports. A

produced event by a model output can be received by input of other connected model. To note that the behavior of DEVS

coupled model is the same to atomic one since this formalism is closed under coupling. Thus the main fruit of this characteristic

is the ability to be perfectly hierarchical formalism. So coupled model can indeed be treated as atomic ones in large coupled

models by encapsulating them.

To illustrate the DEVS coupled model, we propose a simple example whose graph is given in Figure 2 where the coupled model

contains inside two interconnected models: A and B.

Coupled Devs= (X
self

,Y
self

, D,{M
d

/ d C D}, EIC, EOC, IC)

Self: is the model itself.

X
self

 is the set of inputs of the coupled model.

Y
self

 is the set of outputs of the coupled model.

D is the set of names associated with the components of the model, self is not in D.

{M
d

/ d C D} is the set of components of the coupled model.

EIC, EOC and IC define the coupling structure in the coupled model.

EIC is the set of external input couplings. They connect the model inputs coupled to those of its own components;

EOC is the external output couplings. They connect the outputs of the components to those of the coupled;

IC defines internal coupling. It connects the outputs of components with inputs from other components in the same coupled

model. However, no direct feedback loops are allowed, that means no output port of a component (model) may be connected to

an input port of the same component.

5. The Petri Nets (PN)

Petri Nets are a modeling formalism, developed originally by C.A Petri [7]. They are very suitable for dynamic systems

X
M

(P
0
, V

0
)

�

(P
0
, V

0
)

Y
M

(P
0
, V

0
)

�

(P
0
, V

0
)

(2)

28 Journal of Information Technology Review Volume 4 Number 1 February 2013

modeling. PNs are directed graphs with two types of nodes: places and transitions connected together by arcs. An arc should

never connect two nodes of the same type. Places represent in most cases the static aspect of the system, while transitions are

responsible for the dynamics. Each place can contain n tokens (n C N with N the set of positive integers). Arcs can be labeled

with a weight (positive integer), we speak of “generalized PN ”. If the weight of all arcs is equal to1, then the PN is called

“ordinary”.

A transition is said to be valid if all the places up streameach contain a number of tokens ≥ the weight of the arc which connects

to the transition. A valid transition can be fired. Crossing or firing a transition results in two simultaneous actions: the first is the

destruction of tokens in places located up stream of the arc connecting the transition to those places as match as the weight of

that arc. The second generates tokens in the places located down stream of the transition as match as the weight of the arc from

this transition instead.

Figure 2.Graphical representation of a coupled model consisting of two models

5.1 Specifying formal Petri Nets

Several formal definitions can specify the PN. We provide the most appropriate to our work, which defines formally a NP as 5-uple:

PN = (P, T, PRE, POST, Mo)

P: is the set of places, T: is the set of transitions, PRE: the matrix generated by applying P × T → N, PRE [i, j] = n / n = 0 if the place

is not upstream of the transition t
j
 else n = τ / τ is the weight of the arc from p

i
 to t

j
, POST: the matrix generated by applying T ×

P → N, POST [i, j] = n / n = 0 if the place p
i
 is not downstream of the transition t

j
 else n = τ / τ is the weight of the arc from t

j
 to

p
i
 and M

0
: is the vector of initial marking; M [i] = k / k is the number of tokens in place p

i
.

Figure 3, shows a PN which consists of three places and one transition modeling action (T1) having two conditions (P1, P2) to

be run. The result is put in place (P3). The weight of the arcs is equal to 1, it is not, therefore, necessary to label them.

Figure 3. Example of Petri Net

6. Transformation of PN to DEVS models

The multitude of modeling tools and formalisms and the desire to reuse existing models have stimulated researchers to guide

their works toward a goal of standardization of these tools. The DEVS formalism seems to be well suited for this mission.

6.1 Why DEVS?

The strength of DEVS is summed up in its ability to express, thanks to the concept of abstraction applied to each level, ranging

from atomic models to a collaboration of a set of models where each interact with others. Although in dependent of the

implementation, DEVS provides a modular and hierarchical vision of dynamic models. Events generated by a model can take in

in
1

in
2

out
1

out
2

in

outin

outA

B

P1

P2

T1 P3

(3)

 Journal of Information Technology Review Volume 4 Number 1 February 2013 29

various values fields and can best imuli for other models. Thus, according to B. P. Zeigler [6], we can prove that there is a model

DEVS for all discrete event systems. But we can go further. In fact, DEVS can be “universal” [8], allowing the coupling of models

and formalisms described as heterogeneous paradigms. The main idea is that the models are considered as black boxes that have

no link with the outside world except through input and output ports to exchange events and values. With this feature

abstraction, several models can be coupled while enjoying the reuse of existing models. It is also possible to perform formal

verification of DEVS models, which is a valuable aid in the design of systems [9].

In addition, several DEVS-based platforms are available as VLE “Virtual Laboratory Environment ” [10], DEVS JAVA [11]

developed in Java, Cell-DEVS “Cellular DEVS” which is based on the formalism of cellular automata [12].

6.2 Coupling models

Coupling models based on DEVS is a typical task. However, non-DEVS models require extra effort to be coupled. Two methods

exist to incorporate a non-DEVS model in the DEVS: co-simulation and transformation [13]. The transformation of non-DEVS

models (PNs in our case) to the DEVS, comes in the way to specify models in uniform language. Vangheluwe [14] represents the

various possible transformations by using formalism transformation graph “FTG”.

In the case of co-simulation: which is standardized are the communications between simulators and not the model specifications.

There are several works such as HLA (High Level Architecture) [15] which fit into this framework.

Figure 1. DEVS coupled models corresponding to the previous Petri net

decrement tokens
Increment or

Output stream

Initializing places

Initializing transitions

Control stream

OutP1

InitP

OutP2

OutT1

OutP3

CT1P2

OutP2

OutP1

InitT

InitP1

InitP2

CT1P1

OutT1

CT1

AT1P3

CP1T1

AP1T1

AP2T1

CP2T1

InitT1

CP2T1

AP2T1

AP1T1

CP1T1

InitP3

AT1P3

6.3 Mechanisms of PN transformation to DEVS

The idea of our approach is to have as a result a DEVS coupled model (CDEVS) faithful to the input PN. To this aim, we propose

30 Journal of Information Technology Review Volume 4 Number 1 February 2013

an algorithm that automatically generates CDEVS specifying its components and their inter connections.

6.3.1 Structure of resulting DEVS model

The coupled model is composed from several DEVS atomic models with many places and transitions according to the PN source.

Figure 4, illustrates the CDEVS model corresponding to the PN shown in Figure 3. DEVS model corresponding to the “transition”

of PN (TDEVS for “Transition DEVS”) is characterized by an output port “control” (CT1 in the example) whose role is to send

events to places upstream, verify the number of tokens or inform them about its firing. However, TDEVS receives events from the

models corresponding to places upstream (to be PDEVS “DEVS Place” in the following) with control ports as much as number

of places (CPiT1). Control ports are illustrated in Figure 4, in color red.

The evolution of model CDEVS begins with an external event “initialize” received by the input port InitT (in orange) and will be

broadcast on all TDEVS, as well as pause, resume and stop events that are received through the same port. Note that this port

is coupled only by TDEVS because the elements responsible for the dynamics in PN are the transitions and not the places.

The method used in this paper is the transformation taking the PN formalism as source, while DEVS is the target.

TDEVS is not linked by its downstream CDEVS except by output port for each AT1Pi (in black). Via these ports transition

(TDEVS) informs their places downstream about its crossing.

All TDEVS and PDEVS are provided with an output port OutTi and OutPi respectively (in blue). These ports are coupled directly

with the output ports for possible CDEVS records or statistics.

All PDEVS have an input port each (InitPi), by which they are coupled with CDEVS via an input port InitP (green). This liaison

role is to initialize the marking of places. Arcs from places Pi and arriving at a transition Tj are translated into output ports (APiTj)

at PDEVS and input ports (APiTj) at TDEVS corresponding to T (black).

The creation of the structure of DEVS model corresponding to the PN is performed by the algorithm “Main_PN_DEVS” below.

This algorithm takes as input a PN = (P, T, PRE, POST, M
0
), resulting in an output DEVS model. By the matrix PRE, the algorithm

creates links corresponding to the arcs that link places by upstream transitions. The matrix POST is used for the coupling

between TDEVS (transitions) and PDEVS (places) downstream of the transition.

Algorithme : Main_PN_DEVS

Input PN= (P, T, PRE, POST, M0)

Output CDEVS //coupled model

Begin :

Create CDEVS as coupled DEVS model //void model

For all transition i do create TDEVSi as atomic DEVS model end for

for all places j do create PDEVSj as atomic DEVS model end for

for all PDEVSj do

 add ‘InitPj’ as intput port and join it to CDEVS.IN.InitP

//starting tokens

 add ‘OutPj’ as output port and join it to CDEVS.OUT.OutPj

//output stream

end for

for all TDEVSi do

 add ‘InitTi’ as input port //initialize, stop, pause, release

 join ‘InitTi’ port to CDEVS.IN. InitT port

//coupling

 add ‘OutTi’ as output port and join it to CDEVS.OUT.OutTi

//output stream

 add ‘CTi’ as output port // control: check, reserve, decrement, cancel

 Journal of Information Technology Review Volume 4 Number 1 February 2013 31

 for all PDEVSj do

 if (PRE[i,j] > 0) //upstream place

 add to PDEVSj ‘CTiPj’ as input port //check, reserve, decrement, cancel

 join TDEVSi.OUT.CTi to PDEVSj.IN.CTiPj // coupling

 add to PDEVSj ‘CPjTi’ as output port //ok, busy ,number_of_free_tokens

add to TDEVSi ‘CPjTi’ as input port //ok, busy ,number_of_free_tokens

 join PDEVSj.OUT.CPjTi to TDEVSi.IN. CPjTi // coupling

 add to PDEVSj ‘APjTi’ as output port //arc: value = PRE[i, j]

 add to TDEVSi ‘APjTi’ as intput port //arc: value = PRE[i, j]

 join PDEVSj.OUT. APjTi to TDEVSi.IN.APjTi // coupling

 end if

 if (POST [i, j] > 0) //downstream places

 add to TDEVSi ‘ATiPj’ as output port //arc: value = POST [i, j]

 add to PDEVSj ‘ATiPj’ as input port //arc: value = POST [i, j]

 join TDEVSi.OUT.ATiPj to PDEVSj.IN.ATiPj // coupling

 end if

 end for

end for

end Main_PN_DEVS

6.3.2 Dynamic of resulting DEVS model

In this transformation approach we model the dynamic DEVS coupled generated by the previous algorithm in accordance with

the functions offered by the DEVS formalism which are δ
int

, δ
ext

, δ
con

 and λ. After initialization of places (PDEVS) by the initial

marking and after launching the evolution of the model by the event “initialize” received by all transitions (TDEVS). The latter

are in state “checking” (thanks to δ
ext

 function) to see if the number of tokens in places upstream is sufficient to achieve a

crossing. Event “check” is sent (by the function λ). PDEVS concerned receive the event, they transmit the number of their free

tokens (which are not reserved by other transition) with λ function as well. If the number of tokens is sufficient to validate the

transition (TDEVS), then it will change the status of “checking” to make it “reserving” and sends the event “reserve” with the

function λ always.Crossing does not occur directly. It must go through a reservation tokens to avoid the conflict problem (if

places are upstream of several transitions), as long as the transitions are in continuous competition. In this way the property of

PN in terms of dynamics and competition is faithfully preserved in our transformation approach.

PDEVS receiving the event “reserve” return “ok” if there is still enough tokens (> = the weight of the arc), “fail” otherwise. If

TDEVS receives at least one “fail” it returns immediately to all PDEVS signal “cancel” to release the reserved tokens probably,

it puts his state “Validated ” otherwise. At this point, the transition can pass the crossing and therefore returns “decrement” to

PDEVS which will destroy the tokens reserved by TDEVS in question. TDEVS simultaneously sends “increment” to PDEVS

located downstream to increment the number of tokens with the value received by the input port (weight of the arc). After firing

a TDEVS it rehabilitates “checking” and so on.

Functions δ
int

, δ
ext

, δ
con

 and λ, characterizing the models TDEVS are summarized in Table1. The first two columns represent the

inputs, which are the events and the current state. The other columns show the outputs of each function. The table rows are

grouped separately for each current state. And models PDEVS; functions are shown in Table 2. By convention, if all events have

the same impact, we write “all events”. Empty cells indicate the absence of values: for λ is the absence of events. For δ
ext

, and δ
int

δ
con

 meaning that the function does not produce an output state, so the state of the model is basically the same. The “&” symbol

indicates that the events are simultaneous.

The evolution of CDEVS is triggered by the event “initialize” overview by TDEVS. So we can pause or stop the simulation by

sending events “pause” and “stop” to TDEVS. Therefore, the model is in one of the following states: “paused ” or “stopped ”.

In these states transitions (TDEVS) will ignore all events of PDEVS comers. Only events “initialize” or “release”can trigger the

simulation again.

32 Journal of Information Technology Review Volume 4 Number 1 February 2013

Event Current state δ
ext

 δ
int

 δ
con

 λ (current state)

initialize checking out

pause paused out

stop stopped out

release checking out

free_tokens reserving Reserving

Ok validated, validated,

 reserving reserving

fail canceling Canceling

all events validated checking decrement &

 increment & out

all events canceling checking cancel

all states

reserving reserve

Table 1.The outputs of theTDEVS model functions

Event Current state δ
ext

 δ
int

 δ
con

λ (current state)

initialize all states Checking Checking out

check Checking Checking

reserve Reserving Reserving

increment Incrementing incrementing

decrement decrementing decrementing

cancel Checking Checking

check Reserving Reserving

reserve Reserving Reserving

increment Incrementing incrementing

decrement decrementing decrementing

cancel Checking Checking

check Checking Checking

reserve Reserving Reserving

increment Incrementing incrementing

decrement decrementing decrementing

cancel Incrementing incrementing

check Checking Checking

reserve Reserving Reserving

increment Incrementing incrementing

decrement decrementing decrementing

cancel decrementing decrementing

checking

 reserving

incrementing

decrementing

checking

checking

checking

checking

free_ tokens

ok, fail

out

out

Table 2. The outputs of the PDEVS model functions

Figure 5 illustrates the elementary transformations of PN components to their equivalent objects in DEVS. Where (a) represents

a single place with the minimum of ports it has to possess. (b) illustrates a single given transition. (c) and (d) represents the

minimum of IC between a place and a transition. (e) is graphical representation of IC in case of conflict between two transitions.

Finally, (f) represents the IC of typical transformation where the parallelism has place.

 Journal of Information Technology Review Volume 4 Number 1 February 2013 33

P1

Formally, the transformation is presented as follow:

PN → CDEVS

(P, T, PRE, POST, Mo) → (X, Y, D, EIC, EOC, IC)

Where:

D ={P ∪T }

X = {InitP, InitT }

Y = {OutDi / Di is atomic model representing Pi or Ti}

EIC = {{(CDEVS.InitP, PDEVS.IntPi)} ∪ {(CDEVS.initT, TDEVS.IntTj)}

/ i C N + & i<=Number of places, j C N+& j<=Number of transitions }

EOC = {(Pi.OutPi, CM.OutPi) , (Tj.OutTj, CM.OutTj) /i C N+ &

i<=Number of places, j C N + & j<= Number of transitions }

IC ={

{(Pi.APiTj, Tj.APiTj) / PRE [i, j]>0 }

∪ {(Tj.ATjPi, Pi.ATjPi) / POST [i, j]>0 }

∪ {Tj.CTj} X {Pi.CTjPi} / PRE[i, j]>0 }

Figure 5.Graphical representation of elementary transformations and IC between generated DEVS models

P1

InitP1

InitT1

CPiT1 CT1

OutT1

T

T P

P

OutP1

T P

34 Journal of Information Technology Review Volume 4 Number 1 February 2013

6.3.3 Example of transformation

In this section, we present an example of transformation of one of famous case study in PN training field: Producer-Consumer

with limited plug (7 puts) illustrated in Figure 6.

P1: Producer is ready to produce. T1: Begin of production. P2: Production is run.T2: End of production.P3: plug containing

products (initially, plug is empty). P4: Consumer is ready to consume.T3: Begin of consummation. P5: Consummation is run. T4:

End of consummation. P6: Number of free puts (initially, all puts in plug are free).

We prefer to illustrate the transformation graphically since both of the formalisms PN and DEVS offer graphical representation

of their models. Figure 7, represents the coupled model faithful to the PN modeling Producer-Consumer. In this graphical we

conserve the same color signification as shown in Figure 4.

• Color red: to illustrate control stream.

• Color black: to illustrate tokens incrementing or decrementing.

• Color green to initialize places’ tokens number.

• Color orange to initialize transitions.

• Color blue for outputs.

 PC_PN = (P, T, PRE, POST, M
0
), P = {P1, P2, P3, P4, P5, P6}, T = {T1, T2, T3, T4}

⎫ 1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 0

1 0 0 0

1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 1

POST = M
0
 =

⎧
⎩

⎧
⎩

PRE =

⎭
⎫
⎭

⎫
1

0

0

1

0

7

⎧
⎩⎭

Figure 6. Producer-Consumer PN

Consumer Producer

∪ {(Pi.CPiTj , Tj.CPiTj} / PRE[i, j] > 0 }

/i C N + &I <= Number of places, j C N+& j <= Number of transitions

}

 Journal of Information Technology Review Volume 4 Number 1 February 2013 35

Figure 7. DEVS coupled models corresponding to Producer-Consumer PN

7. Discussion

Petri nets are formal tools modeling dynamic systems dealing perfectly with the aspect of competition and parallelism between

processes. Therefore, they require gentle handling during mapping in order to not lose their specifications. In our approach,

competition is preserved by the creation of temporary state transitions which is the reserving state. Thus, a token cannot

participate at the same time, in the crossing of two transitions in conflict. However, the transition must immediately release

tokens if it has reserved them and fails to be validated. In order not to paralyze other transitions which are in conflict with it.

In this paper we discussed the generalized PN for the reader to understand the mechanism of transformation. However, other

extensions such as colored PN can also be processed. In this case, the tokens will no longer be trivialized. We will need to extend

the type of representation of these to comprise a list with all colors. Thus, during the broadcast of the event “check” with a

transition. Places of upstream should check the port connecting to the transition to send only the number of free tokens with the

same color as specified at this port. With the same principle, the destruction of chips will be following a transition firing.

In addition, the DEVS formalism provides flexibility in the internal structure of the models [16]. Models may disappear, others can

take over. Interconnections can have birth, others may change the models they couple. This aspect of dynamic structure related

to DEVS models motivates modelers to simulate their PN models in DEVS platforms. The complexity of PN related to the

representation of structural changes in systems will be simplified, as long as a DEVS model can have multiple structures,

therefore, represent several PN at a time.

OutP1

OutT2

OutP2

OutT1

OutP6

OutP3

OutT4

OutP5

OutT3

OutP4

initP

initT

36 Journal of Information Technology Review Volume 4 Number 1 February 2013

8. Conclusion and Perspectives

In this paper we have presented a transformation approach of Petri nets to DEVS models. By an algorithm that systematically

built atomic DEVS models for each of the places and transitions which will be coupled to obtain a coupled DEVS model by

specifying the interconnections between these models. This work falls within the framework of transformation models based

multi-formalisms in a uniform one, DEVS is in our case. Our choice of this formalism was based on DEVS force in unifying and

coupling models. Characterized by its abstraction, implementations independence and its ability to model complex systems in

the form of a hierarchical model, DEVS is a formalism that can be the unifier of models of discrete event systems.

By the transformation presented in this paper, the PN can enjoy the simulation offered by multiple platforms based on DEVS.

Thus the question of their validation will reply via these tools. Indeed, DEVS provides the ability to perform formal verifications

of models.

Our perspectives focus on the implementation of such algorithms on complex models such as industrial processes where the

notion of parallelism, interaction and distribution calculations should be considered.We are also considering the implementation

of a platform for testing and validation of Petri nets while taking advantage of open source tools based on DEVS.

References

[1] Fishwick, P. A. (1995). Simulation Model Design and Execution. Prentice Hall.

[2] Vangheluwe, H. (2008). Foundations of modelling and simulation of complex systems. Electronic Communications of the

EASST, 10: Graph Transformation and Visual Modeling Techniques. http://eceasst.cs.tu-berlin.de/index.php/eceasst/issue/

view/19.

[3] Jacques, C. J. D. et Wainer, G. A. (2002). Using the CD++ DEVS Tookit to Develop Petri Nets. In: Proceedings of the SCS

Summer Computer Simulation Conference, San Diego, CA. U.S.A.

[4] Lara J. et Vangheluwe, H. (2002). Computer Aided Multi-Paradigm Modelling to Process Petri-Nets and Statecharts. 2505,

239-253

[5] Zeigler, B. P. (1976). Theory of Modeling and Simulation, Wiley InterScience.

[6] Zeigler, B. P., Praehofer, H. et Kim, T. G. (2000). Theory of Modeling and Simulation, Second edition. Academic Press, ISBN

0127784551.

[7] Peterson, J. L. (1977). Petri nets, Computing Surveys, 223–252.

[8] Touraille, L., Traoré, M. K. et Hill, D. R. C. (2010). SimStudio: une Infrastructure pour la modélisation, la simulation et

l’analyse de systèmes dynamiques complexes. Research Report LIMOS/RR-10-13.

[9] Freigassner, R., Praehofer H., et Zeigler, B. P. (2000). Systems approach to validation of simulation models. Cybernetics and

Systems, 52–57.

[10] Quesnel, G. (2006). Approche formelle et opérationnelle de la multi-modélisation et de la simulation des systèmes complexes.

Laboratoire d’Informatique du Littoral.

[11] Sarjoughian, H. et Zeigler, B. P. (1998). Devsjava : Basis for a DEVS-based collaborative ms environment. SCS International

Conference on Web-Based Modeling and Simulation, San Diego, CA, 5, 29-36.

[12] Ilachinski, A. (2001). Cellular Automata, A Discrete Universe, World Scientific Publishing Co, ISBN. 981-02-4623-4.

[13] Schmidt, D. C. (2006). Model-Driven Engineering Guest Editor’s Introduction IEEE Computer, 39 (2) 25-31.

[14] Vangheluwe, H. (2000). DEVS as a common denominator for multi-formalism hybrid systems modeling Conférence IEEE

International Symposium on Computer-Aided Control System Design, Alaska, p.129-134.

[15] IEEE Standard for Modeling and Simulation (M&S) High Level Architecture (HLA)- Framework and Rules, Institute of

Electrical and Electronics Engineers, IEEE 1516-2000.

[16] Baati, L. (2007). Approche de modélisation DEVS à structure hiérarchique et dynamique. LSIS UMR-CNRS 6168, Domaine

Universitaire de St Jérôme.

