Home| Contact Us| New Journals| Browse Journals| Journal Prices| For Authors|

Print ISSN:
Online ISSN:


  About JIO
  DLINE Portal Home
Home
Aims & Scope
Editorial Board
Current Issue
Next Issue
Previous Issue
Sample Issue
Upcoming Conferences
Self-archiving policy
Alert Services
Be a Reviewer
Publisher
Paper Submission
Subscription
Contact us
 
  How To Order
  Order Online
Price Information
Request for Complimentary
Print Copy
 
  For Authors
  Guidelines for Contributors
Online Submission
Call for Papers
Author Rights
 
 
RELATED JOURNALS
Journal of Digital Information Management (JDIM)
Journal of Multimedia Processing and Technologies (JMPT)
International Journal of Web Application (IJWA)

 

 
Progress in Systems and Telecommunication Engineering
 

Minimum-cost Subgraph Satisfying the Connectivity Requirement
David Adjiashvili
ETH Zürich, Rämistrasse 101 8092 Zürich, Switzerland
Abstract: In this work, we work on robust models, i.e. ones that incorporate uncertainty in the feasible set. The aim is to find a minimum-cost subgraph satisfying the connectivity requirement. Most existing models of robust network design assume uniform scenario sets. Our algorithm combines combinatorial and LP-based techniques. We are convinced our methods are suitable for solving other robust problems in planar graphs.
Keywords: Robust Network Design, Combinatorial Techniques, Connectivity Requirements Minimum-cost Subgraph Satisfying the Connectivity Requirement
DOI:https://doi.org/10.6025/pste/2024/13/1/1-17
Full_Text   PDF 1.91 MB   Download:   17  times
References:

[1] Adjiashvili, D. (2012). Structural robustness in combinatorial optimization. PhD thesis, ETH Zürich, Zürich, Switzerland. 

[2] Adjiashvili, D., Oriolo, G., Senatore, M. (2013). The online replacement path problem. In: Proceedings of 18th Annual European Symposium on Algorithms (ESA) (pp. 1–12). Springer.

[3] Adjiashvili, D., Stiller, S., Zenklusen, R. (2014). Bulk-robust combinatorial optimization. Mathematical Programming, 149(1-2), 361–390.

[4] Adjiashvili, D., Zenklusen, R. (2011). An s-t connection problem with adaptability. Discrete Applied Mathematics, 159, 695–705.

[5] Aissi, H., Bazgan, C., Vanderpooten, D. (2009). Min–max and min–max regret versions of combinatorial optimization problems: A survey. European Journal of Operational Research, 197(2), 427–438.

[6] Bansal, N., Pruhs, K. (2010). The geometry of scheduling. In 51st Annual IEEE Symposium on Foundations of Computer Science (FOCS) (pp. 407–414).

[7] Bertsimas, D., Brown, D. B., Caramanis, C. (2011). Theory and applications of robust optimization. SIAM Review, 53, 464–501.

[8] Chekuri, C., Vondrák, J., Zenklusen, R. (2011). Multi-budgeted matchings and matroid intersection via dependent rounding. In Proceedings of the 21st Annual ACM-SIAM Symposium on Discrete Algorithms (SODA) (pp. 1080–1097).

[9] Cheriyan, J., Thurimella, R. (2000). Approximating Minimum-Size k-Connected Spanning Subgraphs via Matching. SIAM Journal on Computing, 30, 292–301.

[10] Damian-Iordache, M., Pemmaraju, S. V. (2002). A (2+ “)-approximation scheme for minimum domination on circle graphs. Journal of Algorithms, 42(2), 255–276.

[11] Dhamdhere, K., Goyal, V., Ravi, R., Singh, M. (2005). How to pay, come what may: approximation algorithms for demand-robust covering problems. In 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS) (pp. 367–376).

[12] Feige, U., Jain, K., Mahdian, M., Mirrokni, V. (2007). Robust combinatorial optimization with exponential scenarios. In M. Fischetti & D. Williamson (Eds.), IPCO 2007 (Vol. 4513, pp. 439–453). Springer.

[13] Gabow, H. N., Goemans, M. X., Tardos, É., Williamson, D. P. (2009). Approximating the smallest k-edge connected spanning subgraph by lp-rounding. Networks, 53(4), 345–357.

[14] Gabow, H. N., Goemans, M. X., Williamson, D. P. (1998). An efficient approximation algorithm for the survivable network design problem. Mathematical Programming, Series B, 82(1-2), 13–40.

[15] Golovin, D., Goyal, V., Ravi, R. (2006). Pay today for a rainy day: Improved approximation algorithms for demand-robust min-cut and shortest path problems. In B. Durand., W. Thomas (Eds.), STACS 2006 (Vol. 3884, pp. 206–217). Springer.

[16] Grandoni, F., Ravi, R., Singh, M., Zenklusen, R. (2014). New approaches to multi-objective optimization. Mathematical Programming, 146(1-2), 525–554.

[17] Guruswami, V., Sachdeva, S., Saket, R. (2015). Inapproximability of minimum vertex cover on k-uniform k-partite hypergraphs. SIAM Journal on Discrete Mathematics, 29(1), 36–58.

[18] Israeli, E., Wood, R. K. (2002). Shortest-path network interdiction. Networks, 40, 97–111.

[19] Jain, K. (2001). A factor 2 approximation algorithm for the generalized steiner network 

problem. Combinatorica, 21, 39–60.

[20] Kerivin, H., Mahjoub, A. R. (2005). Design of survivable networks: A survey. Networks, 46(1), 1–21.

[21] Khandekar, R., Kortsarz, G., Mirrokni, V., Salavatipour, M. (2008). Two-stage robust network design with exponential scenarios. In D. Halperin & K. Mehlhorn (Eds.), ESA 2008 (Vol. 5193, pp. 589–600). Springer Berlin / Heidelberg.

[22] Kouvelis, P., Yu, G. (1997). Robust discrete optimization and its applications. Kluwer Academic Publishers.

[23] Olver, N.-K. (2010). Robust network design. PhD thesis, McGill University, Montreal, Quebec, Canada.

[24] Papadimitriou, C. H., Yannakakis, M. (2000). On the approximability of trade-offs and optimal access of web sources. In 41st Annual Symposium on Foundations of Computer Science (FOCS) (pp. 86–92).

[25] Ravi, R., Marathe, M. V., Ravi, S. S., Rosenkrantz, D. J., Hunt, H. B. (1993). Many birds with one stone: Multi-objective approximation algorithms. In 25th Annual ACM Symposium on the Theory of Computing (STOC) (pp. 438–447).

[26] Williamson, D. P., Goemans, M. X., Mihail, M., Vazirani, V. V. (1995). A primal-dual approximation algorithm for generalized steiner network problems. Combinatorica, 15(3), 435–454.

[27] Yu, G., Yang, J. (1998). On the robust shortest path problem. Computers & Operations Research, 25(6), 457–468.

[28] Zenklusen, R. (2010). Matching interdiction. Discrete Applied Mathematics, 158 (15), 1676–1690. 


Home | Aim & Scope | Editorial Board | Author Guidelines | Publisher | Subscription | Previous Issue | Contact Us |Upcoming Conferences|Sample Issues|Library Recommendation Form|

 

Copyright © 2011 dline.info