
62 Journal of Information Technology Review Volume 6 Number 2 May 2015

Here E represents the evaluated software effort in man-months. In equation 1 a and b parameters depend mainly on the type of
software project. Software projects were categorized based on the complexity of the project into three categories. They are:

ABSTRACT: Increasing demand for software made IT industries to develop high quality software within predetermined time
and budget. In order to accomplish these challenges, the software development process needs to effectively managed and
planned. In software development process, effort estimation is very important activity to manage and plan for effective
development of software projects. If estimation of software development effort is not accurately measured then entire software
project may lead to failure and dissipate the IT industry budget. Machine learning and data mining techniques have been
explored as an alternative to existing model COCOMO. This paper aims to explore artificial neural network models such as
probabilistic neural networks (PNN) and generalized regression neural networks (GRNN) model on various datasets to
accurately estimate the software development effort. The results are evaluated using Mean Magnitude of Relative Error
(MMRE), Magnitude of Relative Error (MRE).

Keywords: Effort Estimation, Neural Networks, PNN, GRNN, Data Mining Techniques

Received: 6 January 2015, Revised 12 February 2015, Accepted 17 February 2015

© 2015 DLINE. All Rights Reserved

1. Introduction

Estimating size or resources is one of the vital topics in software engineering and IT. During software development, effort
estimation is the basic step taken in budgeting, planning and development of the software project. Exact estimation of software
development effort, predicting and scheduling are the essential components to deliver the software product on time, to produce
superior quality and contained by estimated cost. Effort estimation inaccuracy can be harmful to an IT industry’s economics and
dependability due to behind schedule release, poor quality and stakeholder’s displeasure with the software product. So in
current years effort estimation has motivated as an extensive research. The key in component is developed kilo line of code
(KLOC), which affects the software effort estimation which includes all program instructions [1]. Many software estimation
models have been proposed to support project manager in accurate decision making about their projects [2, 3]. One of the known
mathematical approaches for software cost estimation is the COnstructive COst MOdel (COCOMO) model was first provided by
Boehm [2], it was built based on 63 software projects. COCOMO model helps in finding the development time, the effort. The
COCMO model equation is given in the form as follows:

An Exploration of PNN and GRNN Models For Efficient Software Development
Effort Estimation

B V Ajay Prakash, D V Ashoka, V N Manjunath Aradhya
SJBIT, JSSATE, SJCE
India
ajayprakas@gmail.com, dr.ashok_research@hotmail.com, aradhya1980@yahoo.co.in

Effort (E) = a(KLOC)b (1)

 Journal of Information Technology Review Volume 6 Number 2 May 2015 63

Model Name Effort (E) Time (D)

Organic Model

Semi-Detached Model

Embedded Model D = 2.5 (E)0.32

E = 2.4 (KLOC)1.05

E = 3.0(KLOC)1.12

E = 3.6 (KLOC)1.20

D = 2.5 (E)0.38

D = 2.5 (E)0.35

2. Related Work

Quite a lot of research works has been carried out on building efficient effort estimation using soft computing techniques [4, 5].
Kelly et. al. [6] provides methodology for exploring software cost estimation using Neural Networks (NNs), Genetic Algorithms
(GAs) and Genetic Programming (GP). Artificial neural network are used in effort estimation due to its ability to learn from
previous data [7, 8] It is also complex relationships between the dependent (effort) and independent variables (cost drivers).
Many authors encompass neural network to effort estimation using feed-forward multi-layer Perceptron, Back propagation
algorithm and sigmoid function [6]. Idri et.al [9] has made research on estimating software cost using the neural network and
fuzzy logic rules on COCOMO’81 dataset. Samson et. al [10] applied multilayer perception in software effort prediction for
boehm’s COCOMO dataset also compares neural network with linear regression. Radlinki et. al. [11], analyses the accuracy of
predictions for software development effort using different machine learning techniques. Parag [12] proposed a Probabilistic
Neural Networks (PNN) approach for simultaneously estimating values of software development parameters (either software
size or software effort) and probability that the actual value of the parameter will be less than its estimated value. Attarzadeh et.
al. [13], the author’s presents that the one of the greatest challenges for software developers is predicting the development
effort for a software system based on developer abilities, size, complexity and other metrics for the last decades. Stamatia et. al.
[14], comparative research has been done by using three machine learning methods such as Artificial Neural Networks (ANNs),
Case-Based Reasoning (CBR) and Rule Induction (RI) to build software effort prediction systems. Kalichanin et. al [15] estimated
software development effort of short-scale projects using Feed forward neural network. Proposed method used132 projects
verify. Accuracy is measured in terms of MER, i.e., MMER is 0.26, LRM is 0.26 and NN is 0.25. Kumar et. al. [16] used wavelet
neural network (WNN) to estimate software development effort with four models, i.e., WNN-morelet, WNN-guassian, TAWNN-
guassian, and TAWNN-morelet. TAWNN. WNN-Morelet and WNN-Guassian outperformed all other techniques. Reddy and
Raju [17] proposed a multilayer feed forward neural network to improve the performance of the neural network that suits to the
COCOMO model. Publicly available COCOMO 81 dataset is used which consisting 63 projects. Data set is divided into training
set and validation set in the ratio of 80 %: 20 %. Training set consists of 50 projects selected randomly and validation set
consists of remaining 13 projects. Pichai Jodpimai et. al. [18] proposed a neural functional approximation function to estimate the
software effort with minimal features.

3. Neural Network Models

Artificial Neural Networks (ANN) is inspired by the early models of information processing by the brain. ANN is an information
processing paradigm that is simulated by the biological nervous systems towards learning process and is configured for a
specific application, such as pattern recognition or data classification. A novel structure of large number of highly interconnected
processing elements (neurons) and its synaptic connections are the key elements of this paradigm [20]. A main problem in
statistics with applications in many areas is to estimate a function from some instance of input-output pairs with little or no
knowledge of the form of the function. This form of problem is called function approximation, inductive learning, and nonparametric
regression. In neural networks terms this can solved using supervised learning process. The function is learned from the
instances which a teacher supplies. As neural networks are extremely fast and efficient, we have considered GRNN and PNN to
estimate the software development effort.

3.1 Generalized Regression Neural Networks
Generalised Regression Neural Network is a type of supervised learning model based on radial basis function (RBF) which

Table 1. Basic Cocomo Models

64 Journal of Information Technology Review Volume 6 Number 2 May 2015

can be used for regression, classification and time series predictions. The GRNN architecture is as shown in figure1.

Figure 1. Generalized Regression Neural Network (GRNN) Architecture
GRNN consists of four layers, which are named as input layer, pattern layer, summation layer and output layer. The number of
input units depends on the total number of observation parameters i.e. an input vector ‘I’ (feature matrix Fi). The input layer
connected to the pattern layer consists of neurons provides training patterns and its output to the summation layer to perform
normalization of the resultant output set. Each of the pattern layers is connected to the summation neurons and calculates the
weight vector using the following equations.

Wi = e
[

It||
2h2]

2

TiWi
i = 1

n

Where the output F (I) is weighted average of the target values Ti of training cases Ii close to a given input case I.

3.2 Probabilistic Neural Network (PNN)
The PNN [19] is a Bayes–Parzen classifier. The foundation of the approach is well known decades ago (1960s). It models the
Bayesian classifier & minimizes the risk of misclassification. Bayes’ classifier is usually criticized due to lack of information
about the class probability distributions and makes use of nonparametric techniques, whereas the inherent advantage of PNN
is the better generalization and convergence properties when compared to that of Bayesian classifier in classification problems
[21]. PNN Architecture is as shown in figure 2.

PNN is similar to that of supervised learning architecture, but PNN does not carry weights in its hidden layer. Each node of
hidden layer acts as weights of an example vector. The hidden node activation is defined as the product of example vector ‘E’
&input feature vector ‘F’ given as hi=Ei x F. The class output activations are carried out using the following equation

||I −

∑
n

i = 1

hi−1
ϕ2)

Sj=

(
e

Where ‘N’ is example vectors belonging to class ‘S’, ‘hi’ is hidden node activation and ‘ ϕ ’ is smoothing factor.

4. Proposed Methodology

F(I) =

∑

Wi
i = 1

n

∑

N

 Journal of Information Technology Review Volume 6 Number 2 May 2015 65

Proposed Methodology consists of data sets preparation, selecting the features from the data sets which are relevant, preparing
training and test data sets. Apply the GRNN and PNN model to estimate the software development effort.

Figure 2. Probabilistic Neural Network (PNN) Architecture

4.1 Data sets preparation
In this research work publicly available PROMISE repository (http://promisedata.org/data) is used. Table 2 shows the different
data sets used for effort estimation.

Dataset Description Features Size

COCOMO NASA NASA projects 17 60

Maxwell Biggest commercial Banks projects in finland 27 62

China Chinese software companies projects data 18 499

Nasa93 NASA projects 17 93

Desharnais Canadian software projects 12 81

Cocomo81 Projects data from NASA 17 63

Kemerer Large business applications 7 15

Telecom Telecom companies projects 3 18

 Total 890

4.2 Applying Grnn And Pnn Models
We used publicly available popular COCOMO 81, China and Desharnais data sets for the experiment purpose. Implementation
is done using MATLAB 11, we first classified the testing and training sets. In datasets independent variable are identified and
stored in input vector. And the target vector class is prepared for predicting the effort. The value of the software development
effort in each project varies. So we randomly selected some projects for testing the accuracy.

Evaluation criterion is used to assess and the compare the performance of the GRNN and PNN models. Magnitude of Relative

Table 1. Eight Different Dataset And 890 Projects Used For Effort Estimation

66 Journal of Information Technology Review Volume 6 Number 2 May 2015

 | ActualEffort - predictedEffort |
×100 ActualEffort

Error (MRE) and Mean Magnitude of Relative Error (MMRE) is used for evaluation of effort estimation.MRE is defined as in:
-

MRE =

MMRE for N projects is defined as in

A higher value means worst prediction accuracy for MRE and MMRE,

1 2040 2594 2124 17.35 4.12

3 243 212 221 12.75 9.05

11 218 202 192 7.33 11.92

18 11400 10002 10842 12.26 4.89

20 6400 5880 6002 8.12 6.21

26 387 352 312 9.04 19.37

27 88 62 54 29.54 38.63

50 176 152 186 13.63 5.68

51 122 142 104 16.39 14.75

54 20 13 89 35 55

56 958 702 645 26.72 32.67

31 1063 843 784 20.69 26.24

32 702 668 623 4.83 11.25

48 1272 1088 1024 14.46 19.49

Project ID Actual Effort

Software Development
 Effort Estimated

using
MRE using

GRNN PNN GRNN PNN

Table 2. Comparative Results Of Actual And Estimated Effort With Mre Using Cocomo Data Sets

Figure 3. Comparison Of Actual Effort, Grnn, Pnn And Slann With Bp [22].

 Journal of Information Technology Review Volume 6 Number 2 May 2015 67

4.3 Comparative Analysis
Our results are compared with single layer artificial neural network (SLANN) with back propagation algorithm results which is
obtained by [22]. The result is shown in Figure 3.

371 89 102 118 14.60 32.58

75 139 98 142 24.03 10.07

449 170 123 210 27.64 23.52

48 204 154 168 24.50 17.64

53 281 340 382 20.99 35.94

460 374 325 424 13.10 13.36

93 481 402 248 16.42 11.01

325 752 702 812 6.64 7.97

391 1210 998 829 17.52 31.48

395 1741 1554 2008 10.74 15.33

208 2520 2138 2245 15.15 10.91

5 2994 2558 2694 14.56 10.02

320 3877 3109 3228 19.80 16.73

378 15039 13821 12884 8.09 14.32

326 29399 25482 26700 13.32 9.18

435 54620 48553 49324 11.10 9.69

Project ID Actual Effort
Software Development
Effort Estimated using MRE using

GRNNGRNN PNN PNN

 Table 3. Comparative Results Of Actual And Estimated Effort With Mre Using Desharnasis Data Sets

71 546 424 488 22.34 10.62

70 1155 927 842 19.74 27.09

5 2149 1814 2521 15.54 17.31

18 3437 2824 3124 17.83 9.10

41 4620 4112 3998 10.99 13.46

79 9520 8914 9142 6.36 3.97

46 14973 11593 11874 22.57 20.69

81 23940 21248 20997 11.24 12.29

Project ID Actual Effort
Software Development
 Effort Estimated using

MRE using

GRNN PNN GRNN PNN

Table 4. Comparative Results Of Actual And Estimated Effort With MRE Using Desharnasis Data Sets

68 Journal of Information Technology Review Volume 6 Number 2 May 2015

Datasets MMRE using

 GRNN PNN

COCOMO 16.29 18.51

China 16.13 16.85

Desharnasis 15.82 14.31

5. Conclusion

Software effort estimation implementation in a large software development organization takes more than a year. Getting hold of
estimation experience and integrating it into project management processes along with the consequent introduction of IT
measurements for continuing improvement might require another couple of years. This paper has illustrated the application of
different neural network models namely GRNN and PNN for software effort estimation to reduce time and effort in software
development. From the results, GRNN and PNN models reduce the error and improve the accuracy of software effort. A neural
network implementation is done in MATLAB 11.0 and used different dataset of 890 projects in order to accurately estimate
efforts. The discussion made in this paper may use as a reference guide to software project managers in software effort
estimation.

References

[1] Menzies, T., Port, D., Chen, Z., Hihn. J., Stukes, S. (2005). Validation methods for calibrating software effort models, In:
Proceedings of the 27th international conference on Software Engineering (ICSE’05), (New York, NY, USA), ACM Press, p. 587–
595.

[2] Boehm, B. (1981). Software Engineering Economics. Englewood Cliffs, NJ, Prentice-Hall.

[3] Boehm, B. (1995). Cost Models for Future Software Life Cycle Process: COCOMO2. Annals of Software Engineering.

[4] Ryder, J. (1995). Fuzzy COCOMO: Software Cost Estimation. PhD thesis, Binghamton University.

[5] Hodgkinson. A. C., Garratt, P. W. (1999). A neuro-fuzzy cost estimator, In: Proceedings of the Third Conference on Software
Engineering and Applications, p. 401–406.

[6] Kelly, M. A. (1993). A methodology for software cost estimation using machine learning techniques, Master’s thesis, Naval
Postgratuate School, Monterey, California.

[7] Albrecht. A. J., Gaffney, J. R. (1983). Software function, source lines of code, and development effort prediction: A software
science validation., IEEE Trans. Software Engineering, 9 (6), p. 630–648.

[8] Matson, J. E., Barret. B. E., Mellinchamp, J. M. (1994). Software development cost estimation using function points, IEEE
Trans. Software Engineering, 20 [4] , p. 275–287.

[9] Ali Idri.,Taghi, M., Khoshgoftaar., Alain Abran., (2002). Can Neural Networks be easily Interpreted in Software Cost Estimation
, IEEE Transaction, p.1162-1167.

[10] Samson, B., Ellison, D., Dugard, P. (1997). Software cost estimation using an Albus Perceptron (CMAC) ., Journal of
Information and Software Technology, 39 (1), p. 55–60. .

[11] Radlinki. L., Hoffmann, W. (2010). On Predicting Software Development Effort Using Machine Learning Techniquesand
Local Data, International Journal of Software Engineering and Computing, 2, p.123-136.

[12] Parag, C., Pendharkar. (2010). Probabilistic estimation of software size and effort, An International Journal of Expert
Systems with Applicati 37, p.4435-4440.

[13] Attarzadeh. I., Siew Hock Ow. (2009). Software Development Effort Estimation Based on a New Fuzzy Logic Model,

Table 5. Results of MMRE of GRNN and PNN models

 Journal of Information Technology Review Volume 6 Number 2 May 2015 69

International Journal of Computer Theory and Engineering, 1, [4], p.1793-8201.
[15] Bibi Stamatia., Stamelos Ioannis. (2006), Selecting the Appropriate Machine Learning Techniques for Predicting of Software
Development Costs, Artificial Intelligence Applications and Innovations, 204, p.533-540.

[16] Kalichanin-Balich, I., Lopez-Martin, C. (2010). Applying a feedforward neural network for predicting software development
effort of short-scale projects, in Eighth ACIS International Conference on Software Engineering Research, Management and
Applications (SERA), p. 269-275.

[17] Vinay Kumar, K., Ravi, V., Carr, M., NR Kiran. (2008). Software development cost estimation using wavelet neural networks,
Journal of Systems and Software, (81) p. 1853-1867.

[18] Reddy, C. S., Raju, K. (2009). A concise neural network model for estimating software effort, International Journal of Recent
Trends in Engineering, (1). p.188-193.

[19] Jodpimai., P., Sophatsathit. (2010). Estimating software effort with minimum features using neural functional approximation,
in International Conference on Computational Science and Its Applications (ICCSA), p. 266-273.

[20] Masters., T. (1995). Advanced Algorithms for Neural Networks. Wiley, New York

[21] Patterson., D.W. (1995), Artificial neural networks. Prentice Hall.

[22] Donald F Specht., (1990). Probabilistic Neural Networks. Neural Networks, 3, p.109-118.

[23] Ch.Satyananda Reddy., KVSVN Raju. (2010). An Optimal Neural Network Model for Software Effort Estimation, International
Journal of Software Engineering, 3 (1) p. 63-78.

