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ABSTRACT: We propose to enlarge research in cSON (community Semantic Overlay Network) a semantic overlay network
that requires an organization of peers into communities. cSON is developed for an efficient research in unstructured Peer-to-
Peer (P2P) system. In this paper, a community is composed of one super-peer (e.g. the administrator of the community) and of
several peers: the super-peer describes a domain (e.g. ontology) and a peer (with its own data schema) joins one community
which is in accordance with its own domain. One challenge in cSON is how to efficiently extend the scope of the research to
all communities (and not only to neighboring communities). We propose an algorithm that builds, starting from the
administrator of a community, a Maximal-affinity Covering Tree (MCT). The obtained MCTs are used later by queries in order
to search in each community the pertinent peers. We give a performance evaluation concerning the creation of a MCT and we
compare then our routing algorithm with the one (called baseline) which consists to send queries to only neighboring
communities which are able to treat them.
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1. Introduction

1.1 Overlay network
A Peer is an autonomous entity with a capacity of storage and data processing. In a computer network, a peer may act as a client
or as a server. Peer-to-peer (P2P) systems is characterized as decentralized self-organizing and resource usage. P2P systems
have emerged as a popular way to share huge volumes of data. P2P systems is build on top of the physical one (typically the
Internet) and thus referred to as overlay network. The degree of decentralization and the topology of the overlay network
strongly impact the properties of the P2P systems, such as fault-tolerance, self-maintainability, performance, scalability and
security. For simplicity, two main classes of P2P networks are considered: unstructured and structured. Unstructured P2P
networks, the overlay network is created in no deterministic manner and data placement is completely unrelated to the overlay
topology. Each peer knows its neighbors, but does not know the resources they have. Query routing is typically done by
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flooding the query to the peers that are in limited hop distance from the query originator. Structured networks have emerged to
solve the scalability problem of unstructured networks. They achieve this goal by tightly controlling the overlay topology and
data placement. Data are placed at precisely specified locations and mappings between data and their locations (file identifier is
mapped to peer address) are provided in the form of a distributed routing table. Unstructured and structured P2P networks are
considered ’pure’ because all their peers provide the same functionality. In contrast, super-peer networks are hybrid between
client-server systems and pure P2P networks. Like client-server systems, some peers, the super-peers, act as dedicated servers
for some other peers and can perform complex functions such as indexing, query processing, access control, and meta-data
management. Using only one super-peer reduces to client-server with all the problems associated with a single server. Like pure
P2P networks, super-peers can be organized in a P2P fashion. Super-peers can be dynamically elected (e.g. based on bandwidth
and processing power) and replaced in the presence of failures. Requirements for widely distributed information systems
supporting virtual organizations have given rise to a new category of P2P systems called schema-based or PDMS (Peer Data
Management System) where each peer exposes its own schema. A PDMS aim at overcoming the scalability problems of data
integration systems by combining P2P and distributed database techniques.

1.2 Semantic overlay network
In unstructured P2P systems, queries flooding tends to be very expensive. In [2], a Semantic Overlay Network (SON) consists
on creation of a network that improve query routing based on the semantic links between peers. In SON peers are organized into
groups according to the content they share. Groups may overlap, since some peers are belong to different groups and queries
are sent to relevant neighboring groups increasing the chances that matching files will be found quickly. A disadvantage of
SON, specially when each peer share data item that respect a data schema, is that it requires to build semantic links between
peers. To overcome the problem of matching schemas of peers, we consider in our work a system composed of peers and super-
peers. Each super-peer is responsible of a domain and peers are organized around super-peers according to their domains. In
this organization, schema of a peer is matched only with the domain (i.e. ontology) of its super-peer. Another disadvantage in
cSON is that queries routing is restricted to only peers which are in the same group (or in neighboring groups) so that it limits
the number of pertinent peers reached in the network.

1.3 Contribution
cSON [7] is a community Semantic Overlay network designed around peers and super-peers. In this architecture, super-peers are
responsible of communities and peers are members of these communities where each peer is assigned to only one community.
A super-peer (administrator of a community) joins the network with its schema (i.e. ontology) that describes a specific domain
(the domains held by communities are supposed not disjoint). Super-peers match their respective schemas to discover their
acquaintances for effective data sharing and peers (having their data schemas) are affected to communities according to their
semantic domains. A peer formulates its query (using its own query language) and submits it directly to its community and this
last forward this query to only neighboring communities which are able to treat this query. The major problem is how to
efficiently enlarge research to all communities in cSON. To address this problem, we propose an algorithm that returns a
Maximal-affinity Covering Tree (for simplicity we call this tree: Maximal Covering Tree or MCT) requested by a community. The
vertices of this tree are (super-)peers (i.e. administrators of communities) and values associated to edges measure affinities (i.e.
semantic links) between them. MCT is constructed under the condition that the affinity between all communities is maximal. The
maximal affinity of a MCT is obtained by the sum of values of all the edges which compose it.

The advantages of this approach are twofold: 1. a community can choose to use the MCT of one of its neighboring communities
or it can choose to build its own tree. In fact, the MCT of a community may be different from the MCT of its neighbors but the
value of the maximal affinity is still the same and the uniqueness of the MCT in cSON is granted only when the values of edges
-which connect the communities between them- are all distinct; 2. when a community receives a query, it forwards this query to
other communities through its MCT: the query traverses all the communities without forming a cycle and exploiting the maximum
affinity existing between communities. This feature has the effect of privileging communities that are more likely to respond to
queries. For example, suppose that A, B and C are three communities in cSON where A is linked semantically to B and C: the
affinity between A and B is equal to 2 (i.e. 2 elements in A and B are found similar) and the affinity between A and C is equal to
20 (i.e. 20 elements are found similar). It is obvious that, for a query Q received by the community A, C is more likely to answer
Q than B. Compared to the baseline approach1 in which a query is forwarded to only neighboring communities, our approach
(MCT) extends efficiently this research of all communities. The following section summarizes related works to queries routing in
unstructured P2P systems.

1Baseline is the first approach implemented in cSON
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2. Related Work

In this section, we review some methods and approaches developed in the literature for queries routing in unstructured P2P
systems. Queries routing in this context follows, in general, one of the three approaches: blind, informed or using shortcuts. In
Blind approach, queries routing consists to forward the query to their neighbors. This approach floods the network with a TTL
(Time To Live) which makes that the choice of routing is arbitrary. BFS (Breadth-first search) [20] follows blind approach. This
approach is used in Gnutella [23] for data discovery, floods the query to all accessible peers within a TTL (Time To Live). By
continuing this procedure, all accessible peers whose hop distance from the query originator is less than or equal to TTL receive
the query. Each peer that receives the query executes it locally and returns the answers directly to the query originator.

Others methods follows the blind approach, we can cite: Modified BFS (MBFS) [11], Iterative Deeping (ID) [24], Random Walks
(RW) [15] etc. In Informed approach, routing queries is ameliorate using diverse information i.e. information concerning neighbors
(indices, tables etc.), information about the historic of queries, the probability of selection of a peer or semantic links. Intelligent
BFS (IBFS) [11] follows the informed approach. Others methods are developed in this context, we can quote: APS (Adaptive
Probabilistic Search) [21], LI (Local Indices) [3], DRLP (Distributed Resource Location Protocol) [17], BFBI (Bloom Filter based
Indices) [1], RI (Routing indices) [3], HSON (Hierarchical Semantic Overlay Network) [12] etc. Shortcuts are created between
peers in order to forward queries directly to peers that are able to process them. Shortcuts presents a considerable gain in
efficiency of queries routing. REMINIDIN [22] follows an informed approach that uses shortcuts. Other approaches use
shortcuts such as RPBS (Ranking Peers Based Shortcuts) [14] and IBS (Interest Based Shortcuts) [18].

In the following section we introduce briefly cSON. In section 4 we present the background of our approach and we give an
algorithm that implies all the communities in order to build a MCT. Section 5 compares the results of our evaluations with the
baseline approach and section 6 concludes and gives some future works.

3. Overview of cSON

3.1 Model
Formally, we define cSON as follows:
•G = {(SP, Lsp )} ∪ {SP ∪ P, Lp} where
      – SP ={SP1, . . . , SPn } is a set of communities where each one describes its own schema,
      – Lsp ={(SPi , SPj) | SPi , SPj | ∈ SP2} is a set of semantic links (between communities),
      – P ={P1, . . . , Pm} is a set of peers, each one describes its own schema and
      – Lp ={(SPi , Pj) | SPi ∈ SP, Pj ∈ P} is a set of semantic links between peers and communities;

• M = {MSP/SP } ∪{MSP/P } is a set of correspondence matrices where each one is associated to sl(i, j) or sl(k, l) ∈{Lsp}∪{Lp} that
saves semantic links between communities.

•ε ={ESP/SP } ∪ {ESP/P} is a set of expertise tables between communities (ESP/SP ) or between a community and its members (ESP/

p ). An expertise describes a part of the schema of a community (or a peer) to share with other communities (or peers).

3.2 Semantic links
The purpose of cSON is the sharing of resources distributed on peers. Each peer is supposed to hold a database (or an XML
document, etc..) with a data schema. A community provides a schema describing a specific domain to a group of peers where
each peer is supposed belong to one community. We adopt a community network topology that combines the efficiency of
centralized search with the autonomy, load balancing and robustness of distributed search. The domains of communities are not
necessarily separated. In general, the search for correspondence between two schemas S1 and S2 consists to find for each
concept in S1 (or S2) a correspondent in S2 (or S1) which is nearest semantically. We can define the concept of mapping (Map)
between schemas as follows:

ij kl

Map : S1 S2,Map(cs1) = cs2 if Sim(cs1, cs2 ) > ∈acc (1)

where cs1: element of schema S1; cs2: element of schema S2; ∈acc is the acceptable threshold; Sim(cs1, cs2 ) is a function, that
measure the similarity between two concepts cs1 and cs2, given as follows:

Sim : S1 X S2  [0, 1] (2)
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We distinguish two particular cases: Sim (cs1, cs2) = 1 describes two similar elements; Sim (cs1, cs2) = 0 describes two distinct
elements.

In this work, we use the similarity function proposed in [5]. The similarity function Sim (np , nk ) is a weighted function that sums
linguistic similarity Sl (np , nk ) and neighborhood similarity Sv (np , nk ) of two nodes np and nk. The coefficients λl and λ v are
respectively the weights associated to linguistic and neighborhood similarities of these elements.

Sim (np , nk ) = λ l . Sl (np , nk ) + λ v  . Sv (np , nk )
where λ l , λ v  > 0
   and λ l + λ v = 0

(3)

The linguistic similarity Sl (np , nk ) of two elements np and nk permits to evaluate the linguistic affinity between their names. We
suppose that, the linguistic similarity Sl (np , nk )  is the similarity Ss(np , nk ) of the two sets of synonymous corresponding to np,
nk for which we add the similarity of types between them:

Sl (np , nk )  = ωs× Ss(np , nk ) + ωt× St (np , nk )

(5)

The similarity Ss(np , nk ) between the synonyms sets combines the measure proposed by Tversky [19] and the distance (ed) of
Levenstein [16]. This is a convenient measure, but it takes into account only exact matching between terms. For example the
terms Numero_assurance and NumeroAssurance are considered different with this formula, but in our case, we consider them
equivalent to a nearly transformation. In [5] we proposed to extend it by making an approximation matching between terms
present in sets of synonyms, rather than an exact match of those terms. So, given A and B two sets of synonyms, we define the
intersection A ∩f  B and the difference A -f  B as follows:

{ }/ max ( , )f accb B
A B a A SM a b

∈
= ∈ >∈∩

(4)

Require: Input : The schemas S1 and S2 of SP1 and SP2.
       Output : MatSPSP : Correspondence matrix between

       for all ng ∈ NoeudInterne(S1) do

2:         for all ng ∈ NoeudInterne(S2) do

                 x ωs  sims(ng , ng )

4:              y simv(ng , ng )

                 sim(ng , ng ) α × x + (1 - α )× y

6:              if sim(ng , ng ) > ∈acc then

                    add (MatSPSP,ng , ng ,Sim-Value)
8:              else
                      add (MatSPSP , ng , ng , null)
10:             end if
              end for
12:    end for

{ }/ max ( , )f accb B
A B a A SM a b
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Algorithm 1 Generation of the correspondence matrix Super-Peer/Super-Peer

SM (a, b) = max (  )min( | a |, | b | ) - ed (a, b)
min( | a |, | b | )

0, (7)∈[0, 1]

(6)
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The function SM computes the similarity of the strings, taking into account the number of atomic actions (add, deletion of
character changes) needed to transform one of string in another string. The number of actions is calculated according to
distance ed of Levenshtein. ∈acc is the threshold above which the calculated similarity is considered acceptable. The similarity
Ss(np , nk) between two sets of synonyms syn (np ) and syn (nk ) of two nodes np et nk is expressed as follows :

( ), | ( ) ( ) | | ( ) ( ) | | ( ) ( ) |
(1 )s p k p f k p f k k f p

XS n n whereX syn n syn n Y syn n syn n Z syn n syn n
X Y Zα α

= = = − = −
+ + −

∩

The global similarity of two nodes depends on the similarity of their contexts. It is based on the following intuition: similar nodes
are linked to similar nodes in two schemas. More specifically, the nodes n1 and n2 are similar if they are linked to respectively
nodes m1 and m2 which are also similar. Let S be a Schema and np ∈ S, the neighborhood V (np ) of np in S is a node having a direct
semantic link with np , let : V (np) = {ni ∈ InternalNode(S) / ∃r ∈ S Λ r (ni , np )}. InternalNode(S) consists of the nodes set of
document S and r(ni , np ) means that there exists a direct link from ni to np. The neighborhood similarity compares nodes based
on their linguistic similarity (i.e. Sl function). By approximate matching of neighborhoods, we get the neighborhood similarity as
follows:

( )
{ ( ) / ( ) ( , ) }

,
( ) ( )

p k l acc
v p k

p k

x V n y V n S x y
S n n

V n V n

∈ ∃ ∈ ∧ >∈
=

∪

Algorithme 1 describes an algorithm that generate the correspondence matrix between two super-peers given their respective
ontologies.

Example (Semantic links): Consider the two following schemas S1 and S2 of two communities given in figure 1. A vertex in S1
(or S2) represents an element (i.e. concept) and a link between two elements represents a semantic link between them. In the first
schema (S1), the concept Journals concerns the articles published in journals. In the second schema S2, Proceedings concerns
the articles published in conferences.

In this example, we apply the similarity function given above in order to generate the corresponding matrix SP/SP. For example,
the semantic links between the two elements article and paper is obtained as follows (for λl = λv = ωs = ωt = 0.5):

Sim (paper, article) = 0.5× Sl (paper, article) + 0.5× Sv (paper, article).

We consider α = 0.5 in equation (8), the similarity of synonymous is expressed as follows:

 (8)

 (9)

Sim (paper, article) =
|{subject}| + 0.5 |{paper}| + 0.5 |{article}|

|{subject}|
 =      .

1
2

Consequently Sl (paper, article) = 0.5×      + 0.5 × 1 = 0.75 (the similarity of types is supposed equal to 1). The neighbors
similarity Sv (paper, article) can be expressed as follows:

1
2

Sv (paper, article) =
|{x ∈V (paper) / ∃y ∈V (article) Λ Ss (x,y)> ∈acc }|

|V {paper} ∪ V {article}|

where V (article) = { journals} and V (paper) = {proceedings}.

We find that Sv ( paper, article) =       and hence Sim(paper, article) = 0.5 × 0.75 + 0.5×       = 0.62 > ∈acc = 0.5.1
2

1
2

3.3 Semantic overlay network formation
In the context of SON, each peer should be able to advertise its base to other peers [13]. In our context, a new peer Pi advertises
its content by sending to the super-peer backbone through its access point a membership advertisement MAi = (PID, Ei ,T) that
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contains the peer’s ID PID, its topic of interest T and its expertise Ei. When the godfather (i.e. the super-peer) of Pi has not joined
the system yet, the advertisement is cached by the access point so that it will be able to advertise the orphan peer when its
godfather joins the network. While the godfather of its semantic domain has been found, the matching process is done by the
godfather to find similarity links between the peer’s expertise and its ontology/schema using equation 4. When the super-peer
accepts the membership request, it stores the peer’s expertise in its ESP/P expertise table and sends a membership approval to
the peer Pi. A new super-peer SPj advises its domain by sending to its neighbors a domain advertisement SDAj = (SID, Ej , Tj,
∈acc ,TTL) containing the Super-peer ID SID, the corresponding expertise Ej , the topic area of interest Tj , the minimum semantic
similarity value required to establish semantic links between its expertise and those of other (super-) peers. When receiving a
domain advertisement, a super-peer SPr invokes the semantic matching process to find semantic links between its suggested
expertise Er and the received suggested expertise Ej. When the super-peer SPr accepts the membership request it stores the
super-peer’s expertise Ej in its ESP / SP expertise table. The semantic links found are stored in SPr s correspondence matrix MSP/

SP and sent also to SPj which can approve or reject them. If the collaboration has been accepted, each one stores the other’s
expertise in its expertise table ESP / SP . SPr forwards also the advertisement SDAj to the peers it has early cached their advertisement
to be interest by topic Tj.

Example (Network configuration): Figure 2 shows an example of the semantic network topology. In this figure the super-peer
SPA describes bibliographical references of a specific topic Database. This topic is part of the general topic Information
Systems. The domain of the super-peer SPA involves the ACM computing classification system (http://www.acm.org/about/
class /ccs98-html). In the same way, SPB describes the same domain but it is interested on another topic Data mining etc. In this
example, a super-peer can support one or several topics (e.g. Logic and database). The interest’s domain of peer P1 is Database.
P1 sends a membership advertisement to its access point SPB. This last forwards the messageMA1 to SPA which has joined yet
the network. SPA contacts P1 in order to study the membership of P1.

3.4 Affinity measures
A semantic domain appears when a new community SPj joins the network with a suggested schema. First, the community
defines its expertise (i.e. the part of the Schema to be share with the other communities) and publishes a domain advertisement.
Semantic links between communities are established by using the Similarity function given in equation 4. The affinity function
Aff is proposed in order to measure the semantic affinity between two communities SPj and SPr. This function is defined as
follows:

( ) ( )
, ( , )

/

,
/ ,j r

S Sj rj r n m
SP SP

s sj r
SP SP

M

Af f M Sim n m= ∑

’

 (10)

where n S   and mS  designate respectively two elements in schemas Sj and Sr and MSP/SP is the corresponding matrix concerning
the two communities SPj and SPr. This matrix contains the results of matching of elements belonging respectively to Sj and Sr.
Aff function returns the sum of values in MSP/SP that represents the similarities between elements.

3.5 Semantic queries routing (baseline)
Queries routing exploits the semantic overlay and the expertise’s tables of the community for both intra-community and
intercommunity query propagation. The set of expertise of communities are stored respectively in their expertise tables ESP/SP
and ESP/P. Assume that peer Pi of community SPj , issues a query Q on its schema with its query language, we give briefly the
principle of the main steps:

Step 1. Query subject extraction. The query is first expressed in common format denoted Qs (e.g. a graph model) [5]. Then, the
resulting query Qs is routed to the community which extracts the query subject. The subject of a query Qs is an abstraction of the
query in terms of nodes of the query.

Step 2. Peer selection. A community selects each neighbor community (or each member of its community) which is able to treat

j r j, r

j, r
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Figure 1. Semantic reconciliation between schemas/ontologies

Figure 2. Semantic overlay network formation
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a query by matching the query subject to the expertise of this community (or to the expertise of a member of its community). The
selection is based on a function Cap that measures the capacity of a community (or a peer) of expertise Exp(P) on answering a
given query of subject Sub(Q).

( )
( )( )

1, max ( , )
( ) e Exp Ps Sub Q

Cap P Q Sim s e
Sub Q ∈∈

⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠
∑

The function Cap is based on the similarity function Sim associated to the elements of Sub(Q) and Exp(P). Each selected
community applies Step 2 (peer selection) for finding promising peers for the incoming query Q. After peer selection, the original
query with its structure is rewritten towards the selected peers.

Step 3. Query routing. Once the set of relevant communities has been identified, the community SPj of Pi sends the query to
those promising peers or communities closed to them by using their ID, IP addresses and the underlying physical network.

4. Enlarge research in cSON

4.1 Background
In cSON each community is linked semantically to at least one other community and in addition we suppose that, for any two
communities there exist a path that connect them. In this context, we modeled cSON as an edge-weighted connected and
undirected graph G(N, E) where N is the set of vertices in G and E is the set of edges. The weight of each edge measures the
affinity between two communities. The objective, in this paper, is to build a maximal covering tree associated to G such that the
sum of affinities between communities is maximal. The aim of this tree, is to enlarge the research in cSON with a minimum
exchange possible of messages between communities and a large number of relevant responses returned by the peers. Indeed,
a query that follows this tree discovers other responses which can not be found by the baseline algorithm. Several algorithms
are proposed in centralized settings in order to build a such tree. We can quote: Prim or Kruskal algorithms [8] [4]. The principle
of these algorithms consist to find a covering tree with a minimum (or maximum) cost. The most important properties of a such
tree are the following: unique and acyclic. The uniqueness of the tree is granted when the values associated to edges in G are
all distinct. The uniqueness means that if we can find another covering tree T’  then the cost of T’  is not minimal (or maximal).
When some values associated to edges in G are identical then different trees can be obtained with the same minimum (or
maximum) cost; Acyclic ensures that each query is received by each community only one time. The complexity of Prim is given
about O( | E | log( | N |)) where E is the number of edges and N is the number of vertices. The results of comparison, between Prim
and others methods like Kruskal, shows that when the number of vertices is less than 100, judging from the space complexity,
Kruskal algorithm is relatively superior to Prim algorithm [9]; however, when this number is greater than 100, Prim algorithm is
more superior. In the rest of this paper we propose an implementation of the Prim algorithm in a context such as cSON. The
proposed algorithm build a maximal-affinity covering tree that can be used later in order to efficiency enlarge the search to all
communities. When a community receives a query, it forwards this query to other communities via the MCT without cycle (when
browsing) and by exploiting the maximum links existing between communities in order to privilege communities that are more
likely to respond to queries.

4.2 Construction of the MCT
In this section, we present briefly a basic version of the distributed algorithm then we present optimized version.

4.2.1 Basic algorithm
The principle of the proposed algorithm consists to ask each existing community in MCT to return its best neighbors (we
suppose, at beginning, MCT contains the community SP0, this step returns the community which have a maximal affinity with
SP0 ). The best returned neighbor (among existing communities in MCT) is added into MCT and this step is repeated until the
end (i.e. all the communities in G are included in MCT). This version of the algorithm is called naive, since a community, with all
its neighbors are already in the tree, is always asked to return its best neighbor. Therefore, the number of messages exchanged
between communities increases dramatically with the augmentation of numbers of communities.

4.2.2 Optimized algorithm
This algorithm differs from the first version (naive version) by the fact that when a community SP returns its best neighbor (e.g.
SPb ) and that this neighbor (SPb ) is the last one for SP which is selected to join the tree, then SP shouldn’t receive more

 (11)
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messages later. Algorithm 2 shows this optimized version: R represents the maximal covering tree (MCT) where S is the set of
vertices and A is the set of edges. We start from SP0 (i.e.R.S contains SP0 and R.A is φ). Responses contains the best neighbors
returned by communities in R. V contains the set of communities in R which have at least one neighbor in G which is not yet in
R. Initially, V is supposed contains SP0 (i.e. SP0 is not the only community in the graph) and Responses is initialized to empty.
The algorithm asks each community in V to return its better neighbor (e.g. SP0 is asked to return its best neighbor). The better
returned neighbors are added to Responses (lines 6 to 13). Then, Line 14 orders the obtained communities in Responses in
ascending with respect to their respective weights (i.e. their measures of affinities) and the first one (the community having the
maximal affinity) is selected (line 15). This selected community (the_better) is added into R and therefore this community
(the_better) is added in V only if it has at least one neighbor (lines 18 to 20) again in G which is not in R. This part of the algorithm
is repeated while still in V one element. A Community SPi receives a request Ask-Better-Neighbor from another community (e.g.
SP0) considers only its neighbors which are not in yet R.S (Line 25). This function checks if Res is empty. In this case it returns
an empty message to the community (SP0). Otherwise, it checks if the size of Res is equal to one. If that the case, SPi has one
neighbor and the boolean variable Last is positioned to true; else (i.e. the case where there are several neighbors) the neighbors
are ordered in ascending with respect to their respective weights and finally, the better neighbor which has the maximum weight
is returned to the claimant community (SP0). The application of this algorithm in the graph given in figure 3 return the MCT
(reported in bold in this figure).

4.3 Semantic queries routing (MCT)
The proposed queries routing algorithm takes in input: the query Q submitted by a peer to his community SPk  and the obtained
tree MCT. The principle of this algorithm is given as follows: 1. SPk researches locally the other peers that are able to process this
query: local research consists to measure the capacity (formulas given in 11) of each peer to process this query; 2. SPk  sends
the query through MCT to other communities. Each community in its turn runs these two steps and the results are returned to
SPk.

Example (Queries routing): In Figure 3, SP2 receives a query from one of its peers. SP2 checks if at least one of its peers is able
to process this query and sends the query to SP4, SP6 and SP7. SP4 in its turn processes the query as follows: it checks if at least
one of its peers is able to process the query and sends the query to SP9 and SP5. SP9 returns the results of local research to
(SP2). SP5 continues the propagation of this query thought MCT.

5. Validation

In this section, we evaluate our algorithms with SimJava-based simulator. Firstly, for the creation of the tree, we compare the
performance between the two versions of the algorithm: naive and optimized versions. In our evaluations, we consider a
constant number of peers and we varying the number of communities from 10 to 1000. We measure the time of the creation of
MCT and the total number of messages exchanged between communities. Secondly, for evaluations concerning the routing
algorithms, the number of communities is supposed a constant and we varying the number of peers from 100 to 4000. For each
one of these algorithms, we measure the time to get the responses of queries submitted by peers, the total number of messages
exchanged between communities and the average number of responses returned by each query. All our experiments are realized
under Microsoft Windows XP, x86 family of roughly 2000Mhz and a total physical memory of 2048Mo.

Figure 4(a) shows the number of messages exchanged between peers in order to create the MCT and Figure 4(b) measures the
time to create this tree. We varying the number of communities from 10 to 1000 and the number of peers still constant because
peers are not solicited in the creation of this tree. We constat that, the number of messages exchanged using the basic algorithm
is more important than the number of message exchanged using the optimized version. The time to create the MCT increases
with the augmentation of communities and this time in the second version (optimized) is better. We observe that, the time of
creation of the MCT, returned by the two algorithms is low when the number of communities is less than 200 and this time
increases when the number of communities exceeds 200.

Figure 5 evaluates the performance of routing algorithms: baseline (denoted cSON) and MCT. Figure 5a shows the total number
of message exchanged between communities using MCT. This number is more important than the number of messages exchanged
between peers in baseline approach. Figure 5b shows the time of queries routing to relevant peers. Figure 5c shows the average
number of responses returned by each query submitted by a peer. This number is negligible when the number of peers is low and
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Algorithm 2 Construction of the MCT: optimized version
Require: cSON - Weighted connected and undirected graph
        Output: MCT: R(S,A) where S is the set of communities and A is the set of semantic links between communities. We denote
        by W, the set of weights assigned to semantic links.
       {Start with SP0 }
1:    Module (SP0 ):
       {Initialization}
2:    R.S={} ; R.A = {};
3:    Add(SP0 , R.S) ;
4:    repeat
5:        Responses = φ
6:          for all SPi in V do
7:               m_v = ask-Better-Neighbor (SPi , R)
8:              if m_v == φ then
9:                  remove(SPi ,V)
10:           else
11:               Response = Responses ∪ m_v
12:            end if
13:        end for
14:       SORT(Responses, Weight)
15:       The_better = first (Responses)
16:       R = R ∪ The_better . neighbor
17:       V = V ∪ The_better . neighbor . S
18:       if The_better.last then
19:            remove(The_better . SP, V)
20:       end if
21: until V ! = φ
22: Module (SPi ) :
23: Ask-Better-Neighbor (R)
24: last = false
25: Res = Neighbors - R.S {Res contains the set of Neighbors of SPi  in G minus the set of vertices in R}
26: if Empty(Res) then
27:     Return Message (Empty)
28: else
29:      if size (Res) = 1 then
30:          last = true
31:     else
32:          sort (Res,weight)
33:      end if
34:     Return Message (SPi , First (Res), last)
35: end if

this number increases with the augmentation of the number of peers. For example, for 1000 peers the difference of number of
responses returned by a query using each algorithm is an average roughly 10, and for 4000 peers this difference is roughly 50.
In the first case (1000 peers) the total number of responses increases roughly of 10000 and in the second case (4000 peers) this
number increases roughly of 200000.

6. Conclusion

In this paper we considered a semantic P2P system such as cSON. Communities in cSON advertise the content they want to
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Figure 3. cSON and the MCT corresponding to the community SP2
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share by their expertise and discover communities by schema matching techniques. In cSON, within its basic queries routing
algorithm, a query submitted by a peer is sent only to neighboring communities (linked together semantically). In this paper, we
proposed an algorithm (based on PRIM’algorithm) over cSON that returns a maximal-affinity covering tree denoted MCT. We
proposed a queries routing algorithm based on MCT in order to enlarge research to all communities in cSON. Our experiments
show that the MCT-based routing algorithm combined with the semantic links established between communities outperforms
significantly the baseline queries routing algorithm. Future works consists to compare our routing algorithm with others
approaches (e.g. flooding algorithm), to generalize the notion of communities to several super-peers and to study the case where
new communities joins or leaves the network dynamically.
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