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ABSTRACT: Wireless Sensor Networks (WSNs) consist of a large number of Wireless Nodes (WNs) each with sensing,
processing, communication and power supply units to monitor the real-world environment information. The WSNs are
responsible to sense, collect, process and transmit information such as pressure, temperature, position, flow, vibration, force,
humidity, pollutants and biomedical signals like heart-rate and blood pressure.  The ideal WSNs are networked to consume
very limited power and are capable of fast data acquisition. The problems associated with WSNs are limited processing
capability, low storage capacity, limited energy and global traffic. Also, WSNs have a finite life dependent upon initial power
supply capacity and duty cycle. The WSNs are usually driven by a battery. Therefore, the primary limiting factor for the
lifetime of a WN is the power supply. That is why; each WN must be designed to manage its local power supply of energy in
order to maximize total network lifetime [5]. The life expectancy of a WSN for a given battery capacity can be enhanced by
minimizing power consumption during the operation of the network. The CS theory solves the aforementioned problem by
reducing the sampling rate throughout the network. A combination of CS theory to WSNs is the optimal solution for achieving
the networks with low-sampling rate and low-power consumption. Our simulation results show that sampling rate can
reduce to 30% and power consumption to 40% without sacrificing performances by employing the CS theory to WSNs. This
paper presents a novel sampling approach using compressive sensing methods to WSNs. First, an overview of compressed
sensing is presented. Second, CS in WSNs is investigated. Third, the simulation results on the sampling rate in WSNs are
shown.
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1. Introduction

Wireless Sensor Networks (WSNs) consist of a large number of Wireless Nodes (WNs) each with sensing, processing, commu-
nication, and power supply units to monitor and control the information of real environments. As a communication system, in
the WSNs, sources are WNs, which measure some quantity; the channel is the space between the WNs and receiver which is
another WN or Base Station (BS). The WSNs are now used in a variety of fields such as health monitoring  in designing
Electronic Health (EH), transportation automation in  designing Traffic Control System (TCS), industrial control monitoring in
designing Web Controlling System (ISC), business and residential areas in designing Energy Management System (EMS), and
military for providing Electronic War Systems (EWS).  The WSNs suffer of some problems like limited processing capability, low
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storage capacity, limited energy, and high sampling rate. The compressive sensing that also known as compressed sensing is a
revolutionary idea proposed recently to achieve much lower sampling rate for sparse signals such as biomedical signals, WSN’s
signals, and signals of Wireless Body Area Networks(WBAN’s) [5]. By compressing data, the data size is reduced, and less
bandwidth is required to transmit data: therefore, less power is required to process the data. The CS helps in data gathering and
transferring and can change the traditional theorem and technology in wireless networks, which may lead to some other
improvements in capacity, delay, size, and energy management [4]. This theory says a small number of random linear measure-
ments of compressible signals contain enough information for reconstruction, processing, and communication [8]. To extend
WSNs to many areas including: health monitoring, home automation, control monitoring, military, transportation automation,
and energy management, a combination of the CS theory to WSNs is the best solution for designing autonomous networks with
low sampling-rate, low-power, self-organizing and self-maintenance[6]. The aim of this paper is to investigate how CS theory can
be employed in WSNs to design a robust network with low-sampling rate and low-power consumption.  The structure of this
paper is organized as follows: Section 2 presents a background about the CS theory. Section 3 investigates the CS theory to
WSNs. Section 4 the simulation result on sampling-rate and power consumption in WSNs is shown. Finally, the conclusion is
drawn in Section 5.

2. Overview of Compressed Sensing Theory

The CS theory is emerging for such WSNs by compressing, the date size reduced, and fewer bandwidth is required to transmit
data and therefore less power is required to process data[9]. This theory says a small number of random linear measurements of
compressible signals contain enough information to recover the original signal [10]. This idea attracts many talented researchers
on areas like Information Communication Technology (ICT), Random Variables (RVs), Optimization Procedures (OPs) and
Mathematical Statistics (MSs) [8]. A basic block diagram of the CS scheme is provided in Figure 1.

Figure 1. a) CSin transmitter b) CS in receiver

The CS theory exploits that many natural signals such as WSNs’s signals are sparse or compressible in sense that they have
concise representations when expressed in the proper basis[1]. With CS  theory,WSNs can achieve a higher transmission rate,
a lower time delay, and high probability of success of data transmission.  In this section, we first, discuss the CS theorem.
Second, the reconstruction method to recover the original signal in the receiver side is investigated.

2.1. Basic Theorem
 Regarding the Nyquist theory, each signal must be sampled at least twice its bandwidth in order to be represented without error.
Our goal in the CS theory as a new sampling scheme is to reduce load of sampling rate. The CS theory says many signals are
sparse or in the practice near sparse and can represent by small number of random measurements [11]. Any compressible signal
D in RN can be expressed in terms of a basis of N × 1 vectors {ψi} such that 1 < i < N. Forming the N × N basis matrix Ψ = [ψ1
,ψ2,......., ψN ] by stacking the vector i} as columns, the compressible signal D including K non-zero and (N-K) zero coefficients
can  be represented like [12]:



  Journal of Networking Technology Volume  3  Number  2  June  2012   111

D = [D]N × 1 = [Ψ]N × N [S]N × 1
Si ψi

N
i = 1Σ or (1)

Where S is the N × 1 column vector of weighting coefficients Si = < D, ψi  > = ψi   D. Therefore any compressible signals D can
be represented of an orthogonal basis of N × 1 vector ψi}. On the other hand, any compressible signal has a small number of
large coefficients and a lot of number of small coefficients [13]. That is why any compressible or sparse signal has K nonzero
coefficients and (N-K) zero coefficients with K  N. In fact, the CS theory offers a stable measurements metrics with M
independent and identically distributed (i.i.d) elements of the compressed signals such as K < M  N .Therefore the compressed
signal Y is found like:

T

[φ ]M × N [Ψ]N × N [S]N × 1 = [Θ]M × N [S]N × 1

[Y]M × 1 = [φ ]M × N  [D]N × 1 (2)

(3)

By substituting (2) in (1) we have [13]:

Thus CS scenario has two steps. First, offers a stable measurement matrix that ensures that the salient information in any
compressible signal is not damaged by the dimensionality reduction from D  ∈ RN down to Y ∈ RM.  In the second step, the CS
theory offers a reconstruction algorithm under certain condition and enough accuracy to recover original signal D from com-
pressed signal. Fortunately, the [φ]M × N matrix has the following interesting properties:

. The [φ]M × N matrix is incoherent with the orthogonal basis with high probability and enough accuracy

. The [Θ]M × N  = [φ ]M × N [Ψ]N × N  matrix is also i.i.d Gaussian for every possible Ψ.

. The [Θ]M × N  = [φ ]M × N [Ψ]N × N matrix has the RIP with high probability if (the number of random measurements) M verifies the
following equation:

M > cK log (N/M) (4)

where c is a small constant. As the result, CS theory focus on few number of linear combination of all points of the signal instead
of huge number of samples to find compressed signal with matrix φ. Selecting the measurement yj into M × 1 vector Y and the
measurement vector φj   to rows into an M × N  matrix φ we can write:T

(  )y1
yM

=(   )φ11    …

… …

…
…  φM × N

(  )d1
dN

(5)

2.2 Reconstruction Scheme
The compressed sensing theory provides the guarantee that a compressible signal can be fully describe by only M random
measurements. Consequently, we can recover the original signal D from the compressed signal with only M random measurements
with high probability and enough accuracy. Our goal is to find the signal’s sparse coefficient vector S in the translated null
space. Therefore, the reconstruction method needs only M random measurements of random matrices φ ,Ψ to recover the
original signal [1].

We define the l p norm of the vectors s as (|| S || p ) 
p =                  When p=0 we obtain the l 0 “norm” that counts the number of non-

zero coefficients in S; hence a K-sparse vector has l 0 norm K. The main procedure to solve inverse problem in l2 norms is by least
squares that shows l 2 minimizations will almost never find the data vector D, and also solving l 0 is numerically unstable method.
That is why; the l 0 and l 2 minimizations are not convenient to recover original signal from the compressed signal but fortunately
we can exactly reconstruct the original signal by l 1 norm with high probability and enough accuracy [3].  To summarize, the CS
theory offers a reconstruction mechanism to recover original signal D from the compressed signal Y with high probability and
enough accuracy with only M random linear measurements [22]. Therefore, we can expect to recover the original signal D with
high probability from just M > cKlog  ( N/M )  N random Gaussian measurements. We also thank to the properties

ΣN |S|  p.i=1
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of the i.i.d Gaussian distribution to make Gaussian measurements φ which are universal to generate Θ = φ Ψ which has the RIP
with high probability.

3. WSNs with CS Theory

This section presents the basic theory of WSNs, and then we investigate how compressed sensing could improve the limiting
characteristics such as power and delay in wireless nodes. The WSNs consist of important units such as sensing unit (SU),
power supply unit (PS), communication and controlling unit (CC). The important concept of WSNs is based on a simple equation
like:

PS + SU + CC = Thousands of potential applications (6)

In this part, we want to investigate how to employ the CS theory in WSNs, which mostly involve data of a large number of WNs.
Typically; in WSNs we have the following properties:

. There are a total of N sources randomly located in a filed

. We denote K as the number of event that active sources generate to be measured

. K is a random number and is much smaller than N

. We denote [D]N×1 as the event vector

. Each component of [D]N×1 has a binary value

. Obviously [D]N×1 is a sparse vector since k<<N

. There are M active monitoring wireless sensors trying to capture K events

. The number of events K, the number of wireless sensors M and total of sources N has the following relation:  (K < M<<N)

Also in WSNs we have:
. Very limited number of active wireless sensors compared with total of wireless sensors
. Very limited number of events compared to the number of sources
. Thus, the events are relatively sparse compared to the number of sources

Therefore, we can say data vectors in WSNs are sparse vectors and consequently CS theory can employ to WSNs [3].  A WSN
with N sources, each node acquiring a sample Di. The final goal is to collect Data vector D = [D1, D2……, DN ].  D has an   M-Sparse
in a proper basis like:

Ψ= [Ψ1, Ψ2…ΨN] (7)

CS suggests that, under certain condition, instead of collecting D we can collect compressed vector Y =ΦD, where Φ = {Φji} is
K×N sensing Matrix whose entries are i.i.d random variables. In non-CS WSNs with N nodes a node is receiving N-1 packets and
send out N packets (N-1) received packets plus its data) each packet corresponding to data sample from a node and the BS
needs to receive all N samples [21]. In WSNs with CS theory the BS needs only to receive M (M ≈ K) packets. Obviously, in order
to use CS, each node needs to know the value of Compressed Ratio (CR = N/K) that is constant and known and value of N. The
node i computes K = N/CR and generate K values Φji (1 <  j < k) and create a vector like:

Di [ Φ1i , Φ2i ,…………..,Φk i ] (8)

where Di  is its own data. Typically, node i will wait to receive from all its downstream neighbors. Each received packet carries its
index from 1 to K so that it can be added to the data already waiting in i with the same index (either locally produced or
received from a neighbor). Then node i will send exactly K-Packets corresponding to the aggregated column vectors. Finally,
compressed vector Y is generated like:

11 11 1

1

N

M M MN N

Y D

Y D

φ φ

φ φ

⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟= ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠

…

…
(9)
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Now the different between CS and non-CS operation becomes clear: CS operation requires each node send exactly M packets
irrespective of what it has receive and each node needs to know CR and N and then computes value of (M ≈ K).  The received
vector in Base Station (BS) can be Witten as:

where [Y]M×1 is compressed data vector that is received by BS and εM×1 is the thermal noise vector whose components are
independent and has zero mean and unit variance. Consequently, the received vectors in BS are an condensed representation
of the sparse events.

3.1 Two Important Questions
The first question is that, whether or not the information of K-Sparse signal is damaged by the dimensionally reduction from N
bits of information to M bits of information [20]. Surprisingly the information is not damaged because of the D vector of date is
the sparse vector. If D is not sparse enough, as long as M < N, the signal is damaged since there are fewer equations than
unknowns. The next question is how to develop a reconstruction algorithm to recover data vector from the compressed data
vector Y under the certain condition and high probability [19]. We can recover data vector D, by solving a convex optimization
via l 1 norm. Our model shows in Figure 2. That is why; the compressed data can be generated from only M bits of information
instead of N bits of information such as M ≈ K<< N which K is the number of the events in WSNs [18]. Regarding the explanation
above, we can apply the CS theory to WSNs as a new sampling method to reduce sampling rate and power consumption.

  [Y]M×1= [Φ] M×N [D] N×1 + εM×1 (10)

 Figure 2. Sparse data vectors in WSNs

4. Simulation Results

Our simulation shows that the sampling rate in WSNs can reduce to 30% and power consumption to 40% without sacrificing
performance and with further decreasing the sampling rate and power consumption, the performance is gradually reduced until
12% sampling rate and 15% power consumption. In this section, we fist, the simulation results on sampling-rate present. Second,
the simulation results about power consumption are investigated.

4.1. Simulation Results on Sampling-Rate
To simulate sampling-rate, we have gotten some assumption to simulate sampling rate [2]. The important assumption is:
• N =100 (Total number of sources randomly located within 500m-by-500m area)
• M as the number of wireless nodes is also randomly located within this area
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• Sampling Rate (SR) = M / N
• K as the number of random events which is a random and small number
• The propagation loss factor is very small
• The transmitted power is normalized to 1
• PDF of random variable is Gaussian

• εM×1 as the thermal noise is very small and can be discard

Our result shows, we can reduce sampling rate in SSWSNs until 30% without any problem in detection [4]. The following results
are extracted:
• If sampling rate is higher than 30%, the detection probability is almost 100%
• The performance gradually reduces as the sampling rate reduces and as K (the number of events) increase
• CR=N / K is increased when K is decreased

By increasing the number of events the accuracy of detection events decreased. Table 1 shows our simulation on sampling rate
with different values for K.

Number of
events

SR(Non-CS
network)

SR(CS-based
network)

Detection Probability

K < 10

10 < K < 25

K > 25

100%

100%

100%

100% 25% 100%

100%

30%

35%

Table1. Sampling rate reduction for different values of K

Figure 3 shows our simulation on sampling rate with Gaussian distribution and different values for K=5, K=10, K=50.  In the non-
CS scenario a wireless node is receiving N-1 packets (each packet corresponding to a data sample from a wireless node) and will
send out N packets (the N-1 received packets plus its own data sample); the base station, in particular, will need to receive all the
N packets. Now the difference between CS and non-CS operation becomes clear: CS operation requires each node in WSNs to
send exactly K packets irrespective of what it has received. In non-CS networks each wireless node needs send N packets with
K<<N. In the CS scenario by compressing, the data size is reduced and fewer bandwidths is required to transmit data and
therefore, less power is required to process and transmit data[15].   Table 2 compares our simulation results with non-CS network
[7].

Number of events Sampling rate
reduction

Detection
Probability

K < 10

10 < K < 25
K > 25

100%

100%

100%

Until 25%
Until 30%
Until 35%

Table2. Simulation results for non-CS network and CS network

In some cases, the Uniform distribution works better than Gaussian distribution for random measurements. Figure 4 illustrates
simulation sampling rate for WSNs.

4.2 Simulation Results on Power Consumption
An important key of any WSN is to minimize the power consumed by the units of WN such as PS, CU, and SU. That is why;
power consumption can be divided into three domains: sensing, processing, and communication units. The power available in
the WN is often restricted. It makes power optimization more complicated in WSNs.  By applying the CS to WSNs the sleep time
increases by decreasing the number of bits in communication and processing units. After increasing the sleep time, the power
consumption should be minimized to extend the life of each WN.   Our simulation results that show compressed sensing theory
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Simulation Sampling Rate with Gaussian Distribution
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Figure 4. Sampling rate for K = 5, K = 10, K = 50 with Uniform distribution

Figure 3. Sampling rate for K= 5, K = 10, K = 50 with Gaussian distribution
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as a new sampling method in WSNs are beneficial in reducing the total of power consumption [6]. The simulation results are
produced using the simulator developed C++ and MATLAB. In this simulation we use some assumption including [14]:

• Number of WNs are 100
• WNs are uniformly distributed in the area about 2000 × 2000 m
• The power supply of each WN has a 15 Jules for CU, PU and SU
• The effective rate for communication unit of each WN is 200m
•The simulation time is 825 seconds
• Power consumption for communication unit in sending mode is 550 mw and in receiving mode is 25 mw
• Each WN consume 9 milliamps in active mode and 5 µA in sleep mode
• Bandwidth for WSN is 1.5 Mb / s
• Each WN has enough time for sending its data to BS
• Simulation packet size 1500
• Simulation interval is 150
• Network topology is star
• The data of WNs are driven form a uniform distribution between 1 and 200
• compressed sensing has N=100 and M=10

Figure 5 shows the power consumption in term of Compressed Ratio (CR) in small scale of WSNs with 100 wireless nodes [16].

Figure 5. Simulation of power consumption

      1

     0.9

     0.8

     0.7

     0.6

   0.5

    0.4

    0.3

   0.2

    0.1

     0
0              2               4              6                8              10            12            14

Po
w

er
 C

on
su

m
pt

io
n 

(W
)

Power consumption with Compressed Ratio

Compressed Ratio (CR)

Figure 6 shows simulation results on power consumption in term of Compressed Ratio (CR= N/M) for three signals with N =
1024, N = 2048, N = 3072 and Gaussian distribution in WBANs.

The results of simulation are shown in Table 3 and compared in WSN with CS and without CS theory.

The final simulation results on sampling rate and power consumption are summarized in Table 4. It is evident that CS as a new
sampling scheme can minimize low of sampling rate and power consumption in WSNs.
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Power cons. in
CU

Power cons. in
SU

Power cons. in
PU

Without CS with      N=100Parameter With CS with        M=10

600                     mw                    110                 mw

200                     mw                       90                mw

180                     mw                       80                mw

Table 3. Results of power consumption

5. Conclusion

In this research proposal, we have investigated the benefit of applying the CS theory to data collection in the WSNs. We first
described how to employ the CS theory to WSNs for achieving low sampling-rate and power consumption. Second, we
formulated the requirements to apply the CS theory in WSNs. We also employed the CS theory to the WSNs to design low
sampling-rate and power consumption network in order to design robust networks with low power consumption. From the
simulation results, we investigated that sampling-rate in WSNs can reduce to 30% and power consumption to 40% without
sacrificing performances.

6. Further Works

We have investigated how to employ the CS theory in WSNs. It will be part of our future work to provide a general scheme of
the CS to any WSNs. We are also going to develop the CS theory to reduce power consumption to provide low-power WSNs

Figure 6. Simulation results on power consumption in term of Compressed Ratio
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Numbaer of
measurements

(M)

Number of samples
N=1024

Number of
samples N=2048

Number of samples
N=3072

100

200

300

400

CR=10.24

SR →→→→→ 27%

PC →→→→→ 33%

CR=30.72

SR →→→→→ 27%

PC →→→→→ 33%

CR=20.24

SR →→→→→ 27%

PC →→→→→ 33%

CR=5.12

SR →→→→→ 29%

PC →→→→→ 35%

CR=3.41

SR →→→→→ 37%

PC →→→→→ 39%

CR=2.24

SR →→→→→ 42%

PC →→→→→ 41%

CR=10.24

SR →→→→→ 29%

PC →→→→→ 35%

CR=15.36

SR →→→→→ 29%

PC →→→→→ 35%

CR=

SR →→→→→ 37%

PC →→→→→ 39%

CR=

SR →→→→→ 37%

PC →→→→→ 39%

CR=

SR →→→→→ 42%

PC →→→→→ 41%

CR=

SR →→→→→ 42%

PC →→→→→ 41%

Table 4. Simulation results on sampling rate and power consumption

with more than 100 WNs. We also want to apply the CS theory to reduce sampling-rate in large scale WSNs with more than 100
WNs.
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